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Abstract

I present a computational-level model of language produc-
tion in terms of a combination of information theory and con-
trol theory in which words are chosen incrementally in order
to maximize communicative value subject to an information-
theoretic capacity constraint. The theory generally predicts a
tradeoff between ease of production and communicative accu-
racy. I apply the theory to two cases of apparent availability
effects in language production, in which words are selected on
the basis of their accessibility to a speaker who has not yet per-
fectly planned the rest of the utterance. Using corpus data on
English relative clause complementizer dropping from Levy &
Jaeger (2007) and experimental data on Mandarin noun classi-
fier choice from Zhan & Levy (2019), I show that the theory re-
produces the observed phenomena, providing an alternative ac-
count to Uniform Information Density (UID) and a promising
general model of language production which is tightly linked
to emerging theories in computational neuroscience.
Keywords: language production, information theory, control
theory, availability-based production, accessibility

Introduction
Language production appears to be a largely incremental pro-
cess: speakers plan an utterance as they are producing it,
simultaneously integrating multiple sources of information
(Bock, 1982; Levelt, 1989; Bock & Levelt, 1994; Griffin,
2001; F. Ferreira & Swets, 2002). One apparent effect of
this incrementality is availability effects in language produc-
tion: the fact that speakers will often choose to produce words
which are easily accessible or available to them earlier in an
utterance, or to include such words when they are optional,
or even to use a highly-available word in place of a more
communicatively accurate but less available word (Koranda
et al., 2021). The fact that available words tend to go earlier
has been attributed to a greedy, ‘easy-first’ language produc-
tion strategy (Bock & Irwin, 1980; Levelt, 1981; Bock, 1982;
Bock & Warren, 1985; McDonald et al., 1993; V. S. Ferreira
& Dell, 2000; V. S. Ferreira & Yoshita, 2003; Chang, 2009;
Tanaka et al., 2011; F. Ferreira & Rehrig, 2019).

Here I present an account of availability effects within a
computational-level model of language production based on
a recently developing theory of the complexity of action se-
lection from the fields of computational neuroscience and in-
formation theory. This theory, the rate–distortion theory of
control (RDC), holds that actions are selected to maximize
value subject to constraints on the use of information. The
theory originates in the economics literature (C. A. Sims,
2003) where it operationalizes bounded rationality (Simon,
1955; Lewis et al., 2014; Lieder & Griffiths, 2019), and it
has been developed and applied in the literature on physics,
robotics, optimal control, computational neuroscience, re-
inforcement learning, cognitive psychology, and linguistics

(Rubin et al., 2012; Tishby & Polani, 2011; Todorov, 2009;
Van Dijk & Polani, 2013; Genewein et al., 2015; Ortega &
Braun, 2013; Gershman, 2020; Gershman & Bhui, 2020; Lai
& Gershman, 2021; Bhui et al., 2021; C. R. Sims, 2016, 2018;
Zaslavsky et al., 2021; Arumugam et al., 2023). RDC uses the
mathematical theory of lossy compression (Shannon, 1959;
Cover & Thomas, 2006) to impose informational constraints
on the perception–action loop. It has also been termed ratio-
nal inattention and policy compression.

I develop a proof-of-concept model of language produc-
tion within the RDC framework, based on an informational
constraint identifiable as a channel capacity limit on cognitive
control (Fan, 2014; Zénon et al., 2019). I show that this model
provides an account of availability effects in language pro-
duction, and I validate this account by examining experimen-
tal data from two previous sets of experiments: Levy & Jaeger
(2007) on relative clause complementizers in English, and
Zhan & Levy (2019) on noun classifier choice in Mandarin
Chinese. In contrast with existing models of language pro-
duction which are primarily situated at Marr’s (Marr, 1982)
algorithmic level of analysis or at more concrete levels, the
RDC model is at the computational level: it directly describes
the inputs, outputs, and goals of the language production sys-
tem, without committing to an algorithmic implementation.
The high level of abstraction means that it is possible to see
how simple underlying computational constraints give rise to
a variety of different behaviors.

Model
Setting
The goal of the RDC production model is to characterize a
speaker’s production policy, which is the probability dis-
tribution over actions a (outputs) at each time, given the
speaker’s current state s and goal g (inputs), notated πg(a | s).
An example of goal and state is shown in Figure 1A. In the
studies below, an ‘action’ refers to the production of an indi-
vidual word; I leave open the possibility that a model of the
same form could apply for units as small as phonemes or as
large as phrases.

In the studies below, the state s consists of the speaker’s
memory for what she has produced so far. After production of
an action a, the state s updates to a new state s′ and production
continues with the selection of a new action conditional on
s′. For simplicity, I assume below that the state contains a
lossless memory of all actions produced so far in an utterance.

The communicative goal g represents the speaker’s intent
for an utterance. Following probabilistic models of semantics
and pragmatics (Kemp & Regier, 2012; Frank & Goodman,
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Figure 1: Schematic structure of the language production policy. During production of an utterance, at time t, an action (such
as a word) at is selected probabilistically as a function of the communicative goal g and the current state st ; after production
of an action at , the state updates in response, and the cycle continues. The RDC model maximizes average communicative
reward subject tox a channel capacity constraint on the use of control information in action selection, determined by the control
gain parameter α. The resulting optimal controlled policy πg(x | s) combines (1) an automatic policy, representing what the
system’s behavior regardless of goal input, (2) the communicative reward with respect to the current goal g, defined as the
amount of information provided to a listener model pL, plus (3) the discounted expected value of subsequent actions.

2012; Goodman & Frank, 2016; Scontras et al., 2021; Za-
slavsky et al., 2018; Mollica et al., 2021), I hold that the goal
of producing a linguistic utterance is to communicate a world
state to a listener. A communicative goal g thus specifies a
target world state notated wg.

Intuition

The key intuition that I use when applying RDC to language
production is that it is costly for the speaker to integrate infor-
mation about goals. Thus the policy is selected to maximize
communicative reward subject to a constraint on how much
information about the goal may be used at each timestep,
as illustrated in Figure 1B. This constraint makes language
production ‘good enough’: a speaker may produce a com-
municatively sub-optimal utterance if the optimal utterance
would involve too much information-processing cost (F. Fer-
reira et al., 2002; V. S. Ferreira & Griffin, 2003; F. Ferreira
& Patson, 2007; F. Ferreira & Lowder, 2016; Koranda et al.,
2021; Goldberg & Ferreira, 2022). The model is domain-
general in the sense that policies of the same form have been
used to study general decision making and action planning
(Tishby & Polani, 2011; Ortega & Braun, 2013; Van Dijk &
Polani, 2013; Schach et al., 2018; Gershman, 2020; Gersh-
man & Bhui, 2020; Bhui et al., 2021; Lai & Gershman, 2021).

The policy obtained from this constrained optimization
problem has a dual structure in which two forces influence
action selection. The first force favors selection of the most
communicatively rewarding action according to the current
goal (maximizing information conveyed about the speaker’s
target world state), or the action which leads to the most re-
warding actions in the future. The second force favors se-
lection of whatever action is most probable in context, with-
out regard to the current goal. This second force captures

automaticity in language production: frequent sequences of
actions are produced ‘automatically’ and are hard to disrupt
(Lounsbury, 1954; Shiffrin & Schneider, 1977; Kapatsinski,
2010).

Formal specification
The RDC language production model is a policy that max-
imizes a tradeoff of reward and informational complexity
within a Markov Decision Process describing the produc-
tion of an utterance. It is formally an instance of KL-control
(Todorov, 2009). The policy πg(· | s) for a given state s and
goal g is selected to maximize a value function which is the
average immediate reward for actions taken in that state, plus
the expected future reward for following the same policy from
the resulting state (Sutton & Barto, 2018):

V π
g (s)︸ ︷︷ ︸

Value

= E
a∼πg(·|s)

 ℓπ
g(a | s)︸ ︷︷ ︸

Immediate value

+ γV π
g (s

′)︸ ︷︷ ︸
Future value

 , (1)

where s′ is the state after production of action a, and the
future-discount parameter γ ∈ [0,1] determines how the
value of future actions is weighted relative to current actions.
The immediate value ℓπ

g(a | s) of an action a given state s
and goal g decomposes into communicative reward minus
information-processing cost, called control cost:

ℓπ
g(a | s)︸ ︷︷ ︸

Immediate value

= αRg(a | s)︸ ︷︷ ︸
Reward

− ln
πg(a | s)
π0(a | s)︸ ︷︷ ︸

Control cost

. (2)

Control cost represents a cost for using information about
the goal g: it is the divergence between the controlled pol-
icy πg, which uses information about the goal g, and a pol-
icy π0 which uses no information about the goal g, called



the automatic policy. Actions that deviate from the auto-
matic policy are relatively costly to an extent that depends
on the scalar control gain α which adjusts the balance be-
tween communicative reward and control cost. The control
cost is the (pointwise) mutual information between actions
and goals given states, so by penalizing control cost, we can
limit the amount of information used about the goal to select
each action.

I define the communicative reward Rg(a | s) of an action
a as the incremental information provided by action a about
wg for a listener L:

Rg(a | s)︸ ︷︷ ︸
Reward

=
pL(wg | a,s)
pL(wg | s)

, (3)

where the distribution pL is the listener model, a distribution
on world states given utterances, representing the speaker’s
beliefs about how a listener will react to her utterances.
Knowledge of language is localized within the listener model
pL which defines a stochastic mapping between utterances
and world states. Unlike Rational Speech Acts (RSA) models
of pragmatics (Frank & Goodman, 2012; Goodman & Las-
siter, 2014; Scontras et al., 2021; Zaslavsky et al., 2021), the
listener model pL is not necessarily a Bayesian inversion of a
speaker policy—it can be seen as an RSA literal listener.

The RDC policy is the distribution πg(a | s) on actions
given states and goals that maximizes the average value as
defined in Eq. 1. This policy has the form

πg(a | s)︸ ︷︷ ︸
Controlled policy

∝ exp

 lnπ0(a | s)︸ ︷︷ ︸
Automatic policy

+αRg(a | s)︸ ︷︷ ︸
Reward

+ γV π
g (s

′)︸ ︷︷ ︸
Future value

,

(4)
as illustrated in Figure 1C. Thus, the choice to produce an
action a is influenced by three factors, as shown in Figure 1:
(1) the automatic policy π0, (2) the communicative reward Rg,
and (3) planning, in the form of the future value.

The automatic policy π0 represents the actions that speaker
is likely to take regardless of goal. Because it reflects the
predictability of an action (word) given a state (context), it
is a language model in the natural language processing sense
(Andreas, 2022). The automatic policy can be derived from
the controlled policy by marginalizing out the communicative
goals:

π0(a | s) = ∑
g

p(g | s)πg(a | s). (5)

Eq. 5 depends on a need distribution on communicative
goals p(g) (Kemp & Regier, 2012; Kemp et al., 2018; Za-
slavsky et al., 2020). To find a concrete controlled policy
πg(a | s), one must start from a randomly-initialized con-
trolled policy and repeatedly evaluate Eqs. 1, 4, and 5 until
reaching a fixed point, in a form of value iteration (Sutton &
Barto, 2018). This is because the value function in Eq. 1, the
controlled policy in Eq. 4, and the automatic policy in Eq. 5
depend on each other recursively.

The RDC policy can be interpreted as maximizing reward
subject to a constraint on usage of information about the goal
(Rubin et al., 2012; Van Dijk & Polani, 2013), corresponding
to a channel capacity constraint on cognitive control (Fan,
2014; Zénon et al., 2019). In this interpretation, cognitive
control transmits signals at a limited rate in terms of bits per
timestep. This bit-rate is related to the control gain α: higher
α indicates a policy that demands more bits.

Summarizing, an RDC model of language production is
thus fully specified by Eqs. 1–5, the control gain α ≥ 0 re-
flecting the capacity of cognitive control, the future-discount
parameter γ ∈ [0,1] reflecting how much the speaker cares
about future value, a need distribution over communicative
goals p(g) which is used to define the automatic policy in
Eq. 5, and a listener model pL(w | a,s) which instantiates a
speaker’s beliefs about how a listener would interpret an ut-
terance in terms of world states w.

Source of availability effects
The RDC production model does not have reified concepts
of availability, accessibility, or activation. Nevertheless,
availability-based effects emerge as a result of future dis-
counting, which means (when γ< 1) that actions are preferred
when they deliver higher value immediately. In turn, actions
have high immediate value when they (1) are predictable un-
der the automatic policy, (2) deliver high information about
the speaker’s target world state, or (3) set up for high value
actions in the near future. For example, given the choice
between including or skipping an optional complementizer,
the speaker may include the complementizer if the follow-
ing clause would be otherwise too unpredictable, or she may
skip it if it is not as communicatively rewarding as proceeding
straight into the following clause.

Study 1: Complementizer Dropping in English
Relative Clauses

Speakers often have the choice to include an optional syntac-
tic element or not in utterances such as (1):

(1) a. This is the book that everyone likes.
b. This is the book everyone likes.

Here the optional element is the complementizer that; the al-
ternation between (1-a) and (1-b) is called complementizer
dropping.

Complementizer dropping has been a common test bed for
information-theoretic models of language production. In par-
ticular, Levy & Jaeger (2007) find in a corpus study that
speakers tend to drop the complementizer (i.e., that) when
the first word of the following relative clause (i.e., everyone
likes) is predictable in context. They attribute this finding to
Uniform Information Density (UID): the theory that speak-
ers include or drop the optional element in order to create a
relatively even profile in terms of information content per unit
time in the utterance. Under UID, if the relative clause is sur-
prising, then the complementizer should be included in order



RC Probability given N1 Probability given N2

R1 1/2 1/2

R2 1/2 1/4

R3 0 1/6

R4 0 1/12

Table 1: Need probability on worlds corresponding to utter-
ances with nouns N1,N2 and relative clauses R1, . . . ,R4, used
to simulate surprisal effects in relative clause complementizer
dropping. Worlds corresponding to nouns N1 and N2 have
equal total probability.

to reduce its surprisal and avoid a spike in information at the
relative clause onset; on the other hand, if the relative clause
is not surprising, the complementizer would create a stretch
of low information density, and so should be avoided. Similar
apparent UID effects have been found for other constructions
(e.g., Jaeger, 2010).

These complementizer dropping results, however, are
also explicable through availability-based production (Bock,
1987; V. S. Ferreira & Dell, 2000). Under this account, if
the relative clause onset is highly surprising, then speakers
simply have not yet formulated it yet when it comes time to
produce the relative clause; they produce the complementizer
to delay production and buy time to think of the right words.

Below, I show that the RDC production model predicts the
effect of surprisal on complementizer dropping in the dataset
of Levy & Jaeger (2007) through an availability-based mech-
anism.

RDC simulation
I use simulations to show that the RDC model predicts the
rate of explicit complementizers to increase before high-
surprisal relative clauses.

I derive predictions about complementizer dropping using
a toy language in which an utterance consists of a noun, fol-
lowed optionally by a complementizer, followed by a relative
clause. I assume a simple listener model where each utterance
x is compatible with only one target world w, and the listener
places probability mass on all target worlds compatible with
what has been said so far, with a small amount of probability
ε distributed to other worlds:

pL(w | x) ∝ [x compatible with w]+ ε, (6)

where [·] is the Iverson bracket returning 1 if the proposition
inside it is true and 0 otherwise. I use ε = 0.001.

The toy language is designed to show effects of the sur-
prisal of the relative clause. The language has two distinct
nouns {N1,N2} and four distinct relative clauses {R1, . . . ,R4}.
The need probability on worlds w corresponding to these
nouns and relative clauses is given by Table 1.

Given this setting and a controlled policy πg, we can mea-
sure how strongly πg favors production of the explicit com-
plementizer as a function of the surprisal of the relative

clause, by looking at the difference in (log) probability as-
signed to the action that before the high-surprisal relative
clause R2 vs. the low-surprisal relative clause R1 after noun
N2:

PrefSurprisal1 = lnπN2R2(that | N2)− lnπN2R1(that | N2). (7)

This value will be positive when the probability for the ex-
plicit complementizer is higher before the high-surprisal rel-
ative clause. We can also check for a surprisal preference for
the same relative clause R2 across different nouns N1 and N2:

PrefSurprisal2 = lnπN2R2(that | N2)− lnπN1R2(that | N1). (8)

Here the comparison is done with respect to relative clause R2
which has high surprisal after N2 but low surprisal after N1.
This measure is also positive when the low-surprisal configu-
ration favors production of the complementizer.

0.00

0.25

0.50

0.75

1.00

0 1 2 3
Gain α

D
is

co
un

t γ

0.0

0.5

1.0

A. High−surprisal complementizer preference

0.00

0.25

0.50

0.75

1.00

0 1 2 3
Gain α

D
is

co
un

t γ

0

20

40

60

B. High−surprisal complementizer preference (contextual)

Figure 2: The RDC model-predicted bias towards explicit
complementizers before high-surprisal relative clauses, as a
function of control gain α and future discount γ. A. For dif-
ferent relative clauses after the same noun, as in Eq. 7. B. For
the same relative clause after different nouns, as in Eq. 8.

Figure 2 shows the resulting surprisal preferences as a
function of RDC model parameters α and γ. Across a wide
range of parameters, the high-surprisal RC is predicted to be
used with more complementizers, matching the UID-based
prediction and results from Levy & Jaeger (2007). The effect
attenuates at very high levels of the future discount parameter
γ, vanishing as γ → 1, indicating that the effect is availability-
based, driven by the future-discount mechanism.



Predictor Coefficient 95% CrI

(Intercept) -0.88 [-1.14, -0.63]
Surprisal 0.27 [0.22, 0.33]

Table 2: Coefficients from a Bayesian logistic regression pre-
dicting presence of optional complementizer that before non-
subject-extracted relative clauses in the dataset of Levy &
Jaeger (2007). ‘Surprisal’ is the surprisal of the first word
of the relative clause after its head noun, with or without the
complementizer inserted.

Corpus Study
I verified the predicted surprisal effect in complementizer
dropping using the 2904 datapoints of Levy & Jaeger (2007).
Unlike the PCFG-based surprisal model used in the original
paper, I calculate surprisal of the first token in attested rela-
tive clauses using GPT-2 (Radford et al., 2019). In a logistic
regression predicting complementizer presence or absence as
a function of surprisal of the first word of the RC (given the
preceding context and the explicit complementizer), with ran-
dom slopes by NP head, I find the expected positive effect of
surprisal, shown in Table 2.

Discussion
The result shows that the RDC model reproduces intuitive
predictions about the effect of availability on a speaker’s
choice to include optional elements such as complementizers.
A high-surprisal RC would incur high control cost, requiring
high information from cognitive control to specify the correct
action. A greedy speaker can delay this cost by including the
optional that.

Study 2: Mandarin Classifier Choice
Availability effects also appear in the choice of words that
are more or less informative about following words. In par-
ticular, an apparent availability effect has been documented in
Mandarin Chinese, where quantified nouns must be preceded
by classifiers which may be specific or generic. For exam-
ple, before the noun meaning ‘computer’, it is possible to use
the special classifier台 tái which applies to machines, or the
generic classifier个 gè which can be paired with almost any
noun, as in (2):

(2) a. 一
one
台
MACHINE

电脑
computer

‘one computer’
b. 一

one
个
GENERIC

电脑
computer

‘one computer’
c. 一

one
只
ANIMAL

猫
cat

‘one cat’
d. 一

one
个
GENERIC

猫
cat

‘one cat’

In picture-naming experiments involving Mandarin classi-
fier choice, Zhan & Levy (2019) found that speakers prefer
the generic classifier before low-frequency nouns, and that
they use the generic classifier more when under time pres-
sure. These results support an availability-based account as
follows: when it comes time to produce the classifier, the
speaker may not have yet resolved which noun she will use,
and thus does not know which specific classifier would be
appropriate, so she uses the generic classifier instead. Since
it conveys very little information in this context, the generic
classifier gè is effectively a filled pause, with the function of
delaying production of the noun (Lounsbury, 1954; Goldman-
Eisler, 1957; Henderson et al., 1965; Clark & Fox Tree, 2002;
Harmon & Kapatsinski, 2015, 2021). This effect is directly
contrary to the predictions of UID, which would predict that
people use more informative specific classifiers before sur-
prising words in order to even out the information profile.

RDC simulation
The RDC production model predicts the Zhan & Levy (2019)
pattern of results regarding the effect of frequency and time
pressure on classifier choice. I conducted RDC simulations
using a toy world and language presenting the Mandarin clas-
sifier domain. In the simulation, there are N = 200 different
possible nouns, each of which is assigned randomly to one of
10 specific classifiers, and an utterance consists of a generic
or specific classifier followed by a noun. The need distribu-
tion over the world states corresponding to the possible nouns
n follows a power law: p(n)∝ r−

3/2
n , where rn is the frequency

rank of noun n. The listener model is the same as in the com-
plementizer dropping study above. The future-discount factor
is γ = 0.9. The effect of time pressure is simulated by vary-
ing the control gain α, with lower α corresponding to greater
time pressure. This makes sense under the interpretation of
α as representing the channel capacity of cognitive control:
when participants must act quickly then they have access to
fewer bits of information from cognitive control.

Results
The empirical data from Zhan & Levy (2019) and simulation
results are shown in Figure 3A–B, in terms of the probability
to produce the specific classifier (as opposed to the generic
classifier) as a function of noun probability. The model re-
produces the positive effect of noun probability on specific
classifier use, as well as the reduced use of specific classifiers
in the quick/low-gain condition.

The RDC model not only reproduces the experimentally-
observed pattern, but also supports the intuition that the rea-
son speakers do not use specific classifiers for low-frequency
nouns is because they have high uncertainty about the appro-
priate classifier. Figure 3C shows the RDC model’s probabil-
ity to produce the specific classifier as a function of the pol-
icy’s entropy over the set of possible specific classifiers for
each of the nouns given the communicative goal. The prob-
ability to produce a specific classifier is low when the model
has high uncertainty aver the appropriate specific classifier.



Figure 3: Experimental data and model simulations for Mandarin classifier choice. A. Empirical proportions of specific clas-
sifier use in a picture naming task, by noun frequency and timing condition. Solid lines show empirical means for 5 bins of
noun frequency and error bars are 95% confidence intervals. Transparent lines link datapoints for individual classifiers. B.
Model probability to use a specific classifer as a function of need probability and control gain, in a toy language with 200
Zipf-distributed nouns and 10 specific classifiers distributed randomly among them. C. Model probability to use the specific
classifier as a function of the entropy over specific classifiers given the communicative goal, for control gain α = 1.1.

The successful simulation of an availability effect in Man-
darin classifier choice shows that the RDC production model
makes successful predictions even when these are contrary to
existing information-theoretic models such as UID.

Related Work
Studies of availability effects in language production are of-
ten theory-neutral in terms of the underlying causes of avail-
ability, which is usually operationalized using a combination
of empirical factors such as word frequency, length, animacy,
definiteness, concreteness, and others (e.g. Stallings & Mac-
Donald, 2011; Morgan & Levy, 2016; Koranda et al., 2021).
In contrast, the RDC model here provides a theoretical ac-
count of what exactly constitutes availability—high value ac-
cording to Eq. 1—and why more available words are some-
times greedily selected in production: future value is uncer-
tain and discounted, so actions with high immediate value are
preferred. It remains to be seen to what extent the known
availability factors such as definiteness, givenness, etc., can
also be attributed to these generic mechanisms.

Production models The RDC production model used here
is a computational-level model, and as such it should be
hoped that it reproduces behaviors and dynamics observable
in existing, more algorithmic models of language production.
In some cases, components of the RDC model have direct
analogues in existing models: for example the listener model
pL corresponds to the Evaluator in the Recurrent model of
V. S. Ferreira (2019). More commonly, the correspondence
is indirect: for example, the models here produce availability
effects without explicit notions of lexical access or levels of
activation, which are common in existing models (eg. Dell,
1986; Levelt, 1999; Roelofs, 2003; Dell et al., 2014).

Pragmatics models In the computational psycholinguistics
literature, the RDC production model is most closely related
to the Rational Speech Acts (RSA) model of pragmatic lan-
guage use (Frank & Goodman, 2012; Goodman & Lassiter,
2014; Scontras et al., 2021; Cohn-Gordon et al., 2019), es-
pecially in its recent formulation in terms of rate–distortion
theory (RD-RSA; Zaslavsky et al., 2021; Zhou et al., 2022).
The model presented here can be seen as an incremental form
of RD-RSA but with future discounting and without a prag-
matic listener model: that is, the listener models used here
do not depend on the speaker policy nor priors over world
states as they do in RSA. The close similarity of these mod-
els suggests that a unified model of pragmatic reasoning and
real-time online language production is possible.

Conclusion
I have presented an information-theoretic perspective on lan-
guage production based on a combination of information the-
ory and control theory, and shown that it can explain certain
availability effects in language production. The model of-
fers a view of language production which is formally unified
with more general information-theoretic models of percep-
tion, memory, action, and neural computation that are being
developed in other fields.
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