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Linguistic structure from a bottleneck on 
sequential information processing
 

Richard Futrell    1   & Michael Hahn    2

Human language has a distinct systematic structure, where utterances 
break into individually meaningful words that are combined to form 
phrases. Here we show that natural-language-like systematicity arises 
in codes that are constrained by a statistical measure of complexity 
called predictive information, also known as excess entropy. Predictive 
information is the mutual information between the past and future of 
a stochastic process. In simulations, we find that codes that minimize 
predictive information break messages into groups of approximately 
independent features that are expressed systematically and locally, 
corresponding to words and phrases. Next, drawing on cross-linguistic 
text corpora, we find that actual human languages are structured in a way 
that yields low predictive information compared with baselines at the 
levels of phonology, morphology, syntax and lexical semantics. Our results 
establish a link between the statistical and algebraic structure of language 
and reinforce the idea that these structures are shaped by communication 
under general cognitive constraints.

Human language is organized around a systematic, compositional 
correspondence between the structure of utterances and the structure 
of the meanings that they express1. For example, an English speaker 
will describe an image such as Fig. 1a with an utterance such as ‘a cat 
with a dog’, in which the parts of the the image correspond regularly 
with parts of the utterance such as ‘cat’—what we call words. This way 
of relating form and meaning may seem natural, but it is not logically 
necessary. For example, Fig. 1b shows an utterance in a hypothetical 
counterfactual language where meaning is decomposed in a way that 
most people would find unnatural: here, we have a word ‘gol’, which 
refers to a cat head and a dog head together, and another word ‘nar’, 
which refers to a cat body and a dog body together. Similarly, Fig. 1c 
presents a hypothetical language that is systematic but with an unnatu-
ral way of decomposing the utterance: here, the utterance contains 
individually meaningful subsequences ‘a cat’, ‘with‘ and ‘a dog’, but 
these are interleaved together, rather than concatenated as they are in 
English. We can even conceive of languages such as in Fig. 1d, where each 
meaning is expressed holistically as a single unanalysable form2,3—in 
fact, this lack of systematic structure is expected in optimal codes like 
Huffman codes4,5. Why is human language the way it is, and not like 
these counterfactuals?

We argue that the particular structure of human language can be 
derived from general constraints on sequential information process-
ing. We start from three observations:

	(1)	 Utterances consist, to a first approximation, of one-dimensional 
sequences of discrete symbols (for example, phonemes).

	(2)	The ease of production and comprehension of these utterances 
is influenced by the sequential predictability of these symbols 
down to the smallest timescales6–11.

	(3)	Humans have limited cognitive resources for use in sequential 
prediction12–16.
Thus, we posit that language is structured in a way that mini-

mizes the complexity of sequential prediction, as measured using a 
quantity called predictive information: the amount of information 
about the past of a sequence that any predictor must use to predict 
its future17,18, also called excess entropy19,20. Below, we find that codes 
that are constrained to have low predictive information within sig-
nals have systematic structure resembling natural language, and 
we provide massively cross-linguistic empirical evidence based on 
large text corpora showing that natural language has lower predic-
tive information than would be expected if it had different kinds 
of structure.
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or stipulations about the mental representation or perception of 
meanings36–40. By contrast, we aim to explain natural local systematic-
ity in language from maximally general principles, without any assump-
tions about the mental representation of meaning, and with extremely 
minimal assumptions about the structure of forms—only that they are 
ultimately expressed as one-dimensional sequences of discrete symbols.

Predictive Information
We measure the complexity of sequential prediction using predictive 
information, which is the amount of information that any predictor must 
use about the past of a stochastic process to predict its future (below, we 
assume familiarity with information-theoretic quantities of entropy and 
mutual information41). Given a stationary stochastic process generating 
a stream of symbols …, Xt−1, Xt, Xt+1, …, we split it into ‘the past’ Xpast, rep-
resenting all symbols up to time t, and ‘the future’ Xfuture, representing 
all symbols at time t or after. The predictive information or excess 
entropy18,19 E is the mutual information between the past and the future:

E = I[Xpast ∶ Xfuture]. (2)

We calculate the predictive information of a language L as the predic-
tive information of the stream of letters generated by repeatedly sam-
pling meanings m ∈ ℳ  from a source distribution, translating them 
to strings as s = L(m) and concatenating them with a delimiter 
in between.

Predictive information can be calculated in a simple way that gives 
intuition about its behaviour. Let hn represent the n-gram entropy of 
a process, that is, the average entropy of a symbol given a window of 
n − 1 previous symbols:

hn = H[Xt|Xt−n+1,… ,Xt−1]. (3)

As the window size increases, the n-gram entropy decreases to an 
asymptotic value called the entropy rate h. The predictive informa-
tion represents the convergence to the entropy rate,

E =
∞
∑
n=1

(hn − h) , (4)

as illustrated in Fig. 3. This calculation reveals that predictive informa-
tion is low when symbols can be predicted accurately on the basis of 
local contexts, that is, when hn is close to h for small n.

Simulations
The following simulations show that, when languages minimize predic-
tive information, they express approximately independent features 

Results
Explananda
First, we clarify what we want to explain. Taking a maximally general stance, 
we think of a language as a function mapping meanings to forms, where 
meanings are any objects in a set ℳ, and forms are strings drawn from a 
finite alphabet of letters Σ, typically standing for phonemes. We say a lan-
guage is systematic when it is a homomorphism21,22, as illustrated in Fig. 2. 
That is, if a meaning m can be decomposed into parts (say m = m1 × m2), 
then the string for that meaning decomposes in the same way:

L(m1 ×m2) = L(m1) ⋅ L(m2), (1)

where ‘⋅’ is some means of combining two strings, such as concatena-
tion. For example, an object  would be described in English as 
L( ) = blue square. The meaning  is decomposed into features for 

colour and shape, and these features are expressed systematically as 
the words ‘blue’ and ‘square’ concatenated together.

We wish to explain why human languages are systematic, why 
they decompose meanings in the way they do, and why they combine 
strings in the way they do. In particular, meanings are decomposed in 
a way that seems natural to humans (that is, like Fig. 1a and not Fig. 1b), 
a property we call ‘naturalness’. Also, strings are usually combined by 
concatenation (that is, like Fig. 1a and not like Fig. 1c), or more generally 
by some process that keeps relevant parts of the string relatively close 
together. We call this property ‘locality’.

Influential accounts have held that human language is systematic 
because language learners need to generalize to produce forms for 
never-before-seen meanings23–26. Such accounts successfully moti-
vate systematicity in the abstract sense, but on their own they do not 
explain naturalness and locality. However, a theory of systematicity 
must have something to say about these properties, because if we are 
free to choose any arbitrary functions ‘×’ and ‘⋅’, then any function L can 
be considered systematic in the sense of equation (1), and the idea of 
systematicity becomes vacuous27.

In existing work, naturalness and locality are explained via 
(implicit or explicit) inductive biases built into language learners23,28–35 

A cat with a dog A gol with a nar

a Natural language b Unnatural systematic

waitacdahogt

C Non-local systematic d Holistic

Vek

Fig. 1 | Example utterances describing an image in English and various 
hypothetical languages. a, An English utterance exhibiting natural local 
systematicity. b, An unnatural systematic language in which ‘gol’ means a cat 
head paired with a dog head and ‘nar’ means a cat body paired with a dog body. 
c, A non-local but systematic language in which an utterance is formed by 
interleaving the words for ‘cat’ and ‘dog’. d, A holistic language in which the form 
‘vek’ means ‘a cat with a dog’ with no correspondence between parts of form and 
parts of meaning.

L( ) L( )= L( )
‘A cat’ ‘with’ ‘a dog’

×

L( )
L( )= L( )
L( )=

a

b

‘Blue’ ‘Square’

•

•

×

Fig. 2 | Two examples of linguistic systematicity as a homomorphism. L(⋅) 
stands for the English language, seen as a function from meanings to forms 
(strings). a, The meaning naturally decomposes into two features corresponding 
to the two animals. The form ‘a cat with a dog’ decomposes systematically 
into forms for the cat and the dog, concatenated together with the string 
‘with’ between them. b, The meaning naturally decomposes into two features, 
corresponding to colour and shape. The form ‘blue square’ decomposes 
systematically into forms for the colour and the shape, concatenated together.
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systematically and locally in a way that corresponds to words and 
phrases in natural language.

Systematic expression of independent features. Consider a set of 
meanings consisting of the outcomes of three weighted coin flips. In 
a natural systematic language, we would expect each string to have 
contiguous ‘words’ corresponding to the outcome of each individual 
coin, whereas a holistic language would have no such structure, as 
shown in the examples in Fig. 4a. It turns out that, for these example 
languages, the natural systematic one has lower predictive information, 
as shown in Fig. 4b. In fact, among all possible unambiguous length-3 
binary languages, predictive information is minimized exclusively in 
the systematic languages, as shown in Fig. 4c.

Intuitively, the reason systematic languages minimize predictive 
information here is that the features of meaning expressed in each 
individual letter are independent of each other, and so there is no sta-
tistical dependence among letters in the string. The general pattern is 
that an unambiguous language that minimizes predictive information 
will find features that have minimal mutual information and express 
them systematically. See Supplementary Section A for formal argu-
ments to this effect.

Holistic expression of correlated components. What happens to pre-
dictive information when the source distribution cannot be expressed 
in terms of fully independent features? In that case, it is better to 
express the more correlated features holistically, without systematic 
structure. This holistic mapping is what we find in natural language 
for individual words (or, more precisely, morphemes), according to 
the principle of arbitrariness of the sign42. For example, the word ‘cat’ 
has no identifiable parts that systematically correspond to features 
of its meaning. Furthermore, as we will discuss below, morphemes 
in language typically encode categories whose semantic features are 
highly correlated with each other43.

We demonstrate this effect in simulations by varying the coin-flip 
scenario above. Denote the three coin flips as M1, M2 and M3. Imagine the 
second and third coins and are tied together, so that their outcomes M2 
and M3 are correlated, as in the example in Fig. 4d. In the limit where M2 
and M3 are fully correlated, these coin flips have effectively become one 
feature. Figure 4e shows predictive information for a number of pos-
sible languages in this setting, as a function of the mutual information 
between the tied coin flips M2 and M3. In the low-mutual-information 
regime—where M2 and M3 are nearly independent—the best language 
is still fully systematic. However, as mutual information increases, the 
best language is one that expresses the tied coin flips M2 and M3 together 
holistically, as a single ‘word’. An unnatural language that expresses 

the uncorrelated coin flips M1 and M2 holistically is much worse, as is a 
non-local systematic language that breaks up the ‘word’ corresponding 
to the correlated coin flips M2 and M3.

Locality. Next, we show that minimization of predictive information 
yields languages where features of meaning correspond to localized 
parts of strings, corresponding to words. We consider a Zipfian distri-
bution over 100 meanings, and a language L in which forms consist of 
two length-4 ‘words’. We then consider scrambled languages formed 
by applying permutations to the string output of L. For example, if the 
original language expresses a meaning with two words such as 
L(m1 × m2) = aaaa ⋅ bbbb, a possible scrambled language would have 
L′(m1 ×m2) = baaabbab. These scrambled languages instantiate pos-
sible string combination functions other than concatenation.

Calculating predictive information for all possible scrambled 
languages, we find that the languages in which the ‘words’ remain 
contiguous have the lowest predictive information, as shown in Fig. 5a. 
This happens because the coding procedure above creates correla-
tions among letters within a word. When these correlated letters are 
separated from each other—such as when letters from another word 
intervene—then predictive information increases. Interestingly, not 
every concatenative language is better than every non-concatenative 
one. This corresponds to the reality of natural language, in which lim-
ited non-concatenative and non-local morphophonological processes 
do exist, for example, in Semitic non-concatenative morphology44.

Hierarchical structure. Natural language sentences typically have 
well-nested hierarchical syntactic structures, of the kind generated 
by a context-free grammar45: for example, the sentence ‘[[the big dog] 
chased [a small cat]]’ has two noun phrases, indicated by brackets, 
which are contiguous and nested within the sentence. Minimization 
of predictive information creates these well-nested word orders, 
with phrases corresponding to groups of words that are more or less 
strongly correlated46. We demonstrate this effect using a source distri-
bution defined over six random variables M1, …, M6 with a covariance 
structure shown in the inset of Fig. 5b: each of the variable pairs (M1, 
M2) and (M4, M5) are highly internally correlated; these pairs are weakly 
correlated with M3 and M6, respectively; and both groups of variables 
are very weakly correlated with each other. As above, we consider all 
possible permutations of a systematic code for these source variables. 
The codes that minimize predictive information are those that are well 
nested with respect to the correlation structure of the source, keeping 
the letters corresponding to all groups of correlated features contigu-
ous. Further simulation results involving context-free languages are 
found in Supplementary Section G. For a mathematical analysis of 
predictive information in local and random orders for structured 
sources, see Supplementary Section A.

Cross-linguistic empirical results
Here, we present cross-linguistic empirical evidence that the systematic 
structure of language has the effect of reducing predictive informa-
tion at the levels of phonotactics, morphology, syntax and semantics, 
compared against systems that lack natural local systematicity.

Phonotactics. Languages have restrictions on what sequences of 
sounds may occur within words: for example, ‘blick’ seems like a 
possible English word, whereas ‘bnick’ does not, even though it is 
pronounceable in other languages47. These systems of restrictions are 
called phonotactics. Here, we show that actual phonotactic systems 
of human languages, which involve primarily local constraints on 
what sounds may co-occur, result in lower predictive information 
compared with counterfactual phonotactic systems. We compare 
phonemically transcribed wordforms in vocabulary lists of 61 lan-
guages against counterfactual alternatives generated by deterministi-
cally scrambling phonemes within a word while preserving manner of 
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Fig. 3 | Schematic calculation of predictive information as the sum of n-gram 
entropies hn minus the asymptotic entropy rate h.
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articulation. This ensures that the resulting counterfactual forms are 
roughly possible to articulate. For example, an English word ‘fasted’ 
might be scrambled to form ‘sefdat’. Calculating predictive infor-
mation, we find that the real vocabulary lists have lower predictive 

information than the counterfactual variants in all languages tested. 
Results for six languages with diverse sound systems are shown in 
Fig. 6a. Results for the remaining 55 languages are presented in Sup-
plementary Section C.
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along with an example source, which has mutual informationI[M 2 : M 3] ≈ 0.18 bits.
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Fig. 4 | Simulations of languages for coin-flip distributions. a, Two 
unambiguous languages for meanings consisting of three weighted coin flips. 
In the systematic language, each letter corresponds to the outcome from one 
coin flip. In the holistic language, there is no natural systematic relationship 
between the form and the meaning. b, Calculation of predictive information for 
the source and two languages in a. The systematic language has lower predictive 
information. c, Predictive information of all bijective mappings from meanings 
to length-3 binary strings, for the meanings and source in a. Languages are 
ordered by predictive information and coloured by the number of coin flips 

expressed systematically: 3 for a fully systematic language and 0 for a fully 
holistic language. The inset box zooms in on the region of low predictive 
information. d, Languages used in e along with an example source, which has 
mutual information I[M2: M3] ≈ 0.18 bits. e, Predictive information of various 
languages for varying levels of mutual information between coin flips M2 and 
M3 (see text). Zero mutual information corresponds to b and c. The ‘natural’ 
language expresses M2 and M3 together holistically. The ‘unnatural’ language 
expresses M1 and M2 together holistically.
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Fig. 6 | Evidence that natural languages are configured in a way that 
reduces predictive information, in phonotactics, morphology and syntax. 
a, Predictive information calculation for phonological forms in selected 
languages, comparing the attested forms against forms that have been 
deterministically shuffled while preserving manner of articulation. b, Letter-
level predictive information of noun morphology (vertical black line), compared 

against predictive information values for four random baselines (densities of 
10,000 samples; see text). P values indicate the proportion of baseline samples 
with lower predictive information than the attested forms. c, Letter-level 
predictive information of adjective–noun pairs from 12 languages, compared 
with baselines. Non-local baselines always generate much higher predictive 
information than the attested forms and are not shown.
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Morphology. Words change form to express grammatical features in 
a way that is often systematic. For example, the forms of the Hungar-
ian noun shown in Fig. 7a are locally systematic with respect to case 
and number features. In Fig. 6b, we show that the local systematic 
structure of affixes for case, number, possession and definiteness in 
five languages has the effect of reducing predictive information when 
comparing against baselines that disrupt this structure. We estimate 
predictive information of these morphological affixes across five 
languages, with source distributions proportional to empirical corpus 
counts of the joint frequencies of grammatical features. We compare 
the predictive information of the attested forms against three alterna-
tives: (1) a non-local baseline generated by applying a deterministic 
permutation function to each form, (2) an unnatural baseline generated 
by permuting the assignment of forms to meanings (features) and (3) a 
more controlled unnatural baseline that permutes the form–meaning 
mapping while preserving form length. The unnatural baselines pre-
serve the phonotactics of the original forms; only the form–meaning 
relationship is changed. We generate 10,000 samples (permutations) 
for each of the three baselines per language.

Across the languages, we find that the attested forms have lower 
predictive information than the majority of samples of the baselines. 
The weakest effect is in Latin, which also has the most fusional and 
least systematic morphology48. Note that Arabic nouns often show 
non-concatenative morphology in the form of so-called broken plurals: 
for example, the plural of the loanword ‘film’ meaning ‘film’ is ’aflām. 
This pattern is represented in the forms used to generate Fig. 6b, and 
yet Arabic noun forms still have lower predictive information than 
the majority of baseline samples. This suggests that the limited form 
of non-concatenative morphology present in Arabic is still consistent 
with the idea that languages are configured in a way that keeps predic-
tive information low.

Syntax. Phrases such as ‘blue square’ have natural local systematicity, 
as shown in Fig. 7b. We compare real adjective–noun combinations in 
corpora of 12 languages against unnatural and non-local baselines gen-
erated the same way as in the morphology study: permuting the letters 
within a form to disrupt locality, or permuting the assignment of forms 
to meanings to disrupt naturalness. We estimate the probability of a 
meaning as proportional to the frequency of the corresponding adjec-
tive–noun pair. Results are shown in Fig. 6c. The real adjective–noun 

pairs have lower predictive information than a large majority of base-
lines across all languages tested.

Word order. In an English noun phrase such as ‘the three cute cats’, 
the elements Determiner (D, ‘the’), Numeral (N, ‘three’), Adjective (A, 
‘cute’) and Noun (n, ‘cats’) are combined in the order D–N–A–n. This 
order varies across languages—for example, Spanish has D–N–n–A (‘los 
tres gatos lindos’)—but certain orders are more common than others49. 
We aim to explain the cross-linguistic distribution of these orders 
through reduction of predictive information, which drives words that 
are statistically predictive of each other to be close to each other, an 
intuition shared with existing models of adjective order40,46,50. To do so, 
we estimate source probabilities for noun phrases (consisting of single 
head lemmas for a noun along with an optional adjective, numeral and 
determiner) based on corpus frequencies. We then calculate predictive 
information at the word level (treating words as single atomic symbols) 
for all possible permutations of D–N–A–n. Predictive information 
is symmetric with respect to time reversal, so we cannot distinguish 
orders such as D–N–A–n from n–A–N–D and so on. As shown in Fig. 8a, 
the orders with lower predictive information are also the orders that 
are more frequent cross-linguistically. A number of alternative source 
distributions also yield this downward correlation, as shown in Sup-
plementary Section D.

Lexical semantics. Considering a word such as ‘cats’, all the semantic 
features of a cat (furriness, mammalianness and so on) are expressed 
holistically in the morpheme ‘cat’, while the feature of numerosity is 
separated into the plural marker ‘–s’. Plural marking like this is common 
across languages51,52. From reduction of predictive information, we 
expect relatively uncorrelated components of meaning to be expressed 
systematically, and relatively correlated components to be expressed 
together holistically. Thus, we hold that numerosity is selected to be 
expressed systematically in a separate morpheme because it is rela-
tively independent of the other features of nouns, which are in turn 
highly correlated with each other. Our theory thus derives the intui-
tion that natural categories arise from the correlational structure of 
experience43.

We validate this prediction in a study of semantic features in Eng-
lish, using the Lancaster Sensorimotor Norms53 to provide semantic fea-
tures for English words and using the English Universal Dependencies 

Frequency Features Hungarian form Form (unnatural) Form (non-local) Meaning

Nominative singular ember emberekhez ember person (subj.)
Accusative singular embert embert embert person (obj.)
Dative singular embernek embereknek kembeern to the person
Allative singular emberhez embereket zembeerh toward the person
Nominative plural emberek emberhez embekre people (subj.)
Accusative plural embereket emberek eembektre people (obj.)
Dative plural embereknek embernek knembekere to the people
Allative plural emberekhez ember zhembekere toward the people

Figure 7: Forms of the Hungarian noun embermeaning ‘person’, along with examples of the unnatural and nonlocal baseline used in Fig. 6B. 231 additional forms not shown.
‘Prob.’ column illustrates the joint frequency of grammatical features in the Hungarian Szeged UD corpus50,51 .

Syntax Phrases such asblue square have natural local systematicity, as shown in Fig. 8.
We compare real adjective–noun combinations in corpora of 12 languages against unnatural and
nonlocal baselines generated the same way as in the morphology study: permuting the letters
within a form to disrupt locality, or the assignment o�orms to meanings to disrupt naturalness.
We estimate the probability of a meaning as proportional to the frequency of the corresponding
adjective–noun pair. Results are shown in Fig. 6C. The real adjective–noun pairs have lower
predictive information than a large majority of baselines across all languages tested.

Frequency Meaning English form Form (unnatural) Form (non-local)

Blue square Green square squbluaree
Green square Blue square squgreareen

Blue circle Blue circle cirbluclee

Green circle Green circle cirgrecleen

Hungarian morphology

English syntax

a

b

Fig. 7 | Examples of systematic morphology and syntax, and baselines used 
in experiments. a, Forms of the Hungarian noun ‘ember’ meaning ‘person’, 
along with examples of the unnatural and non-local baseline used in Fig. 6b. An 
additional 231 forms are not shown. The ‘Frequency’ column illustrates the joint 

frequency of grammatical features in the Hungarian Szeged UD corpus100,106. 
b, English forms for the given meanings, along with frequencies from the English 
Common Crawl web corpus107. Example unnatural and non-local baseline forms 
are shown.
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(UD) corpus to provide a frequency distribution over words. The Lan-
caster Sensorimotor Norms provide human ratings for words based 
on sensorimotor dimensions, such as whether they involve the head or 
arms. As shown in Fig. 8b (top), we find that the semantic norm features 
are highly correlated with each other, and relatively uncorrelated with 
numerosity, as predicted by the theory.

For the same reason, the theory also predicts that semantic fea-
tures should be more correlated within words than across words. In 
Fig. 8b (bottom), we show within-word and cross-word correlations of 
the semantic norm features for pairs of verbs and their objects taken 
from the English UD corpus. As predicted, the across-word correlations 
are weaker. Correlations based on features drawn from other semantic 
norms are presented in Supplementary Section E.

Discussion
Our results underscore the fundamental roles of prediction and mem-
ory in human cognition and provide a link between the algebraic struc-
ture of human language and information-theoretic concepts used 
in machine learning and neuroscience. Our work joins the growing 
body of information-theoretic models of human language based on 
resource-rational efficiency54–59.

Language models
Large language models are based on neural networks trained to predict 
the next token of text given previous tokens. Our results suggest that 
language is structured in a way that makes this next-token prediction 
relatively easy, by minimizing the amount of information that needs to 
be extracted from the previous tokens to predict the following tokens. 
Although it has been claimed that large language models have little to 
tell us about the structure of human language—because their architec-
tures do not reflect formal properties of grammars and because they 
can putatively learn unnatural languages as well as natural ones60–62—
our results suggest that these models have succeeded so well precisely 
because natural language is structured in a way that makes their pre-
diction task relatively simple. Indeed, neural sequence architectures 
struggle to learn languages that lack information locality63,64.

Machine learning
Our results establish a connection between the structure of human 
language and ideas from machine learning. In particular, minimization 
of mutual information (a technique known as independent components 
analysis, ICA65,66) is widely deployed to create representations that are 
‘disentangled’ or compositional67, and to detect object boundaries 
in images, under the assumption that pixels belonging to the same 
object exhibit higher statistical dependence than pixels belonging to 
different objects68. (Although general nonlinear ICA with real-valued 
outputs does not yield unique solutions69, we have found above that 
minimization of predictive information does find useful structure 
in our setting, with discrete string-valued outputs and a determin-
istic function mapping meaning to form.) We propose that human 
language follows a similar principle: it reduces predictive information, 
which amounts to performing a generalized sequential ICA on the 
source distribution on meanings, factoring it into groups of relatively 
independent components that are expressed systematically as words 
and phrases, with more statistical dependence within these units than 
across them. This provides an explanation for why ICA-like objectives 
yield representations that are intuitively disentangled, compositional, 
or interpretable: they yield the same kinds of concepts that we find 
encoded in natural language.

Neuroscience
Similarly, neural codes have been characterized as maximizing 
information throughput subject to information-theoretic and physi-
ological constraints70,71, including explicit constraints on predictive 
information72,73. These models predict that, in many cases, neural 
codes are decorrelated: distinct neural populations encode statisti-
cally independent components of sensory input74. Our results suggest 
that language operates on similar principles: it expresses meanings 
in a way that is temporally decorrelated. This view is compatible with 
neuroscientific evidence on language processing: minimization of 
predictive information (while holding overall predictability constant) 
equates to maximization of local predictability of the linguistic signal, 
a driver of the neural response to language10,75.
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Fig. 8 | Evidence that word order and lexical semantics are configured in ways 
that reduce predictive information. a, Typological frequency of noun phrase 
orders (number of unrelated language genera showing the given order49) as a 
function of predictive information. More frequent orders have lower predictive 
information. The blue line shows a linear regression predicting log typological 
frequency from predictive information. Error bars indicate a 95% confidence 
interval of the slope of this regression. The negative correlation is significant 

with Pearson’s R = −0.69 and P = 0.013. b, Top: pairwise mutual information 
of semantic features from the Lancaster Sensorimotor Norms53 in addition 
to a number feature, as indicated by plural morphology. The number feature 
is expressed systematically; all others are holistic. Bottom: pairwise mutual 
information values for Lancaster Sensorimotor Norm features across and within 
words, for pairs of verbs and their objects.
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Information theory and language
Previous work76 derived locality in natural language from a related 
information-theoretic concept, the memory–surprisal trade-off or pre-
dictive information bottleneck curve, which describes the best achiev-
able sequential predictability as a function of memory usage77. The 
current theory is a simplification that looks at only one part of the curve: 
predictive information is the minimal memory at which sequential 
predictability is maximized. A more complete information-theoretic 
view of language may have to consider the whole curve.

We join existing work attempting to explain linguistic structure on 
the basis of information-theoretic analysis of language as a stochastic 
process, for example, the study of lexical scaling laws as a function of 
redundancy and non-ergodicity in text78. Other work on predictive 
information in language has focused on the long-range scaling of the 
n-gram entropy in connected texts, with results seeming to imply 
that the predictive information diverges79,80. By contrast, we have 
focused on only single utterances, effectively considering only rela-
tively short-range predictive information.

Cognitive status of predictive information
Predictive information is a fundamental measure of complexity, which 
may manifest explicitly or implicitly in various ways in the actual 
mechanisms of language production, comprehension and learning. 
For example, in a recent model of online language comprehension81, 
comprehenders predict upcoming words on the basis of memory repre-
sentations that are constrained to store only a small number of words. 
The fundamental limits of predictive information apply implicitly in this 
model because comprehenders’ predictions cannot be more accurate 
than if they stored an equivalent amount of predictive information. 
As another example, a model of language production based on short 
stored chunks46 would effectively produce language with low predictive 
information, because these chunks would be relatively independent 
of each other, while predictive relationships inside the stored chunks 
would be preserved. Predictive information has also been linked to dif-
ficulty of learning: processes containing more predictive information 
require more parameters and data to be learned18, and any learner with 
limited ability to learn long-term dependencies will have an effective 
inductive bias towards languages with low predictive information. Pre-
dictive information is not meant as a complete model of the constraints 
on language, which would certainly involve factors beyond predictive 
information as well as separate, potentially competing pressures from 
comprehension and production82.

Relatedly, while we have shown that natural language is configured 
in a way that keeps predictive information low, we have not speculated 
on how languages come to be configured in this way, in terms of lan-
guage evolution and change. We believe there are multiple pathways for 
this to happen. For example, efficiency pressures in individual interac-
tions could give rise to overall efficient conventions83, or memory limits 
in learning84,85 could cause learners to form low-predictive-information 
generalizations from their input. Identifying the causal mechanisms 
that control predictive information in language is a critical topic for 
future work.

Linguistics
Our theory of linguistic systematicity is independent of theoretical 
assumptions about mental representations of grammars, linguistic 
forms or the meanings expressed in language. Predictive informa-
tion is a function only of the probability distribution on forms, seen 
as one-dimensional sequences of symbols unfolding in time. This 
independence from representational assumptions is an advantage, 
because there is as yet no consensus about the basic nature of the men-
tal representations underlying human language86,87.

Our results reflect and formalize a widespread intuition about 
human language, first formulated as Behaghel’s Law88: ‘that which is 
mentally closely related is also placed close together’. For example, 

words are contiguous units and the order of morphemes within them 
is determined by a principle of relevance89,90, and important aspects of 
word order across languages have been explained in terms of depend-
ency locality, the principle that syntactically linked words are close91–94.

A constraint on predictive information predicts information 
locality: elements of a linguistic form should be close to each other 
when they predict each other50. We propose that information locality 
subsumes existing intuitive locality ideas. Thus, because words have a 
high level of statistical interpredictability among their parts95, they are 
mostly contiguous, and as a residual effect of this binding force, related 
words are also close together. Furthermore, we have found that the 
same formal principle predicts the existence of linguistic systematic-
ity and the way that languages divide the world into natural kinds37,43.

Limitations
Much work is required to push our hypothesis to its limit. We have 
assumed throughout that languages are one-to-one mappings between 
form and meaning; the behaviour of ambiguous or non-deterministic 
codes, where ambiguity might trade off with predictive information, 
may yield additional insight. Furthermore, we have examined predic-
tive information only within isolated utterances. It remains to be seen 
whether reduction of predictive information, applied at the level of 
many connected utterances, would be able to explain aspects of dis-
course structure such as the hierarchical organization of topics and 
topic–focus structure96.

One known limitation of our theory is that predictive information 
is symmetric with respect to time reversal, so (at least when applied at 
the utterance level) it cannot explain time-asymmetric properties of 
language such as the pattern of ‘accessible’ (frequent, animate, definite 
and given) words appearing earlier within utterances than inaccessible 
ones97,98. There is also the fact that non-local and non-concatenative 
structures do exist in language, for example, long-term coreference 
relationships among discourse entities, and long-distance filler–gap 
dependencies, which would seem to contravene the idea that predic-
tive information is constrained. An important area for future research 
will be to determine what effect these structures really have on pre-
dictive information, and what other constraints on language might 
explain them.

Methods
Constructing a stochastic process from a language
We define a language as a mapping from a set of meanings to a set of 
strings, L ∶ ℳ → Σ∗. To define predictive information of a language, we 
need a way to derive a stationary stochastic process generated by that 
language. We use the following mathematical construction that gener-
ates an infinite stream of symbols: (1) meanings m ~ pM are sampled i.i.d. 
from the source distribution pM, (2) each meaning is translated into a 
string as s = L(m), and (3) the strings s are concatenated end-to-end in 
both directions with a delimiter # ∉ Σ between them. Finally, a string 
is chosen with probability reweighted by its length, and a time index t 
(relative to the closest delimiter to the left) is selected uniformly at 
random within this form.

This construction has the effect of zeroing out any mutual informa-
tion between symbols with the delimiter between them. Thus, when we 
compute n-gram statistics, we can treat each form as having infinite 
padding symbols to the left and right. This is the standard method for 
collecting n-gram statistics in natural language processing99.

Three-feature source simulation
For Fig. 4b,c, the source distribution is distributed as a product of three 
Bernoulli distributions:

M ∼ Bernoulli (23 ) × Bernoulli ( 23 + ε) × Bernoulli ( 23 + 2ε) , (5)

with ε = 0.05.
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For Fig. 4e, we need to generate distributions of the form 
p(M) = p(M1) × p(M2, M3) while varying the mutual information I[M2: 
M3]. We start with the source from equation (5) (whose components are 
here denoted pindep) and mix it with a source that creates a correlation 
between M2 and M3:

pα(M = ijk) = pindep(M1 = i)

× [(1 − α) (pindep(M2 = j) × pindep(M3 = k)) + α
2
δjk] ,

(6)

with δjk = 1 if j = k and 0 otherwise. The mixture weight α controls the 
level of mutual information, ranging from 0 at α = 0 to at most 1 bit at 
α = 1. A more comprehensive study of the relationship between feature 
correlation, systematicity and predictive information is given in Sup-
plementary Section B, which examines systematic and holistic codes 
for a comprehensive grid of possible distributions on the simplex over 
four outcomes.

Locality simulation
For the simulation shown in Fig. 5a, we consider a source over 100 
objects labelled {m00, m01, …, m99}, following a Zipfian distribution 
p(M = mi) ∝ (i + 1)−1. We consider a language based on a decomposition 
of the meanings based on the digits of their index, with for example 
m89 decomposing into features as m8

1 ×m9
2. Each utterance decomposes 

into two ‘words’ as L(m1 × m2) = L(m1) ⋅ L(m2), where the word for each 
feature mk is a random string in {0, 1}4, maintaining a one-to-one map-
ping between features mk and words.

Hierarchy simulation
For the simulation shown in Fig. 5b, we consider a source M over 
56 = 15,625 meanings, which may be expressed in terms of six random 
variables ⟨M1,M2,M3,M4,M5,M6⟩ each over five outcomes, with a prob-
ability distribution as follows:

p(M) = αq(M1,M2,M3,M4,M5,M6) + (1 − α)

([βq(M1,M2,M3) + (1 − β) [γq(M1,M2) + (1 − γ)q(M1)q(M2)]q(M3)]

× [βq(M4,M5,M6) + (1 − β)

[γ q(M4,M5) + (1 − γ)q(M4)q(M5)]q(M6)]) ,

(7)

where α = 0.01, β = 0.20 and γ = 0.99 are coupling constants, and each 
q(⋅) is a Zipfian distribution as above. The coupling constants control 
the strengths of the correlations shown in Fig. 5b.

Phonotactics
We assume a uniform distribution over forms found in WOLEX. Supple-
mentary Section F shows results for four languages using corpus-based 
word frequency estimates to form the source distribution, with 
similar results.

Morphology
We estimate the source distribution on grammatical features (number, 
case, possessor and definiteness) using the feature annotations from 
UD corpora, summing over all nouns, with add-1/2 smoothing. The 
dependency treebanks are drawn from UD v2.8100: for Arabic, NYUAD 
Arabic UD Treebank; for Finnish, Turku Dependency Treebank; for 
Turkish, Turkish Penn Treebank; for Latin, Index Thomisticus Treebank; 
for Hungarian, Szeged Dependency Treebank. Forms are represented 
with a dummy symbol ‘X’ standing for the stem, and then orthographic 
forms for suffixes, such as ‘Xoknak’ for the Hungarian dative plural. 
For Hungarian, Finnish and Turkish, we use the forms corresponding 
to back unrounded vowel harmony. For Latin, we use first-declension 
forms. For Arabic, we use regular masculine triptote forms with a bro-
ken plural; to do so, we represent the root using three dummy symbols, 
and the plural using a common ‘broken’ form101, with, for example, 

‘XaYZun’ for the nominative indefinite singular and ‘’aXYāZun’ for the 
nominative indefinite plural. Results using an alternate broken plural 
form ‘XiYāZun’ are nearly identical.

Adjective–noun pairs
From UD corpora, we extract adjective–noun pairs, defined as a head 
wordform with part-of-speech ‘NOUN’ modified by an adjacent depend-
ent wordform with relation ‘amod’ and part-of-speech ‘ADJ’. The forms 
over which predictive information is computed consist of the pair of 
adjective and noun from the corpus, in their original order, in origi-
nal orthographic form with a whitespace between them. The source 
distribution is directly proportional to the frequencies of the forms.

Noun phrase order
The source distribution on noun phrases is estimated from the 
empirical frequency of noun phrases in the German GSD UD corpus, 
which has the largest number of such noun phrases among the UD 
corpora. To estimate this source, we define a noun phrase as a head 
lemma of part-of-speech ‘NOUN’ along with the head lemmas for all 
dependents of type ‘amod’ (with part-of-speech ‘ADJ’), ‘nummod’ (with 
part-of-speech ‘NUM’) and ‘det’ (with part-of-speech ‘DET’). We extract 
these noun phrase forms from the corpus. When a noun phrase has mul-
tiple adjectives, one of the adjectives is chosen randomly and the others 
are discarded. The result is counts of noun phrases of the form below:

The source distribution is directly proportional to these counts. We 
then compute predictive information at the word level over the attested 
noun phrases for all possible permutations of determiner, numeral, 
adjective and noun. Typological frequencies are as given by ref. 49.

Semantic features
We binarize the Lancaster Sensorimotor Norms53 by recoding each 
norm as 1 if it exceeds the mean value for that feature across all words, 
and 0 otherwise. Word frequencies are calculated by maximum likeli-
hood based on lemma frequencies in the concatenation of the English 
GUM102, GUMReddit103 and EWT104 corpora from UD 2.8. The ‘Number’ 
feature is calculated based on the value of the ‘Number’ feature in the 
UD annotations. Verb–object pairs were identified as a head wordform 
with part-of-speech ‘VERB’ with a dependent wordform of relation ‘obj’ 
and part-of-speech ‘NOUN’.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Unique data required to reproduce our results are available via GitHub 
at http://github.com/Futrell/infolocality. Corpus count data are drawn 
from Universal Dependencies v2.8, available at https://lindat.mff.cuni.
cz/repository/xmlui/handle/11234/1-3683. The Lancaster Sensorimo-
tor Norms are available at https://osf.io/7emr6/. Wordform data from 
the WOLEX database105 are not publicly available, but a subset can be 
made available upon request to the authors.

Code availability
Code to reproduce our results is available via GitHub at http://github.com/ 
Futrell/infolocality.

Determiner Numeral Adjective Noun Count

die — — Hand 234

ein — alt Kind 4

— drei — Buch 2

ein — einzigartig Parfümeur 1

… … … … …
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A Basic formal results

In the Main Text, based on numerical simulations, we claimed that codes that minimize predictive
information tend to (1) factorize their source distribution into approximately independent components,
and (2) express these components systematically in local parts of strings. Here we provide some
elementary theorems about codes that minimize predictive information, which illustrate these
generalizations. Although a full mathematical analysis of such codes is beyond the scope of the
current work, the results below serve to establish their general behavior.

A.1 Forms of predictive information

In the Main Text, we claimed that the predictive information of a stochastic process can be thought
of in terms of successive approximations to the entropy rate based on n-gram models with successively
larger context size n. This has previously been shown by Crutchfield and Feldman (2003, Prop. 8),
among others. Here we provide the same result by means of a different and more direct proof.

Consider a stationary stochastic process generating symbols labelled . . . , Xt−1, Xt, Xt+1, . . .
extending into the infinite past and future. Predictive information is defined as the limit of the
mutual information of large blocks of M symbols before and N symbols after an arbitrary time
index t:

E = lim
N→∞

lim
M→∞

I[Xt−M :t : Xt:t+N ], (1)

where Xa:b = Xa, . . . , Xb−1 represents a block of symbols X indexed by an exclusive range. We write
Eq. 1 in shorthand as the mutual information between the infinite past X<t and infinite future X≥t

of the process,
E = I[X<t : X≥t]. (2)
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Now we can state the theorem relating predictive information to entropy rates derived from
n-gram models.

Theorem 1. The predictive information E can be written as

E = lim
N→∞

N∑
n=1

(hn − h) , (3)

where hn is the n-gram entropy rate

hn = H[Xt | Xt−n+1:t], (4)

and h is the asymptotic entropy rate
h = lim

n→∞
hn. (5)

Proof. Invoking stationarity, we set t = 1 without loss of generality. Using the chain rule for mutual
information, we rewrite the predictive information as a sum of conditional mutual informations:

E = lim
N→∞

lim
M→∞

N∑
n=1

I[X1−M :1 : Xn | X1:n]. (6)

Now we break each mutual information term into a difference of conditional entropies:

E = lim
N→∞

lim
M→∞

N∑
n=1

(H[Xn | X1:n]−H[Xn | X1−M :n]) . (7)

Because conditioning reduces entropy, the terms H[Xn | X1−M :n] (which are finite) converge
monotonically downward in M , so we may swap the sum and the limit on M . Then, invoking
stationarity again, we notice that the resulting two terms are the n-gram entropy rate and the
asymptotic entropy rate:

E = lim
N→∞

N∑
n=1

 H[Xn | X1:n]︸ ︷︷ ︸
n-gram entropy rate

− lim
M→∞

H[Xn | X1−M :n]︸ ︷︷ ︸
asymptotic entropy rate

 (8)

= lim
N→∞

N∑
n=1

(hn − h) , (9)

(10)

as claimed.

A.2 Predictive information for a finite-state source

The following result shows that predictive information is bounded at a constant when a language
puts symbols in an order that respects the correlational structure of the source distribution, when
the source distribution has the form of a Hidden Markov Model. On the other hand, we will show in
Section A.6 that random orders have average predictive information that grows linearly with the
sequence length.

2



Theorem 2. Let (St)t≥0 be a Hidden Markov Model (HMM) with finite state space S and finite
emission alphabet A generating a bi-infinite stationary stochastic process . . . , X−1, X0, X1, . . . . Let
L ∈ N, and consider the length-L language given by X1 . . . XL. The predictive information is bounded
independently of the sequence length L:

1

L

L∑
i=1

I [X1...i : Xi+1...L] = O(1) (11)

where O(1) contains constants depending on the HMM but not L.

Proof. Let si ∈ S be the state of the HMM after generating . . . Xi−2Xi−1Xi. Note that si is a
random variable with H[si] ≤ log |S|. Further, I[X1...i : Xi+1...L|si] = 0. Hence, by the Data
Processing Inequality, I[X1...i : Xi+1...L] ≤ H[si] ≤ log |S| = O(1) independently of L.

A.3 Length-2 languages

We now analyze the most basic case of a code that minimizes predictive information, one in which
every meaning is expressed in a string of length 2. We find that a code which minimizes predictive
information in this setting performs Independent Components Analysis on the source distribution,
with the two characters of the output string representing the two maximally independent factors of
the source.

Let M be a set of meanings with source distribution pM , Σ1 and Σ2 be disjoint sets of symbols,
and L be a set of languages defined as bijections L : M → Σ1 × Σ2. The predictive information
of a language E(L) is the predictive information of the stream of symbols generated by repeatedly
sampling meanings from pM , translating them to strings as s = L(m), and concatenating the
resulting strings with a delimiter # /∈ Σ1, /∈ Σ2 between them.

Theorem 3. Any language L∗ ∈ L that achieves E(L∗) = minL∈LE(L) has the form

L∗(m) = ℓ1(m) · ℓ2(m), (12)

where ℓi denotes some mapping ℓi : M → Σi and where the outputs from ℓ1 and ℓ2 have minimal
mutual information:

ℓ1, ℓ2 = argmin I[ℓ1(M) : ℓ2(M)], (13)

with the minimization performed over all mappings M → Σi.

Proof. Because the languages have strings of length 2, we calculate predictive information as

E = h1 + h2 + h3 − 3h, (14)

up to length 3, accounting for the delimiter # attached after the end of the string. The entropy rate
h = 1

3 H[M ] is constant across all languages because they are all bijections, so we ignore the entropy
rate going forward. Furthermore, there is no decrease in n-gram entropy rate for n > 3, so we have
h3 = h. Dropping all irrelevant constants, E is thus

E ∼ h1 + h2. (15)

Calculation of h1: The unigram entropy rate is the entropy of the distribution over symbols
generated by first sampling a time index t relative to the most recent delimiter, and then looking at
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the symbol at that position. For a code of length T (including the delimiter to the right), this is

h1 = −
T∑
t=1

p(t)
∑
x∈Σt

p(Xt = x) log p(t)p(Xt = x)

= − 1

T

T∑
t=1

∑
x∈Σt

p(Xt = x) log
1

T
p(Xt = x)

= − 1

T

T∑
t=1

log
1

T
− 1

T

T∑
t=1

∑
x∈Σt

p(Xt = x) log p(Xt = x)

= log T +
1

T

T∑
t=1

H[Xt],

that is, a constant reflecting how much information is contained in each symbol about its position
in the string, plus the average entropy of symbols found in each position. Ignoring constants not
affected by the choice of language L, in our case with T = 3 this is

h1 ∼ H[X1] + H[X2] +����H[X3]︸ ︷︷ ︸
=0

, (16)

where H[X3] = 0 because we always have X3 = #.
Calculation of h2: The bigram entropy rate h2 can be calculated following the same logic, yielding

h2 ∼ H[X1 | X0]︸ ︷︷ ︸
=H[X1]

+H[X2 | X1] +������
H[X3 | X2]︸ ︷︷ ︸

=0

, (17)

where H[X1 | X0] = H[X1] because X0 is the left delimiter, which is uninformative about the value
of X1.

Putting these together and ignoring irrelevant constants yields

E ∼ h1 + h2 (18)
∼ H[X1] + H[X2] +H[X1] + H[X2 | X1] (19)
= H[X1] + H[X2 | X1] + I[X1 : X2] + H[X1] + H[X2 | X1] (20)
= 2H[X1] + 2H[X2 | X1] + I[X1 : X2] (21)
= 2H[X1, X2] + I[X1 : X2] (22)
= 2H[M ] + I[X1 : X2]. (23)

Thus, we are left with
E ∼ I[X1 : X2], (24)

where all remaining constants do not depend on the choice of language L. Without loss of generality,
we can write X1 = ℓ1(M) and X2 = ℓ2(M) for any language L with the appropriate choice of the
ℓ1, ℓ2, and thus we have that minimal predictive information is achieved by finding functions ℓ1, ℓ2
to minimize mutual information:

argmin I[ℓ1(M) : ℓ2(M)]. (25)
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Remark. As predictive information is symmetrical with respect to time reversal, the solutions
here are symmetric with respect to swapping ℓ1 and ℓ2.

Remark. The argument reveals that there is a degenerate solution when |Σi| ≥ |M|: you could
encode the source M entirely with ℓi, with the other ℓj ̸=i a constant function. In that case it is
always possible to achieve I[ℓ1(M) : ℓ2(M)] = 0. This result mirrors the claim from Nowak et al.
(2000) that combinatorial communication requires that the number of available signals is less than
the number of available meanings.

A.4 Length-3 languages

We now consider codes consisting of strings of length 3. We find that, in this setting, the order
of the characters in the string is determined by information locality: the non-adjacent characters
should be maximally uncorrelated, while the adjacent characters may be more correlated.

Now consider bijective languages L : M → Σ1 × Σ2 × Σ3 producing strings of length 3, with
the alphabets Σi all disjoint. Now we no longer have invariance with respect to interchanging the
features ℓ1, ℓ2, ℓ3: the order in which features are expressed now matters. Below, we show that
languages which minimize E order these features so as to minimize the mutual information of the
nonlocal features ℓ1 and ℓ3.

Theorem 4. Any length-3 language L∗ ∈ L that achieves E(L∗) = minL∈LE(L) has the form

L∗(m) = ℓ1(m) · ℓ2(m) · ℓ3(m) (26)

where the functions {ℓi} are ordered so that I[ℓ1(M) : ℓ3(M)] is minimal.

Proof. Dropping irrelevant constants in the length-3 case yields

E ∼ I[X1 : X2] + I[X2 : X3] + 2 I[X1 : X3 | X2]. (27)

This expression can be written out and then rearranged as so:

E ∼ E
[
ln

p(X1, X2)

p(X1)p(X2)

]
+ E

[
ln

p(X2, X3)

p(X2)p(X3)

]
+ 2E

[
ln

p(X1, X2, X3)p(X2)

p(X1, X2)p(X2, X3)

]
(28)

= E
[
ln

p(X1, X2, X3)p(X1, X2, X3)p(X2)p(X2)

p(X1)p(X2)p(X3)p(X1, X2)p(X2, X3)

]
(29)

= E
[
ln

p(X1, X2, X3)

p(X1)p(X2)p(X3)

]
+ E

[
ln

p(X1, X3 | X2)

p(X1 | X2)p(X3 | X2)

]
(30)

= TC[X1 : X2 : X3] + I[X1 : X3 | X2] (31)
= TC[X1 : X2 : X3]− I[X1 : X2 : X3]︸ ︷︷ ︸

Order-independent

+ I[X1 : X3]︸ ︷︷ ︸
Order-dependent

, (32)

where TC[· : · : ·] is total correlation (Watanabe, 1960) and I[· : · : ·] is multivariate mutual
information (McGill, 1955). Both the TC term and the multivariate mutual information term are
invariant to permutations, so the ordering of X1, X2, X3 does not matter for them. The only term
that depends on the order of symbols is I[X1 : X3]. Thus any candidate optimal language L may be
improved by permuting the functions ℓ1, ℓ2, ℓ3 to minimize I[ℓ1(M) : ℓ3(M)].

Remark. The multivariate information term I[X1 : X2 : X3] may be positive or negative. If it is
positive, the situation is called redundancy. If it is negative, the situation is called synergy. The
result above shows that codes with synergy among the three symbols X1, X2, X3 are dispreferred,
and codes with redundancy are preferred.
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X1   X2   X3   X4   X5   X6 

H[X1, X2, X3, X4, X5, X6]

+
-

+
-

+
-

I3,4,5

I5,6

I1,2,3,4

Figure 1: Schematic for coinformation in a set of 6 random variables, based on Bell (2003, Fig. 2).
The joint entropy of X1, . . . , X6 may be found by summing all the coinformations of all the strict
subsets of these variables, weighted by the signs given to the left of the triangle. A few coinformations
are highlighted. The true lattice of coinformations is a 6D Boolean hypercube; the figure shows a
2D reduction for visual clarity.

A.5 Length-T languages

Next, we consider the more general case of languages with utterance of a fixed length T , maintaining
the setting where each position in the string has symbols from disjoint alphabets. We show that the
predictive information for these languages may be expressed in terms of the coinformation lattice
(Bell, 2003) among random variables corresponding to positions in the string. We find that predictive
information is a function of the amount of coinformation in sets of variables and the span size of
those sets, defined as the linear distance from the first character to the last character in the set.
This gives a generalized form of information locality, where predictive information is low whenever
any set of characters with high synergy are all close to each other.

Before stating the result, it is helpful to review the concept of coinformation. Consider a set of T
random variables X1, . . . , XT , and a set of indices such as, for example, E = {2, 3, 4}. Let XE denote
the random variables indexed by the set E, for example XE = {X2, X3, X4}. The coinformation
among the random variables indexed by E is defined as

IE = −
∑
F⊆E

(−1)|F |H[XF ], (33)

that is, the sum of entropies of all the subsets of XE , weighted by 1 if the subset is of odd cardinality
and −1 if the subset of is of even cardinality. For example, for E = {2, 3, 4}, the coinformation is

I2,3,4 = H[X2] +H[X3] +H[X4]−H[X2, X3]−H[X3, X4]−H[X2, X4] +H[X2, X3, X4]. (34)

The coinformation generalizes entropy and mutual information. For a single variable, for example
E = {1}, we recover the univariate entropy, I1 = H[X1]. For two random variables, for example
E = {1, 2}, we recover mutual information: I1,2 = H[X1] + H[X2] − H[X1, X2] = I[X1 : X2].
Coinformation for a set of variables is organized in a lattice structure, as illustrated in Figure A.5.

For |E| odd (except for |E| = 1), coinformation can be negative, which corresponds to synergy,
which happens for three variables when I[X1 : X2 | X3] > I[X1 : X2]. Positive coinformation for an
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odd number of variables corresponds to redundancy, which occurs when I[X1 : X2 | X3] < I[X1 :
X2].

Coinformation may be interpreted as the amount of covariance among variables that cannot be
detected from any strict subset of those variables. Synergy reflects a case when there is more such
covariance, and redundancy reflects a case where there is less. Therefore, we can make the quantity
of coinformation somewhat more interpretable by transforming it to synergistic information S,
which makes synergy positive and redundancy negative:

SE = (−1)|E| IE , (35)

that is, to define synergistic information, we reverse the sign of coinformation for odd-numbered
sets of variables. Synergistic information is positive when there is synergy among an odd-numbered
set of variables, negative when there is redundancy, and positive when there is any coinformation
among an even-numbered set of variables.

We can now state our result about predictive information in languages consisting of strings of
length T .

Theorem 5. For a language generating strings of fixed length T and disjoint alphabets for each
string position, the predictive information E up to additive and multiplicative constants is

E ∼
∑

1≤a<···<z≤T

(z − a)Sa,...,z, (36)

where Sa,...,z is the synergistic information among the set of random variables {Xa, . . . , Xz} corre-
sponding to characters at positions a, . . . , z.

Proof. Up to additive and multiplicative constants, the predictive information in this language is

E ∼
T∑
t=1

I[X1, . . . , Xt : Xt+1, . . . , XT ] (37)

=

T∑
t=1

(H[X1, . . . , Xt] + H[Xt+1, . . . , XT ]−H[X1, . . . , XT ]) . (38)

Next, we note that, inverting the definition of coinformation, we can write the entropy in a set of N
variables as (Bell, 2003, p. 922)

H[X1, . . . , XN ] = −
∑

1≤a<···<z≤N

(−1)|a,...,z| Ia,...,z (39)

= −
∑

1≤a<···<z≤N

Sa,...,z, (40)

where a, . . . , z is a set of indices defining a subset of the variables X1, . . . , XN . We can use this to
rewrite the predictive information in terms of synergistic information:

E ∼
T∑
t=1

−
∑

1≤a<···<z≤t

Sa,...,z −
∑

t+1≤a<···<z≤T

Sa,...,z +
∑

1≤a<···<z≤T

Sa,...,z

 . (41)

The question now is how many times we are adding in each synergistic information term Sa,...,z to
get the total. We can imagine the whole expression as a sum over cut points t which split the string
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into two parts, left and right. Within this sum, for each cut point, the last term adds in a synergistic
information term Sa,...,z for each subset of indices a, . . . , z, and the first two terms subtract all of the
synergistic information terms whose indices are either entirely to the left of the cut point or to its
right, leaving only those terms whose indices ‘straddle’ the cut, in the sense that at least one index
is ≤ t and at least one index is > t. Thus, we can rewrite predictive information using an indicator
variable for whether the set of indices a, . . . , z straddles the cut t. Then we count how often this
indicator variable is equal to 1, yielding the result:

E ∼
T∑
t=1

∑
1≤a<···<z≤T

1a≤t<zSa,...,z (42)

=
∑

1≤a<···<z≤T

(
T∑
t=1

1a≤t<z

)
Sa,...,z (43)

=
∑

1≤a<···<z≤T

(z − a)Sa,...,z. (44)

Remark. It can easily be checked that the formula recovers Eq. 24, which was used in the proof of
Theorem 2, for T = 2.

Remark. This result goes some way toward linking the hierarchical and well-nested structure of
human language with predictive information. In fixed-length languages that minimize predictive
information, groups of words or letters will tend to be close to each other as a function of how much
they covary, in a way that is nested according to the structure of the coinformation lattice. Ill-nested
configurations, in which groups of variables with high synergistic information are placed in such a
way that other variables intervene, would contribute more to the predictive information, since the
synergistic information in groups of variables is weighted by the span of those variables.

A.6 Predictive information for a random permutation

The following result shows that random orders have average predictive information that grows
linearly with the sequence length. This is in contrast to our results from Section A.2 showing that,
for finite-state processes, the predictive information is bounded independently of L.

Theorem 6. Let . . . , X−1, X0, X1, . . . be a bi-infinite stationary process. Let L ∈ N, and consider
the length-L language given by X1 . . . XL. Assume the process contains predictive information beyond
its ergodic components (Dębowski, 2009), in the sense that:

inf
∆>0

I[Xw : X...w−∆] < I[Xw : X...,w−2,w−1] (45)

Consider the uniform distribution over bijections ρ : [1, . . . , L] → [1, . . . , L]. Then

Eρ

[
1

L

L∑
i=1

I
[
Xρ(1...i) : Xρ(i+1...L)

]]
= Θ(L) (46)

where the expectation describes an average over all bijections ρ, and constants in Θ(L) depend on
the HMM but not L.
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The intuition is that for any process with local statistical structure, beyond its ergodic compo-
nents, permutations of the positions will tend to disrupt this local structure and create long-range
dependencies.

Proof. The expectation is evidently O(L); we need to show it is Ω(L). Define A = ρ(1 . . . i),
B = ρ(i+1 . . . L). The proof idea is to focus attention on positions w where w ∈ A but a contiguous
sequence of positions to its left is in B. Such situations create opportunity for XB to provide
predictive information about XA. Formally, for any ∆ > 0:

E[I[XA : XB]]

= E

[∑
w∈A

I[Xw : Xj∈B|Xj<w,j∈A]

]

=

L∑
w=1

E [1w∈AI[Xw : Xj∈B|Xj<w,j∈A]]

≥
L∑

w=1

E
[
1w∈A1[w−∆,w−1]∩A=∅I[Xw : Xj∈B|Xj<w,j∈A]

]
≥

L∑
w=1

E
[
1w∈A1[w−∆,w−1]∩A=∅I[Xw : X[w−∆,w−1]|Xj<w,j∈A]

]
=

L∑
w=1

E
[
1w∈A1[w−∆,w−1]∩A=∅I[Xw : X[w−∆,w−1]|Xj<w−∆,j∈A]

]
=

L∑
w=1

pρ(w ∈ A; [w −∆, w − 1] ∩A = ∅)E
[
I[Xw : X[w−∆,w−1]|Xj<w−∆,j∈A]|w ∈ A, 1[w−∆,w−1]∩A=∅

]

We now need to show that, for large ∆,

I[Xi : X[w−∆,w−1]|Xj<w−∆,j∈A] (47)

is bounded away from 0 uniformly over A. Consider1

I[Xw : X[w−∆,w−1] | Xj<w−∆,j∈A]

= I[Xw : X[w−∆,w−1]]− I[Xw : Xj<w−∆,j∈A] + I[Xw : Xj<w−∆,j∈A | X[w−∆,w−1]]

≥ I[Xw : X[w−∆,w−1]]− I[Xw : Xj<w−∆,j∈A]

≥ I[Xw : X[w−∆,w−1]]− I[Xw : Xj<w−∆]

When ∆ → ∞, the first term converges to I[Xw|X...w−2,w−1]. By assumption, the difference between
this and the second term is strictly greater than zero. Overall, this shows (47) is bounded strictly

1Reflecting the general identity

I[A : B | C] = H[A | C]−H[A | C,B]

= H[A]−H[A | B]−H[A] +H[A | C] +H[A | B]−H[A | B,C]

= I[A : B]− I[A : C] + I[A : C | B]

9



away from zero independently of A, for some sufficiently large ∆ which we henceforth fix for the
given HMM, independently of L. Let C > 0 be this lower bound for (47).

It remains to understand why, assuming |A| and |B| are sufficiently large, E[I[XA : XB]] is Ω(L).
Given the ∆ we have fixed,

pρ(w ∈ A; [w −∆, w − 1] ∩A = ∅) ≥ D > 0 (48)

for a constant D independent of w, for L sufficiently large, when 0.1L < |A| < 0.9L. For, in this
case, we have

pρ(w ∈ A; [w −∆, w − 1] ∩A = ∅)

= pρ(w ∈ A) ·
∆∏
j=1

pρ(w − j ∈ B|w ∈ A,w − 1 ∈ B, . . . , w − j + 1 ∈ B)

= p(ρ(w) ≤ i)︸ ︷︷ ︸
= i

L

·
∆∏
j=1

p (ρ(w − j) > i|ρ(w) ≤ i, ρ(w − 1) > i, . . . , ρ(w − j + 1) > i)︸ ︷︷ ︸
=L−i−j+1

L−j

≥ i

L
·
(
L− i−∆

L

)∆

≥ 1

10

(
0.1L−∆

L

)∆

≥ 1

10
· 1

20∆
=: D

where the last step holds when L > 20∆. Taken together,

E[I[XA : XB]] ≥ L ·D · C = Ω(L) (49)

when 0.1L < |A| < 0.9L. The claim follows.

We note that one can strengthen the proof to provide a high-probability bound, showing that
most permutations ρ satisfy such linear scaling. The reason is that a random permutation, when |A|
and |B| are both large, is very likely to satisfy the event described in (48) on a constant fraction of
positions w.

B Sources over Two Features

Simulation results in the main text are based on distributions of the form

p(M) = p(M1)× p(M2,M3) (50)

for varying levels of correlation between the binary random variables M2 and M3. The main result is
that when M2 and M3 have lower mutual information, a systematic code for these features minimizes
predictive information, but as mutual information increases, a holistic code is more preferred. Here
we complement these results with a more in-depth study of a source distribution over two features of
the form p(M) = p(M1,M2) for binary random variables M1 and M2, looking at a grid of possible
distributions over 4 outcomes. This comprehensive approach allows us to examine the effects of the
marginal probabilities for M1 and M2, as well as the effects of different kinds of correlations between
features on the relative preference for systematic vs. holistic codes.
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Outcome Corr. Source Anticorr. Source Systematic cnot(1,2) cnot(2,1)

00 3⁄8 0 ac ac ac

01 1⁄8 1⁄4 ad ad bd

10 1⁄8 1⁄4 bc bd bc

11 3⁄8 1⁄2 ad bc ad

Table 1: Some possible sources and codes for the two binary random variables M1,M2. The correlated
source has Pearson’s r = 1/2. The anticorrelated source has r = −1/3.

The main result is shown in Figure 2, which shows predictive information for all possible mappings
from the four outcomes of M to strings in {a, b} × {c, d}. The rows indicate different marginal
probabilities for p(M1 = 1), the columns indicate different marginal probabilities for p(M2 = 1),
and the x axis indicates the Pearson correlation between M1 and M2. The Pearson correlation is
necessary to make sense of the pattern here, because two kinds of correlation can induce mutual
information between M1 and M2: a positive correlation between the most probable outcomes and
a negative correlation, as shown in Table 1. In the positive correlation case, the features M1 and
M2 are effectively ‘fused’—at maximal correlation, there is actually only one feature here, as we
always have M1 = M2. In the negative correlation case, it is as if one of the four outcomes has been
effectively removed from the probability distribution.

There are two conclusions to be drawn from Figure 2 beyond the conclusions in the main text.
First, the level of preference for systematicity in the low-correlation case depends on the marginal
distributions being imbalanced: at p(M1) = p(M2) =

1
2 , even when there is zero correlation between

the features, the holistic code is just as good as the systematic code. This makes sense because for a
uniform distribution over 4 outcomes, there is no reason to favor any one factorization over another.
However, as the marginals become more imbalanced (moving downward or to the right in the figure),
the systematic code becomes better in the low-correlation range. For these imbalanced marginals,
there are generally two red lines to be seen in the figure, corresponding to the two possible classes of
non-systematic codes for the source: cnot(1, 2) and cnot(2, 1), which differ in which feature is used
as the control bit to flip the other one.

The second conclusion to be drawn from Figure 2 is that there is different behavior for positive
and negative feature correlations when the marginals for M1 and M2 are both imbalanced. In
particular, in the lower right corner, the systematic code is sometimes better than the holistic code
when there is a negative correlation. This happens because, in the negatively correlated source,
the systematic code allows the appearance of individual symbols to be correlated with the overall
probability of the string: for example, in the systematic code for the negatively correlated source in
Table 1, high-frequency strings always have d, and a only appears in low-frequency strings. The
result is that the unigram entropy is minimized by the systematic code for such a source.

Figure 3 shows predictive information for codes as a function of mutual information between
random variables M1 and M2, with the negatively-correlated sources separated out and indicated
with a dotted line. We see that the preference for holistic codes as a function of mutual information
is weaker for the negatively correlated sources, and also that these sources cannot achieve mutual
information as high as the positively correlated ones.
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Figure 2: Predictive information (labelled as excess entropy) of length-2 codes for a grid over the
simplex of possible sources over two binary random variables, p(M) = p(M1,M2). Rows show the
marginal probability p(M1 = 1). Columns show the marginal probability p(M2 = 1). The x axis
shows the Pearson correlation between M1 and M2.
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Figure 3: Predictive information (labelled as excess entropy) of codes for a grid over the simplex of
possible sources over two binary random variables as in Figure 2, but now by mutual information
instead of Pearson correlation. Dotted lines indicate codes for sources whose Pearson correlation is
negative.
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Figure 4: Calculation of predictive information for all 61 languages in the WOLEX database, for the
attested forms (black), a deterministic shuffle that preserves manner of articulation (red), and a
general deterministic shuffle (blue).

C Phonological Locality in 61 languages

Figure 4 shows the calculation of predictive information for all 61 languages in the WOLEX database,
for the real languages compared against two baselines generated by applying deterministic shuffling
functions to the attested forms. Table 2 shows the calculated predictive information values.

D NP Orders with Other Source Distributions

The noun phrase ordering results in the main text were derived using a source distribution over
NPs estimated from the German Universal Dependencies corpus. Here we show results using other
naturalistic source distributions, from corpora of Spanish (Figure 5), English (Figure 6), Czech
(Figure 7), Icelandic (Figure 8), and Latin (Figure 9). We also show results using the artificial source
developed by Mansfield and Kemp (2023) to study NP order in Figure 10.
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Language Real Manner Shuffled

Acholi 5.64 6.17 6.39
Alekano 7.42 8.79 9.60
Amharic 5.62 6.67 7.42
Armenian 6.91 8.04 8.60
Arrernte 6.34 8.17 8.37
Ata 5.98 6.76 7.59
Ayacucho Quechua 6.49 7.23 7.82
Bargam 6.26 6.74 7.45
Benabena 6.57 8.92 9.33
Bunama 6.94 7.59 8.69
Chickasaw 8.60 10.80 11.30
Dadibi 7.43 8.43 9.15
Daga 7.99 9.70 10.60
Delaware 7.88 9.97 10.60
Dobu 6.99 7.86 8.91
Dutch 9.38 11.90 12.40
English 6.91 8.34 8.65
French 6.35 7.78 8.50
Georgian 7.52 8.83 9.38
German 8.83 11.20 11.60
Greek 8.10 10.20 10.90
Guarani 7.00 8.21 8.66
Haitian Creole 6.05 6.82 7.63
Hausa 8.35 9.21 9.83
Hebrew 5.96 6.83 7.33
Hindi 6.64 7.56 8.12
Iamalele 7.21 8.10 9.09
Iduna 8.02 9.38 10.60
Javanese 5.72 6.57 7.08
Kewa 7.22 7.92 8.82
Khmer 8.30 10.00 10.50
Lake Miwok 6.20 6.75 6.87
Lithuanian 7.24 8.54 9.00
Maisin 5.72 6.07 7.03
Mandarin Chinese 6.06 7.65 8.05
Mauwake 6.53 8.05 8.79
Mengen 4.66 4.95 5.85
Mianmin 6.80 8.01 8.83
Moroccan Arabic 6.20 6.71 6.99
Mountain Koiali 5.55 5.99 6.72
Muna 5.13 5.46 6.53
Muyuw 6.12 6.79 7.36
Polish 7.85 9.35 9.90
Romanian 7.44 8.37 8.67
Rotokas 6.49 7.49 8.41
Ryan 3.87 5.02 5.63
Sepik Mende 6.77 7.48 8.47
Siroi 5.79 6.37 7.06
Sudest 6.59 6.96 7.90
Suena 6.08 6.89 7.74
Tatar 7.96 8.82 9.39
Thompson Salish 7.49 7.87 8.38
Turkish 7.00 7.66 8.37
Waffa 6.64 7.74 8.49
Wantoat 6.63 7.69 8.17
Waris 6.55 7.39 7.98
Waskia 6.40 7.09 7.85
Woleaian 6.83 7.92 8.57
Yana 6.82 7.38 8.13
Yup’ik 6.09 6.75 7.43
Zulu 6.79 8.12 9.00

Table 2: Predictive information values (in bits) for 61 languages of the WOLEX sample, visualized in
Figure 4. ‘Real’ is the predictive information of the attested wordforms. ‘Manner’ is for wordforms
shuffled while preserving manner. ‘Shuffled’ is for wordforms shuffled without regard for manner.
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Figure 5: Typology frequencies of NP orders by predictive information estimated using the Spanish
UD source (Mariona Taulé and Recasens, 2008). Lines and statistics as in the figure in the main
text.
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Figure 6: Typology frequencies of NP orders by predictive information estimated using the English
UD source (Zeldes, 2017).
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Figure 7: Typology frequencies of NP orders by predictive information estimated using the Czech
UD source (Hladká et al., 2008). We believe the weaker correlation here is due to the rarity of
determiners in the Czech corpus.
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Figure 8: Typology frequencies of NP orders by predictive information estimated using the Icelandic
UD source (Arnardóttir et al., 2020).
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Figure 9: Typology frequencies of NP orders by predictive information estimated using the Latin
UD source (based on all Latin UD corpora). As the text genre for this corpus is highly unusual
(consisting of over 1000 years’ worth of text, much of it poetry or written by non-native speakers),
we believe that the distribution of NPs in this corpus is not representative of the ‘true’ source
distribution over NP meanings.
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Figure 10: Typology frequencies of NP orders by predictive information estimated using the artificial
MK23 source (Mansfield and Kemp, 2023).
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E Correlation of Semantic Features

In Figure 11 we present results of the study on correlation of semantic features, but using the semantic
feature norms from the Glasgow Word Norms (Scott et al., 2017), which rate words for features such
as dominance, valence, and arousal. Features are binarized and their frequencies and pairwise MIs
are calculated as in the main text. Results are similar to the main text: the across-morpheme and
across-word features largely have lower mutual information than within-morpheme and within-word
features.

F Phonotactic Results with Corpus Frequencies

Recall that our analysis of phonotactics assumed a uniform distribution over forms. This is because
the phonological forms, as listed in the WOLEX database, cannot straightforwardly be matched to
corpus data. However, for four languages (Dutch, English, French, and German), WOLEX provides
orthographic forms. Using these, we derived corpus frequencies from the full Wikipedia texts in
these languages. We applied simple Laplace smoothing at α = 1. Results as shown in Figure 12
closely agree with those derived under a uniform distribution.

G Hierarchically-Structured Sources

G.1 Varying Coupling Parameters in Tree Structures

We created further sources by keeping the tree structure from Main Paper, Figure 2F, but varying
the parameters α, β, γ ∈ [0, 1] randomly subject to the constraint 4α < 2β < γ. We created 70
random samples. Results, shown in Figure 13, reproduce the pattern from Main Paper, Figure 2F.

G.2 Sources Defined by PCFGs

We constructed probabilistic context-free grammars (PCFGs) defined by 5 terminals and 5 nonter-
minals. For each nonterminal a, we considered the 100 possible binary productions a → bc where
b, c are terminals or nonterminals. For each nonterminal, we defined a distribution over these 100
possible productions a → bc by defining

p(a → bc) ∝ exp(Tpa→bc), (51)

where T > 0 is an inverse temperature parameter and each pa→bc ∈ [0, 1] is a random number (cf.
DeGiuli, 2019). The probabilities are normalized to sum up to one for each left-hand side a. The
inverse temperature parameter controls the variability in the probabilities of different productions;
higher values result in a sparser source.

We then enumerated all 56 strings of length 6 over the given nonterminals, and used the CKY
algorithm to compute the probabilities of all of these strings under the given PCFG. This defines a
source over all strings of length 6.

At inverse temperatures T = 1, 2, 3, 4, 10, 20 we sampled 10 PCFGs each, and compared the
predictive information of the language given by the PCFG (systematic and local), deterministic
permutations of the 6 positions (systematic and nonlocal), and 360 randomly chosen shuffles of the
mapping between forms and probabilities (neither local nor systematic).

Results (Figure 14) show that local orderings usually achieve lower predictive information.
Nonsystematic codes have much higher predictive information, very closely concentrated around
values clearly separated from the systematic codes.
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Figure 11: (A) Pairwise mutual information of semantic features from the Glasgow Word Norms
(Scott et al., 2017) across words and within words, for pairs of verbs and objects in Universal
Dependencies English corpora. (B) Pairwise mutual information of the Glasgow Word Norms along
with a number feature indicated by plural morphology. The across-word and across-morpheme
features have generally lower MI than the within-word and within-morpheme features.
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Figure 12: Calculation of predictive information using corpus frequencies, for the 4 languages in the
WOLEX database for which orthographic forms are available in WOLEX. We show the attested
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those found with uniform distributions.
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Randomization Generation of random baselines is described in the main text and methods.

Blinding Blinding is not possible as the results consist entirely of computational simulations based on corpus data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants
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