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Human language has a distinct systematic structure, where utterances
breakinto individually meaningful words that are combined to form
phrases. Here we show that natural-language-like systematicity arises

in codes that are constrained by a statistical measure of complexity
called predictive information, also known as excess entropy. Predictive
information is the mutual information between the past and future of
astochastic process. In simulations, we find that codes that minimize
predictive information break messages into groups of approximately
independent features that are expressed systematically and locally,
corresponding to words and phrases. Next, drawing on cross-linguistic
text corpora, we find that actual human languages are structured in a way
thatyields low predictive information compared with baselines at the

levels of phonology, morphology, syntax and lexical semantics. Our results
establishalink between the statistical and algebraic structure of language
and reinforce theidea that these structures are shaped by communication
under general cognitive constraints.

Human language is organized around a systematic, compositional
correspondence between the structure of utterances and the structure
of the meanings that they express'. For example, an English speaker
will describe an image such as Fig. 1a with an utterance such as ‘a cat
with a dog’, in which the parts of the the image correspond regularly
with parts of the utterance such as ‘cat’—what we call words. This way
of relating form and meaning may seem natural, but it is not logically
necessary. For example, Fig. 1b shows an utterance in a hypothetical
counterfactual language where meaning is decomposed in a way that
most people would find unnatural: here, we have a word ‘gol’, which
refers to a cat head and a dog head together, and another word ‘nar’,
whichrefers to a cat body and a dog body together. Similarly, Fig. 1c
presents a hypothetical language thatis systematic but with an unnatu-
ral way of decomposing the utterance: here, the utterance contains
individually meaningful subsequences ‘a cat’, ‘with‘ and ‘a dog’, but
theseareinterleaved together, rather than concatenated as theyarein
English. We can even conceive of languages such asinFig.1d, where each
meaning is expressed holistically as a single unanalysable form**—in
fact, thislack of systematic structure is expected inoptimal codes like
Huffman codes*’. Why is human language the way it is, and not like
these counterfactuals?

We argue that the particular structure of human language can be
derived from general constraints on sequential information process-
ing. We start from three observations:

(1) Utterances consist, to a first approximation, of one-dimensional
sequences of discrete symbols (for example, phonemes).

(2) The ease of production and comprehension of these utterances
is influenced by the sequential predictability of these symbols
down to the smallest timescales® ™.

(3) Humans have limited cognitive resources for use in sequential
prediction™ ¢,

Thus, we posit that language is structured in a way that mini-
mizes the complexity of sequential prediction, as measured using a
quantity called predictive information: the amount of information
about the past of asequence that any predictor must use to predict
its future'®, also called excess entropy'>*. Below, we find that codes
that are constrained to have low predictive information within sig-
nals have systematic structure resembling natural language, and
we provide massively cross-linguistic empirical evidence based on
large text corporashowing that natural language has lower predic-
tive information than would be expected if it had different kinds
of structure.
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Fig.1|Example utterances describing animage in English and various
hypothetical languages. a, An English utterance exhibiting natural local
systematicity. b, An unnatural systematic language in which ‘gol’means a cat
head paired with adog head and ‘nar’ means a cat body paired with a dog body.
¢, Anon-local but systematic language in which an utterance is formed by
interleaving the words for ‘cat’ and ‘dog’. d, A holistic language in which the form
‘vek’ means ‘a cat with adog’ with no correspondence between parts of form and
parts of meaning.

Results

Explananda

First, we clarify what we want to explain. Takingamaximally general stance,
we think of alanguage as a function mapping meanings to forms, where
meanings are any objects in a set M, and forms are strings drawn froma
finitealphabet ofletters 2, typically standing for phonemes. We say a lan-
guage is systematic whenitisahomomorphism*?, asillustratedin Fig. 2.
That s, if ameaning m can be decomposed into parts (say m=m; x m,),
thenthe string for that meaning decomposes in the same way:

L(my x my) = L(my) - L(my), ()]

where ‘.’ is some means of combining two strings, such as concatena-
tion. For example, an object lll would be described in English as
LI =blue square. The meaning [J]is decomposed into features for

colour and shape, and these features are expressed systematically as
the words ‘blue’ and ‘square’ concatenated together.

We wish to explain why human languages are systematic, why
they decompose meanings in the way they do, and why they combine
stringsin the way they do. In particular, meanings are decomposed in
away that seems naturalto humans (thatis, like Fig. 1aand not Fig. 1b),
aproperty we call ‘naturalness’. Also, strings are usually combined by
concatenation (thatis, like Fig. 1aand not like Fig. 1c), or more generally
by some process that keeps relevant parts of the string relatively close
together. We call this property ‘locality’.

Influential accounts have held that human language is systematic
because language learners need to generalize to produce forms for
never-before-seen meanings* 2. Such accounts successfully moti-
vate systematicity in the abstract sense, but on their own they do not
explain naturalness and locality. However, a theory of systematicity
must have something to say about these properties, because if we are
freetochooseany arbitrary functions ‘x’and~’, thenany function L can
be considered systematic in the sense of equation (1), and the idea of
systematicity becomes vacuous?.

In existing work, naturalness and locality are explained via
(implicit or explicit) inductive biases built into language learners>2-

or stipulations about the mental representation or perception of
meanings***°. By contrast, we aim to explain natural local systematic-
ity inlanguage from maximally general principles, without any assump-
tions about the mental representation of meaning, and with extremely
minimal assumptions about the structure of forms—only that they are
ultimately expressed as one-dimensional sequences of discrete symbols.

Predictive Information

We measure the complexity of sequential prediction using predictive
information, whichis the amount of information that any predictor must
use about the past of astochastic process to predictits future (below, we
assume familiarity withinformation-theoretic quantities of entropy and
mutual information*). Givenastationary stochastic process generating
astream of symbols ..., X, X, X,.y, ..., we splititinto ‘the past’ X, rep-
resenting all symbols up to time ¢, and ‘the future’ Xg,,re, representing
all symbols at time ¢ or after. The predictive information or excess
entropy'®" Eis the mutualinformation between the past and the future:

E= l[Xpast * Xtuture - (2)

We calculate the predictive information of alanguage L as the predic-
tiveinformation of the stream of letters generated by repeatedly sam-
pling meanings m € M from a source distribution, translating them
to strings as s =L(m) and concatenating them with a delimiter
inbetween.

Predictiveinformation can be calculated inasimple way that gives
intuition about its behaviour. Let h, represent the n-gram entropy of
a process, that is, the average entropy of a symbol given a window of
n-1previous symbols:

hn = H[thxt—n+1’ ’Xt—l]- 3)

As the window size increases, the n-gram entropy decreases to an
asymptotic value called the entropy rate h. The predictive informa-
tion represents the convergence to the entropy rate,

E= (hy ). @)
n=1

asillustrated in Fig. 3. This calculation reveals that predictive informa-
tion is low when symbols can be predicted accurately on the basis of
local contexts, that is, when A, is close to 4 for small n.

Simulations

The following simulations show that, when languages minimize predic-
tive information, they express approximately independent features

L&D = L( &) L(D)

"L(m) = L(#-0)

L(®)-L(o)

‘Blue’

‘Square’

Fig.2|Two examples of linguistic systematicity asa homomorphism. L(-)
stands for the English language, seen as a function from meanings to forms
(strings). a, The meaning naturally decomposes into two features corresponding
to the two animals. The form ‘acat with a dog’ decomposes systematically

into forms for the cat and the dog, concatenated together with the string

‘with’ between them. b, The meaning naturally decomposes into two features,
corresponding to colour and shape. The form ‘blue square’ decomposes
systematically into forms for the colour and the shape, concatenated together.

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-025-02336-w

@ithadog.,.
" ] |

n-gram entropy rate (bits)

Entropy rate

n-gram order

Fig.3|Schematic calculation of predictive information as the sum of n-gram
entropies h, minus the asymptotic entropy rate h.

systematically and locally in a way that corresponds to words and
phrasesin natural language.

Systematic expression of independent features. Consider a set of
meanings consisting of the outcomes of three weighted coin flips. In
anatural systematic language, we would expect each string to have
contiguous ‘words’ corresponding to the outcome of each individual
coin, whereas a holistic language would have no such structure, as
shown in the examples in Fig. 4a. It turns out that, for these example
languages, the natural systematic one haslower predictive information,
asshownin Fig. 4b. In fact, among all possible unambiguous length-3
binary languages, predictive information is minimized exclusively in
the systematic languages, as shown in Fig. 4c.

Intuitively, the reason systematic languages minimize predictive
information here is that the features of meaning expressed in each
individual letter are independent of each other, and so there is no sta-
tistical dependence among lettersin the string. The general patternis
thatan unambiguous language that minimizes predictive information
will find features that have minimal mutual information and express
them systematically. See Supplementary Section A for formal argu-
ments to this effect.

Holistic expression of correlated components. What happensto pre-
dictiveinformation when the source distribution cannot be expressed
in terms of fully independent features? In that case, it is better to
express the more correlated features holistically, without systematic
structure. This holistic mapping is what we find in natural language
for individual words (or, more precisely, morphemes), according to
the principle of arbitrariness of the sign*’. For example, the word ‘cat’
has no identifiable parts that systematically correspond to features
of its meaning. Furthermore, as we will discuss below, morphemes
in language typically encode categories whose semantic features are
highly correlated with each other*’.

We demonstrate this effect in simulations by varying the coin-flip
scenario above. Denote the three coin flips as M;, M, and M,. Imagine the
second and third coins and are tied together, so that their outcomes M,
and M, are correlated, asin the examplein Fig. 4d. Inthe limit where M,
and M, are fully correlated, these coin flips have effectively become one
feature. Figure 4e shows predictive information for a number of pos-
sible languages in this setting, as a function of the mutual information
between the tied coin flips M, and M,. In the low-mutual-information
regime—where M, and M; are nearly independent—the best language
isstill fully systematic. However, as mutual information increases, the
bestlanguageis one that expresses the tied coin flips M, and M; together
holistically, as a single ‘word’. An unnatural language that expresses

the uncorrelated coin flips M; and M, holistically is much worse, asis a
non-local systematic language that breaks up the ‘word’ corresponding
tothe correlated coin flips M,and M,.

Locality. Next, we show that minimization of predictive information
yields languages where features of meaning correspond to localized
parts of strings, corresponding to words. We consider a Zipfian distri-
bution over 100 meanings, and alanguage L in which forms consist of
two length-4 ‘words’. We then consider scrambled languages formed
by applying permutations to the string output of L. For example, if the
original language expresses a meaning with two words such as
L(m; x m,) = aaaa - bbbb, a possible scrambled language would have
L’(m; x m,) = baaabbab. These scrambled languages instantiate pos-
sible string combination functions other than concatenation.
Calculating predictive information for all possible scrambled
languages, we find that the languages in which the ‘words’ remain
contiguous have the lowest predictive information, as shownin Fig. 5a.
This happens because the coding procedure above creates correla-
tions among letters within a word. When these correlated letters are
separated from each other—such as when letters from another word
intervene—then predictive information increases. Interestingly, not
every concatenative language is better than every non-concatenative
one. This corresponds to the reality of natural language, in which lim-
ited non-concatenative and non-local morphophonological processes
do exist, for example, in Semitic non-concatenative morphology*.

Hierarchical structure. Natural language sentences typically have
well-nested hierarchical syntactic structures, of the kind generated
by a context-free grammar®: for example, the sentence ‘[[the big dog]
chased [a small cat]]’ has two noun phrases, indicated by brackets,
which are contiguous and nested within the sentence. Minimization
of predictive information creates these well-nested word orders,
with phrases corresponding to groups of words that are more or less
strongly correlated*. We demonstrate this effect using asource distri-
bution defined over six random variables M,, ..., My with a covariance
structure shown in the inset of Fig. 5b: each of the variable pairs (M,,
M,) and (M,, M;) are highly internally correlated; these pairs are weakly
correlated with M, and M, respectively; and both groups of variables
are very weakly correlated with each other. As above, we consider all
possible permutations of a systematic code for these source variables.
The codes that minimize predictive information are those that are well
nested withrespect tothe correlation structure of the source, keeping
theletters correspondingto all groups of correlated features contigu-
ous. Further simulation results involving context-free languages are
found in Supplementary Section G. For a mathematical analysis of
predictive information in local and random orders for structured
sources, see Supplementary Section A.

Cross-linguistic empirical results

Here, we present cross-linguistic empirical evidence that the systematic
structure of language has the effect of reducing predictive informa-
tionat thelevels of phonotactics, morphology, syntax and semantics,
compared against systems that lack natural local systematicity.

Phonotactics. Languages have restrictions on what sequences of
sounds may occur within words: for example, ‘blick’ seems like a
possible English word, whereas ‘bnick’ does not, even though it is
pronounceable in other languages*. These systems of restrictions are
called phonotactics. Here, we show that actual phonotactic systems
of human languages, which involve primarily local constraints on
what sounds may co-occur, result in lower predictive information
compared with counterfactual phonotactic systems. We compare
phonemically transcribed wordforms in vocabulary lists of 61 lan-
guages against counterfactual alternatives generated by deterministi-
cally scrambling phonemes within aword while preserving manner of
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Fig. 4| Simulations of languages for coin-flip distributions. a, Two
unambiguous languages for meanings consisting of three weighted coin flips.
Inthe systematic language, each letter corresponds to the outcome from one
coin flip. In the holistic language, there is no natural systematic relationship
between the form and the meaning. b, Calculation of predictive information for
the source and two languages in a. The systematic language has lower predictive
information. ¢, Predictive information of all bijective mappings from meanings
tolength-3 binary strings, for the meanings and source in a. Languages are
ordered by predictive information and coloured by the number of coin flips

\
0 0.05 0.10 015
Mutual Information I[M, : M,] (bits)

0.20

expressed systematically: 3 for a fully systematic language and O for a fully
holistic language. The inset box zooms in on the region of low predictive
information. d, Languages used in e along with an example source, which has
mutual information I[M,: M;] = 0.18 bits. e, Predictive information of various
languages for varying levels of mutual information between coin flips M, and
M, (see text). Zero mutual information corresponds to b and c. The ‘natural’
language expresses M, and M, together holistically. The ‘unnatural’ language
expresses M, and M, together holistically.
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Fig. 5| Simulations of codes with different orders of elements. a, Predictive
information of all string permutations of a systematic language for a Zipfian
source. Languages that combine components by concatenation, marked in
red, achieve the lowest predictive information. The inset zooms in on the
2,000 permutations with the lowest predictive information. b, A hierarchically

b Well-nested versus ill-nested orders
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structured source distribution (see text) and predictive information of all
permutations of a systematic language for this source. A language is well
nested when all groups of letters corresponding to groupings in the inset
tree figure are contiguous. The well-nested languages achieve the lowest
predictive information.

articulation. This ensures that the resulting counterfactual forms are
roughly possible to articulate. For example, an English word ‘fasted”
might be scrambled to form ‘sefdat’. Calculating predictive infor-
mation, we find that the real vocabulary lists have lower predictive

information than the counterfactual variantsin all languages tested.
Results for six languages with diverse sound systems are shown in
Fig. 6a. Results for the remaining 55 languages are presented in Sup-
plementary Section C.
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Fig. 6 | Evidence that natural languages are configured in a way that

reduces predictive information, in phonotactics, morphology and syntax.
a, Predictive information calculation for phonological formsin selected
languages, comparing the attested forms against forms that have been
deterministically shuffled while preserving manner of articulation. b, Letter-
level predictive information of noun morphology (vertical black line), compared

Predictive information (bits) Predictive information (bits)

against predictive information values for four random baselines (densities of
10,000 samples; see text). Pvalues indicate the proportion of baseline samples
with lower predictive information than the attested forms. ¢, Letter-level
predictive information of adjective-noun pairs from 12 languages, compared
with baselines. Non-local baselines always generate much higher predictive
information than the attested forms and are not shown.
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@ Hungarian morphology

Frequency Features Hungarian form Form (unnatural)  Form (non-local) Meaning
=== Nominative singular ember emberekhez ember person (subj.)
mm  Accusative singular  embert embert embert person (obj.)
1 Dative singular embernek embereknek kembeern to the person
1 Allative singular emberhez embereket zembeerh toward the person
== Nominative plural emberek emberhez embekre people (subj.)
B Accusative plural embereket emberek eembektre people (obj.)
+ Dative plural embereknek embernek knembekere to the people
+ Allative plural emberekhez ember zhembekere toward the people
b English syntax
Frequency Meaning English form Form (unnatural) Form (non-local)
e | Blue square Green square squbluaree
= Green square Blue square squgreareen
=] o Blue circle Blue circle cirbluclee
= Green circle Green circle cirgrecleen

Fig.7 | Examples of systematic morphology and syntax, and baselines used
in experiments. a, Forms of the Hungarian noun ‘ember’ meaning ‘person’,
along with examples of the unnatural and non-local baseline used in Fig. 6b. An
additional 231 forms are not shown. The ‘Frequency’ columnillustrates the joint

frequency of grammatical features in the Hungarian Szeged UD corpus'©%'%°,

b, English forms for the given meanings, along with frequencies from the English
Common Crawl web corpus'”’. Example unnatural and non-local baseline forms
areshown.

Morphology. Words change form to express grammatical features in
away that is often systematic. For example, the forms of the Hungar-
ian noun shown in Fig. 7a are locally systematic with respect to case
and number features. In Fig. 6b, we show that the local systematic
structure of affixes for case, number, possession and definiteness in
five languages has the effect of reducing predictive information when
comparing against baselines that disrupt this structure. We estimate
predictive information of these morphological affixes across five
languages, with source distributions proportional to empirical corpus
counts of the joint frequencies of grammatical features. We compare
the predictive information of the attested forms against three alterna-
tives: (1) a non-local baseline generated by applying a deterministic
permutation functionto eachform, (2) anunnatural baseline generated
by permuting the assignment of forms to meanings (features) and (3) a
more controlled unnatural baseline that permutes the form-meaning
mapping while preserving form length. The unnatural baselines pre-
serve the phonotactics of the original forms; only the form-meaning
relationship is changed. We generate 10,000 samples (permutations)
for each of the three baselines per language.

Across the languages, we find that the attested forms have lower
predictive information than the majority of samples of the baselines.
The weakest effect is in Latin, which also has the most fusional and
least systematic morphology*®. Note that Arabic nouns often show
non-concatenative morphology inthe form of so-called broken plurals:
for example, the plural of the loanword ‘film’ meaning ‘film’ is ‘aflam.
This patternis represented in the forms used to generate Fig. 6b, and
yet Arabic noun forms still have lower predictive information than
the majority of baseline samples. This suggests that the limited form
of non-concatenative morphology presentin Arabic is still consistent
withtheideathatlanguages are configured inaway that keeps predic-
tive information low.

Syntax. Phrases such as ‘blue square” have natural local systematicity,
asshownin Fig. 7b. We compare real adjective-noun combinationsin
corporaof12languages against unnatural and non-local baselines gen-
erated the same way asin the morphology study: permuting the letters
withinaformtodisruptlocality, or permuting the assignment of forms
to meanings to disrupt naturalness. We estimate the probability of a
meaning as proportional to the frequency of the corresponding adjec-
tive-noun pair. Results are shown in Fig. 6¢c. The real adjective-noun

pairs have lower predictive information than a large majority of base-
lines across all languages tested.

Word order. In an English noun phrase such as ‘the three cute cats’,
the elements Determiner (D, ‘the’), Numeral (N, ‘three’), Adjective (A,
‘cute’) and Noun (n, ‘cats’) are combined in the order D-N-A-n. This
order varies across languages—for example, Spanishhas D-N-n-A (‘los
tresgatoslindos’)—but certain orders are more common than others®.
We aim to explain the cross-linguistic distribution of these orders
throughreduction of predictiveinformation, which drives words that
are statistically predictive of each other to be close to each other, an
intuition shared with existing models of adjective order*>***°, Todo so,
we estimate source probabilities for noun phrases (consisting of single
headlemmas foranoun along withanoptional adjective, numeral and
determiner) based on corpusfrequencies. We then calculate predictive
information atthe word level (treating words as single atomic symbols)
for all possible permutations of D-N-A-n. Predictive information
is symmetric with respect to time reversal, so we cannot distinguish
orderssuchas D-N-A-nfromn-A-N-Dandsoon.AsshowninFig. 8a,
the orders with lower predictive information are also the orders that
are more frequent cross-linguistically. Anumber of alternative source
distributions also yield this downward correlation, as shown in Sup-
plementary Section D.

Lexical semantics. Considering aword such as ‘cats’, all the semantic
features of a cat (furriness, mammalianness and so on) are expressed
holistically in the morpheme ‘cat’, while the feature of numerosity is
separated into the plural marker ‘~s’. Plural marking like this is common
across languages®*>. From reduction of predictive information, we
expectrelatively uncorrelated components of meaning to be expressed
systematically, and relatively correlated components to be expressed
together holistically. Thus, we hold that numerosity is selected to be
expressed systematically in a separate morpheme because it is rela-
tively independent of the other features of nouns, which are in turn
highly correlated with each other. Our theory thus derives the intui-
tion that natural categories arise from the correlational structure of
experience®.

We validate this predictionin astudy of semantic features in Eng-
lish, using the Lancaster Sensorimotor Norms®’ to provide semantic fea-
tures for Englishwords and using the English Universal Dependencies
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Fig. 8| Evidence that word order and lexical semantics are configured in ways
thatreduce predictive information. a, Typological frequency of noun phrase
orders (number of unrelated language genera showing the given order*’) asa
function of predictive information. More frequent orders have lower predictive
information. The blue line shows alinear regression predicting log typological
frequency from predictive information. Error bars indicate a 95% confidence
interval of the slope of this regression. The negative correlation is significant

Feature pair

with Pearson’s R=-0.69 and P=0.013. b, Top: pairwise mutual information

of semantic features from the Lancaster Sensorimotor Norms** in addition

to anumber feature, as indicated by plural morphology. The number feature

is expressed systematically; all others are holistic. Bottom: pairwise mutual
information values for Lancaster Sensorimotor Norm features across and within
words, for pairs of verbs and their objects.

(UD) corpus to provide a frequency distribution over words. The Lan-
caster Sensorimotor Norms provide human ratings for words based
onsensorimotor dimensions, such as whether they involve the head or
arms. AsshowninFig. 8b (top), we find that the semantic norm features
are highly correlated with each other, and relatively uncorrelated with
numerosity, as predicted by the theory.

For the same reason, the theory also predicts that semantic fea-
tures should be more correlated within words than across words. In
Fig.8b (bottom), we show within-word and cross-word correlations of
the semantic norm features for pairs of verbs and their objects taken
from the English UD corpus. As predicted, the across-word correlations
areweaker. Correlations based on features drawn from other semantic
norms are presented in Supplementary SectionE.

Discussion

Our results underscore the fundamental roles of prediction and mem-
oryinhumancognitionand provide alink between the algebraic struc-
ture of human language and information-theoretic concepts used
in machine learning and neuroscience. Our work joins the growing
body of information-theoretic models of human language based on
resource-rational efficiency>* .

Language models

Large language models are based on neural networks trained to predict
the next token of text given previous tokens. Our results suggest that
language is structured in a way that makes this next-token prediction
relatively easy, by minimizing the amount of information that needs to
beextracted fromthe previous tokens to predict the following tokens.
Althoughithasbeen claimed thatlarge language models havelittle to
tellusabout the structure of human language—because their architec-
tures do not reflect formal properties of grammars and because they
can putatively learn unnatural languages as well as natural ones®®%—
our results suggest that these models have succeeded so well precisely
because natural language is structured in a way that makes their pre-
diction task relatively simple. Indeed, neural sequence architectures
struggle to learn languages that lack information locality®>°*,

Machinelearning

Our results establish a connection between the structure of human
language and ideas from machine learning. In particular, minimization
of mutualinformation (atechnique known asindependent components
analysis, ICA®*°) iswidely deployed to create representations that are
‘disentangled’ or compositional®, and to detect object boundaries
inimages, under the assumption that pixels belonging to the same
object exhibit higher statistical dependence than pixels belonging to
different objects®®. (Although general nonlinear ICA with real-valued
outputs does not yield unique solutions®’, we have found above that
minimization of predictive information does find useful structure
in our setting, with discrete string-valued outputs and a determin-
istic function mapping meaning to form.) We propose that human
language follows a similar principle: it reduces predictive information,
which amounts to performing a generalized sequential ICA on the
source distribution on meanings, factoringitinto groups of relatively
independent componentsthat are expressed systematically as words
and phrases, with more statistical dependence within these units than
across them. This provides an explanation for why ICA-like objectives
yield representations that areintuitively disentangled, compositional,
or interpretable: they yield the same kinds of concepts that we find
encoded in natural language.

Neuroscience

Similarly, neural codes have been characterized as maximizing
information throughput subject to information-theoretic and physi-
ological constraints’®”, including explicit constraints on predictive
information’>”>. These models predict that, in many cases, neural
codes are decorrelated: distinct neural populations encode statisti-
cally independent components of sensory input’™. Our results suggest
that language operates on similar principles: it expresses meanings
inaway thatis temporally decorrelated. This view is compatible with
neuroscientific evidence on language processing: minimization of
predictive information (while holding overall predictability constant)
equates to maximization of local predictability of the linguistic signal,
adriver of the neural response to language'®”.
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Information theory and language

Previous work’ derived locality in natural language from a related
information-theoretic concept, the memory-surprisal trade-off or pre-
dictive information bottleneck curve, which describes the best achiev-
able sequential predictability as a function of memory usage”’. The
current theoryisasimplification thatlooks at only one part of the curve:
predictive information is the minimal memory at which sequential
predictability is maximized. A more complete information-theoretic
view of language may have to consider the whole curve.

Wejoin existing work attempting to explain linguistic structure on
the basis of information-theoretic analysis of language as a stochastic
process, for example, the study of lexical scaling laws as a function of
redundancy and non-ergodicity in text’®. Other work on predictive
information in language has focused on the long-range scaling of the
n-gram entropy in connected texts, with results seeming to imply
that the predictive information diverges’®. By contrast, we have
focused on only single utterances, effectively considering only rela-
tively short-range predictive information.

Cognitive status of predictive information

Predictive information is afundamental measure of complexity, which
may manifest explicitly or implicitly in various ways in the actual
mechanisms of language production, comprehension and learning.
For example, in a recent model of online language comprehension®,
comprehenders predict upcoming words on the basis of memory repre-
sentations that are constrained to store only asmall number of words.
The fundamentallimits of predictive information apply implicitly in this
model because comprehenders’ predictions cannotbe more accurate
thanif they stored an equivalent amount of predictive information.
As another example, a model of language production based on short
stored chunks*® would effectively produce language with low predictive
information, because these chunks would be relatively independent
of each other, while predictive relationships inside the stored chunks
would be preserved. Predictive information has also been linked to dif*-
ficulty of learning: processes containing more predictive information
require more parameters and datatobe learned'®, and any learner with
limited ability to learn long-term dependencies will have an effective
inductive bias towards languages with low predictive information. Pre-
dictiveinformationis not meant asacomplete model of the constraints
onlanguage, which would certainly involve factors beyond predictive
information as well as separate, potentially competing pressures from
comprehension and production®.

Relatedly, while we have shown that natural language is configured
inaway thatkeeps predictive information low, we have not speculated
on how languages come to be configured in this way, in terms of lan-
guage evolution and change. We believe there are multiple pathways for
thisto happen. For example, efficiency pressuresinindividual interac-
tions could give rise to overall efficient conventions®’, or memory limits
inlearning®*®* could cause learners to form low-predictive-information
generalizations from their input. Identifying the causal mechanisms
that control predictive information in language is a critical topic for
future work.

Linguistics
Our theory of linguistic systematicity is independent of theoretical
assumptions about mental representations of grammars, linguistic
forms or the meanings expressed in language. Predictive informa-
tion is a function only of the probability distribution on forms, seen
as one-dimensional sequences of symbols unfolding in time. This
independence from representational assumptions is an advantage,
becausethereisasyetno consensus about the basic nature of the men-
tal representations underlying human language®®®’.

Our results reflect and formalize a widespread intuition about
human language, first formulated as Behaghel’s Law®®: ‘that which is
mentally closely related is also placed close together’. For example,

words are contiguous units and the order of morphemes within them
is determined by a principle of relevance®**°, and important aspects of
word order across languages have been explained in terms of depend-
ency locality, the principle that syntactically linked words are close” .
A constraint on predictive information predicts information
locality: elements of a linguistic form should be close to each other
when they predict each other®*. We propose that information locality
subsumes existing intuitive locality ideas. Thus, because words have a
highlevel of statistical interpredictability among their parts®, they are
mostly contiguous, and as aresidual effect of this binding force, related
words are also close together. Furthermore, we have found that the
same formal principle predicts the existence of linguistic systematic-
ity and the way that languages divide the world into natural kinds**.

Limitations

Much work is required to push our hypothesis to its limit. We have
assumed throughout that languages are one-to-one mappings between
formand meaning; the behaviour of ambiguous or non-deterministic
codes, where ambiguity might trade off with predictive information,
may yield additional insight. Furthermore, we have examined predic-
tiveinformation only withinisolated utterances. It remains to be seen
whether reduction of predictive information, applied at the level of
many connected utterances, would be able to explain aspects of dis-
course structure such as the hierarchical organization of topics and
topic—focus structure®.

One known limitation of our theory is that predictive information
issymmetric withrespecttotimereversal, so (at least when applied at
the utterance level) it cannot explain time-asymmetric properties of
language such as the pattern of ‘accessible’ (frequent, animate, definite
and given) words appearing earlier within utterances thaninaccessible
ones”’®, There is also the fact that non-local and non-concatenative
structures do exist in language, for example, long-term coreference
relationships among discourse entities, and long-distance filler-gap
dependencies, which would seem to contravene the idea that predic-
tiveinformationis constrained. Animportant areafor futureresearch
will be to determine what effect these structures really have on pre-
dictive information, and what other constraints on language might
explain them.

Methods

Constructing a stochastic process from a language

We define a language as a mapping from a set of meanings to a set of
strings, L : M — X*. Todefine predictive information of alanguage, we
need away toderive astationary stochastic process generated by that
language. We use the following mathematical construction that gener-
atesaninfinite stream of symbols: (1) meanings m ~ p,,are sampledi.i.d.
from the source distribution p,,, (2) each meaning is translated into a
stringas s =L(m), and (3) the strings s are concatenated end-to-end in
both directions with a delimiter # ¢ > between them. Finally, a string
is chosen with probability reweighted by its length, and atime index ¢
(relative to the closest delimiter to the left) is selected uniformly at
random within this form.

This construction has the effect of zeroing out any mutual informa-
tion between symbols with the delimiter between them. Thus, when we
compute n-gram statistics, we can treat each form as having infinite
padding symbolsto the left and right. Thisis the standard method for
collecting n-gram statistics in natural language processing”.

Three-feature source simulation
For Fig.4b,c, the source distributionis distributed asaproduct of three
Bernoulli distributions:

M ~ Bernoulli (%) x Bernoulli (% + 8) x Bernoulli <§ + 28), (5)

withe=0.05.
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For Fig. 4e, we need to generate distributions of the form
p(M) = p(M,) x p(M,, M;) while varying the mutual information I[M,:
M.]. We start with the source from equation (5) (whose components are
here denoted p;,q.,) and mix it with a source that creates a correlation
between M, and M;:

PoaM = ijk) = pindep(Ml =i

. ®)
%[ (1= @) (PindepMa =) X Pincep (M5 = K)) + 58]

with 6, =1if j= kand 0 otherwise. The mixture weight a controls the
level of mutual information, ranging from 0 at a = 0 to at most 1 bit at
a=1.Amore comprehensive study of therelationship between feature
correlation, systematicity and predictive information is given in Sup-
plementary Section B, which examines systematic and holistic codes
foracomprehensive grid of possible distributions on the simplex over
four outcomes.

Locality simulation

For the simulation shown in Fig. 5a, we consider a source over 100
objects labelled {m®, m®, ..., m*’}, following a Zipfian distribution
p(M = m’) « (i + 1) We consider alanguage based on adecomposition
of the meanings based on the digits of their index, with for example
m* decomposinginto featuresas m® x mj.Each utterance decomposes
into two ‘words’ as L(m, x m,) =L(m,) - L(m,), where the word for each
feature m*is arandom stringin {0, 1}*, maintaining a one-to-one map-
ping between features m* and words.

Hierarchy simulation

For the simulation shown in Fig. 5b, we consider a source M over
5¢=15,625 meanings, which may be expressed in terms of six random
variables (M;, M,, M5, M,, Ms, M) each over five outcomes, with a prob-
ability distribution as follows:

pM) = aq(My, My, M3, My, Ms,M¢) + (1 — a)
([Ba(My, My, M3) + (1= B) [yg(My, My) + (1 — ¥) q(My)g(M,)] g(M3)]

x [Bg(My, Ms, Mg) + (1~ B)
[y qMas, Ms) + (1 - y) q(M4)q(Ms)] g(Me)1) »

@

wherea=0.01,5=0.20 and y = 0.99 are coupling constants, and each
q(-)isaZipfian distribution as above. The coupling constants control
the strengths of the correlations shown in Fig. 5b.

Phonotactics
We assume a uniform distribution over forms foundin WOLEX. Supple-
mentary Section F shows results for four languages using corpus-based
word frequency estimates to form the source distribution, with
similar results.

Morphology

We estimate the source distribution on grammatical features (number,
case, possessor and definiteness) using the feature annotations from
UD corpora, summing over all nouns, with add-1/2 smoothing. The
dependency treebanks are drawn from UD v2.8'°°: for Arabic, NYUAD
Arabic UD Treebank; for Finnish, Turku Dependency Treebank; for
Turkish, Turkish Penn Treebank; for Latin, Index Thomisticus Treebank;
for Hungarian, Szeged Dependency Treebank. Forms are represented
withadummy symbol ‘X’ standing for the stem, and then orthographic
forms for suffixes, such as ‘Xoknak’ for the Hungarian dative plural.
For Hungarian, Finnish and Turkish, we use the forms corresponding
to back unrounded vowel harmony. For Latin, we use first-declension
forms. For Arabic, we use regular masculine triptote forms with abro-
ken plural; todo so, werepresent the root using three dummy symbols,
and the plural using a common ‘broken’ form'”, with, for example,

‘XaYZun’ for the nominative indefinite singular and “aXYaZun’ for the
nominative indefinite plural. Results using an alternate broken plural
form ‘XiYaZun'’ are nearly identical.

Adjective-noun pairs

From UD corpora, we extract adjective-noun pairs, defined as a head
wordformwith part-of-speech ‘NOUN’ modified by an adjacent depend-
ent wordformwith relation‘amod’ and part-of-speech‘ADJ’. The forms
over which predictive information is computed consist of the pair of
adjective and noun from the corpus, in their original order, in origi-
nal orthographic form with a whitespace between them. The source
distribution is directly proportional to the frequencies of the forms.

Noun phrase order

The source distribution on noun phrases is estimated from the
empirical frequency of noun phrases in the German GSD UD corpus,
which has the largest number of such noun phrases among the UD
corpora. To estimate this source, we define a noun phrase as a head
lemma of part-of-speech ‘NOUN’ along with the head lemmas for all
dependents of type ‘amod’ (with part-of-speech‘ADJ’), ‘nummod’ (with
part-of-speech‘NUM’) and ‘det’ (with part-of-speech ‘DET’). We extract
these noun phrase forms from the corpus. When a noun phrase has mul-
tipleadjectives, one of the adjectivesis chosen randomly and the others
arediscarded. The resultis counts of noun phrases of the form below:

Determiner Numeral Adjective Noun Count
die — — Hand 234
ein — alt Kind 4

— drei — Buch 2

ein = einzigartig Parflmeur 1

Thesourcedistributionis directly proportional to these counts. We
then compute predictive information at the word level over the attested
noun phrases for all possible permutations of determiner, numeral,
adjective and noun. Typological frequencies are as given by ref. 49.

Semantic features

We binarize the Lancaster Sensorimotor Norms® by recoding each
normaslifitexceeds the mean value for that feature across all words,
and O otherwise. Word frequencies are calculated by maximum likeli-
hood based onlemmafrequenciesin the concatenation of the English
GUM'?, GUMReddit'*> and EWT'* corpora from UD 2.8. The ‘Number’
featureis calculated based on the value of the ‘Number’ feature in the
UD annotations. Verb-object pairs were identified as ahead wordform
with part-of-speech ‘VERB’ with a dependent wordform of relation ‘obj’
and part-of-speech ‘NOUN..

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Unique datarequired to reproduce our results are available via GitHub
athttp://github.com/Futrell/infolocality. Corpus count dataare drawn
from Universal Dependencies v2.8, available at https://lindat.mff.cuni.
cz/repository/xmlui/handle/11234/1-3683. The Lancaster Sensorimo-
tor Norms are available at https://osf.io/7emr6/. Wordform data from
the WOLEX database'® are not publicly available, but a subset can be
made available uponrequest to the authors.

Code availability
CodetoreproduceourresultsisavailableviaGitHubathttp://github.com/
Futrell/infolocality.
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A Basic formal results

In the Main Text, based on numerical simulations, we claimed that codes that minimize predictive
information tend to (1) factorize their source distribution into approximately independent components,
and (2) express these components systematically in local parts of strings. Here we provide some
elementary theorems about codes that minimize predictive information, which illustrate these
generalizations. Although a full mathematical analysis of such codes is beyond the scope of the
current work, the results below serve to establish their general behavior.

A.1 Forms of predictive information

In the Main Text, we claimed that the predictive information of a stochastic process can be thought
of in terms of successive approximations to the entropy rate based on n-gram models with successively
larger context size n. This has previously been shown by Crutchfield and Feldman (2003, Prop. 8),
among others. Here we provide the same result by means of a different and more direct proof.
Consider a stationary stochastic process generating symbols labelled ..., X; 1, Xz, X¢q1,. ..
extending into the infinite past and future. Predictive information is defined as the limit of the
mutual information of large blocks of M symbols before and N symbols after an arbitrary time
index t:
E = Nllm lim I[Xt—M:t : Xt:t+N], (1)

—00 M —00

where X,.p = X, ..., Xp_1 represents a block of symbols X indexed by an exclusive range. We write
Eq. 1 in shorthand as the mutual information between the infinite past X.; and infinite future X>;
of the process,

E = I[X<t . th] (2)



Now we can state the theorem relating predictive information to entropy rates derived from
n-gram models.

Theorem 1. The predictive information E can be written as

N
E = lim (hp, — h), (3)
N—o0
n=1
where h,, is the n-gram entropy rate
hn = H[Xy | Xint1:4), (4)
and h is the asymptotic entropy rate
h = lim h,. (5)
n—oo

Proof. Invoking stationarity, we set ¢ = 1 without loss of generality. Using the chain rule for mutual
information, we rewrite the predictive information as a sum of conditional mutual informations:

N
E= lim lim > I[Xi_ a1 Xn | Xil. (6)

N—o00 M—o00
n=1

Now we break each mutual information term into a difference of conditional entropies:

N
E= J\}gnoo A/}glloo; H[Xy | X1n] = H[Xy | X1-arn]) - (7)

Because conditioning reduces entropy, the terms H[X,, | Xj_p;.,] (which are finite) converge
monotonically downward in M, so we may swap the sum and the limit on M. Then, invoking
stationarity again, we notice that the resulting two terms are the n-gram entropy rate and the
asymptotic entropy rate:

N
E= i HXn | Xun] — lim HX | X
Ngnoonz_:l M Moo o | Xiatal v
n-gram entropy rate asymptotic entropy rate
N
. T 9)
N—o0 1
(10)
as claimed.
O

A.2 Predictive information for a finite-state source

The following result shows that predictive information is bounded at a constant when a language
puts symbols in an order that respects the correlational structure of the source distribution, when
the source distribution has the form of a Hidden Markov Model. On the other hand, we will show in
Section A.6 that random orders have average predictive information that grows linearly with the
sequence length.



Theorem 2. Let (S¢)i>0 be a Hidden Markov Model (HMM) with finite state space S and finite
emission alphabet A generating a bi-infinite stationary stochastic process ..., X_1,Xo, X1,.... Let
L € N, and consider the length-L language given by Xy ... Xy. The predictive information is bounded
independently of the sequence length L:

1 L

I ZI[Xl...i : Xir1..0] = 0(1) (11)
i—1

where O(1) contains constants depending on the HMM but not L.

Proof. Let s; € S be the state of the HMM after generating ... X; 5X; 1X;. Note that s; is a
random variable with Hl[s;] < log|S|. Further, I[Xy. ; : X;+1..z|si] = 0. Hence, by the Data
Processing Inequality, I[ X7 ; : X;41..1] < H[s;] <log|S| = O(1) independently of L. O

A.3 Length-2 languages

We now analyze the most basic case of a code that minimizes predictive information, one in which
every meaning is expressed in a string of length 2. We find that a code which minimizes predictive
information in this setting performs Independent Components Analysis on the source distribution,
with the two characters of the output string representing the two maximally independent factors of
the source.

Let M be a set of meanings with source distribution pjs, 31 and Y5 be disjoint sets of symbols,
and L be a set of languages defined as bijections L : M — 3; x ¥5. The predictive information
of a language E(L) is the predictive information of the stream of symbols generated by repeatedly
sampling meanings from pys, translating them to strings as s = L(m), and concatenating the
resulting strings with a delimiter # ¢ %1, ¢ X5 between them.

Theorem 3. Any language L* € L that achieves E(L*) = minpep E(L) has the form
L*(m) = £1(m) - £o(m), (12)

where £; denotes some mapping £; : M — 3; and where the outputs from £1 and ¢ have minimal

mutual information:
01,0y = argmin1[ly (M) : lo(M)], (13)

with the minimization performed over all mappings M — %;.

Proof. Because the languages have strings of length 2, we calculate predictive information as
E = hy + ho + hsy — 3h, (14)

up to length 3, accounting for the delimiter # attached after the end of the string. The entropy rate
h = %H[M | is constant across all languages because they are all bijections, so we ignore the entropy
rate going forward. Furthermore, there is no decrease in n-gram entropy rate for n > 3, so we have
hs = h. Dropping all irrelevant constants, F is thus

E ~ hi + hs. (15)

Calculation of h;: The unigram entropy rate is the entropy of the distribution over symbols
generated by first sampling a time index ¢ relative to the most recent delimiter, and then looking at



the symbol at that position. For a code of length T' (including the delimiter to the right), this is

T

hi=="p(t) > p(X; = x)logp(t)p(X; = )

t=1 TE

T
1 1
=—z g g p(X¢ = z)log Tp(Xt = 1)
t=1 xeX;

T T

1 1 1

=7 > log = — % > Y p(Xi = x)logp(X; = x)
t=1 t=1 z€X;

T
1
=logT + — HX
Og +thl [t]7

that is, a constant reflecting how much information is contained in each symbol about its position
in the string, plus the average entropy of symbols found in each position. Ignoring constants not
affected by the choice of language L, in our case with T' = 3 this is

hy ~ H[X1] + H[X] + HEXT, (16)
=0

where H[X3] = 0 because we always have X3 = #.
Calculation of hy: The bigram entropy rate he can be calculated following the same logic, yielding

he ~ H[X: | Xo] +H[X: | Xi] + H : 17
2 (X1 | Xo] +H[X2 | X1] %fz (17)

=H[X] =0

where H[X; | Xo|] = H[X1] because Xy is the left delimiter, which is uninformative about the value
of X 1-
Putting these together and ignoring irrelevant constants yields

E ~ hi+ hs
~ H[X1] + H[Xs] + H[X1] + H[X; | Xi]
= H[X4] + H[Xs | Xu] + I[X7 : Xo] + H[X1] + H[X2 | Xi]
— 2H[X1] + 2H[Xa | X1] + I[X1 : X5
— 2H[X1, Xo] + 1[X] : Xo]
— 2H[M] + I[X, : Xo].

~~ /N /N
N N
— o ©

~— ~— ~— — ~— ~—

Thus, we are left with
E~1[X) 1 X, (24)

where all remaining constants do not depend on the choice of language L. Without loss of generality,
we can write X1 = ¢1(M) and Xy = lo(M) for any language L with the appropriate choice of the
£1, 05, and thus we have that minimal predictive information is achieved by finding functions ¢1, £s
to minimize mutual information:

argmin I[¢1 (M) : lo(M)]. (25)

O



Remark. As predictive information is symmetrical with respect to time reversal, the solutions
here are symmetric with respect to swapping ¢; and £s.

Remark. The argument reveals that there is a degenerate solution when |¥;| > |M|: you could
encode the source M entirely with ¢;, with the other £;; a constant function. In that case it is
always possible to achieve 1[¢1(M) : ¢5(M)] = 0. This result mirrors the claim from Nowak et al.
(2000) that combinatorial communication requires that the number of available signals is less than
the number of available meanings.

A.4 Length-3 languages

We now consider codes consisting of strings of length 3. We find that, in this setting, the order
of the characters in the string is determined by information locality: the non-adjacent characters
should be maximally uncorrelated, while the adjacent characters may be more correlated.

Now consider bijective languages L : M — 31 X 39 X X3 producing strings of length 3, with
the alphabets 33; all disjoint. Now we no longer have invariance with respect to interchanging the
features f1, {5, ¢3: the order in which features are expressed now matters. Below, we show that
languages which minimize E order these features so as to minimize the mutual information of the
nonlocal features ¢; and /3.

Theorem 4. Any length-3 language L* € L that achieves E(L*) = minpep E(L) has the form
L*(m) = £1(m) - lLa(m) - £3(m) (26)
where the functions {{;} are ordered so that 1[¢1(M) : 3(M)] is minimal.
Proof. Dropping irrelevant constants in the length-3 case yields
E~ 11X Xo| +1[Xo : X3] +21[X; : X3 | Xo. (27)

This expression can be written out and then rearranged as so:

N _n p(X1, X2) 0 (X2, X3) np(XlaX27X3)p(X2)
E~E|l p<X1>p<X2>] *E[I p<X2>p<X3>] ”E[l p(Xl,X2>p<X2,X3>] (28)
[ p(Xo

p(X17X2aX3)p(X17X27X3) )p(XQ):| (29>
p(X1)p(X2)p(X3)p(X1, X2)p(X2, X3)

=F |In

_g | p(X1, Xo, X3) }+E [ln p(X1, X3 | Xo) ] (30)
[ p(X1)p(X2)p(X3) p(X1 | Xo)p(X3 [ Xz)
= TC[X: : X3 Xs] +I[X1 : X3 | Xo] (31)
=TC[Xy: Xo: X3] —I[X; : Xo: X3]+ I[X;:X3] , (32)
Order-independent Order—d;;endent
where TCJ- : - : -] is total correlation (Watanabe, 1960) and I[- : - : -] is multivariate mutual

information (McGill, 1955). Both the TC term and the multivariate mutual information term are
invariant to permutations, so the ordering of X7, X5, X3 does not matter for them. The only term
that depends on the order of symbols is I[X; : X3]. Thus any candidate optimal language L may be
improved by permuting the functions ¢1, ¢35, ¢3 to minimize I[¢1(M) : l3(M)]. O

Remark. The multivariate information term I[X; : X2 : X3] may be positive or negative. If it is
positive, the situation is called redundancy. If it is negative, the situation is called synergy. The
result above shows that codes with synergy among the three symbols X1, Xo, X3 are dispreferred,
and codes with redundancy are preferred.



H[X1, X2, X3, Xa, X5, X]

I3,45

Is 6

X1 Xo X3 Xa Xs Xe

Figure 1: Schematic for coinformation in a set of 6 random variables, based on Bell (2003, Fig. 2).
The joint entropy of X1i,..., Xg may be found by summing all the coinformations of all the strict
subsets of these variables, weighted by the signs given to the left of the triangle. A few coinformations
are highlighted. The true lattice of coinformations is a 6D Boolean hypercube; the figure shows a
2D reduction for visual clarity.

A.5 Length-T languages

Next, we consider the more general case of languages with utterance of a fixed length 7', maintaining
the setting where each position in the string has symbols from disjoint alphabets. We show that the
predictive information for these languages may be expressed in terms of the coinformation lattice
(Bell, 2003) among random variables corresponding to positions in the string. We find that predictive
information is a function of the amount of coinformation in sets of variables and the span size of
those sets, defined as the linear distance from the first character to the last character in the set.
This gives a generalized form of information locality, where predictive information is low whenever
any set of characters with high synergy are all close to each other.

Before stating the result, it is helpful to review the concept of coinformation. Consider a set of T’
random variables X, ..., Xp, and a set of indices such as, for example, F = {2,3,4}. Let Xg denote
the random variables indexed by the set E, for example Xp = { X9, X3, X4}. The coinformation
among the random variables indexed by E is defined as

Ig=-> (- HXp), (33)

FCE

that is, the sum of entropies of all the subsets of X, weighted by 1 if the subset is of odd cardinality
and —1 if the subset of is of even cardinality. For example, for E' = {2, 3,4}, the coinformation is

1273’4 = H[Xg] + H[X3] -+ H[X4] — H[Xg, Xg] — H[Xg, X4] — H[XQ, X4] + H[XQ, X3, X4] (34)

The coinformation generalizes entropy and mutual information. For a single variable, for example
E = {1}, we recover the univariate entropy, Iy = H[X;]. For two random variables, for example
E = {1,2}, we recover mutual information: I = H[X;] + H[X3] — H[X;, Xo] = I[X; : X3].
Coinformation for a set of variables is organized in a lattice structure, as illustrated in Figure A.5.
For |E| odd (except for |E| = 1), coinformation can be negative, which corresponds to synergy,
which happens for three variables when I[X; : Xy | X3] > I[X; : X2]. Positive coinformation for an



odd number of variables corresponds to redundancy, which occurs when I[X; : Xo | X3] < I[X; :
Xa].

Coinformation may be interpreted as the amount of covariance among variables that cannot be
detected from any strict subset of those variables. Synergy reflects a case when there is more such
covariance, and redundancy reflects a case where there is less. Therefore, we can make the quantity
of coinformation somewhat more interpretable by transforming it to synergistic information S,
which makes synergy positive and redundancy negative:

Sg = (—1)|E‘ Ig, (35)

that is, to define synergistic information, we reverse the sign of coinformation for odd-numbered
sets of variables. Synergistic information is positive when there is synergy among an odd-numbered
set of variables, negative when there is redundancy, and positive when there is any coinformation
among an even-numbered set of variables.

We can now state our result about predictive information in languages consisting of strings of
length T

Theorem 5. For a language generating strings of fixed length T and disjoint alphabets for each
string position, the predictive information E up to additive and multiplicative constants is

E ~ Z (z—a)S,...z, (36)

1<a<---<2<T
where S, . s the synergistic information among the set of random variables {X, ..., X} corre-
sponding to characters at positions a, ..., z.

Proof. Up to additive and multiplicative constants, the predictive information in this language is

E ~

E

X1, Xt Xopr,. ., X (37)

-
Il

1

I
E

(H[X1,..., X + H[Xps1,. .., X7] — HX1,..., X7]). (38)

o~
Il

1

Next, we note that, inverting the definition of coinformation, we can write the entropy in a set of N
variables as (Bell, 2003, p. 922)

HXp,.... Xn]=— Y (=Dl (39)
1<a<--<z<N

=— > Su (40)

1<a<--<z<N

where a, ...,z is a set of indices defining a subset of the variables X1, ..., X. We can use this to
rewrite the predictive information in terms of synergistic information:

T
E ~ ; — Z Sa,...,z - Z Sa,...,z + Z Sa,...,z . (41)

1<a<-- <2<t t+1<a<---<z<T 1<a<-<2<T

The question now is how many times we are adding in each synergistic information term S, . . to
get the total. We can imagine the whole expression as a sum over cut points ¢ which split the string



into two parts, left and right. Within this sum, for each cut point, the last term adds in a synergistic
information term S, .. . for each subset of indices a, ..., z, and the first two terms subtract all of the
synergistic information terms whose indices are either entirely to the left of the cut point or to its
right, leaving only those terms whose indices ‘straddle’ the cut, in the sense that at least one index
is <t and at least one index is > t. Thus, we can rewrite predictive information using an indicator
variable for whether the set of indices a, ...,z straddles the cut ¢. Then we count how often this
indicator variable is equal to 1, yielding the result:

T
E~ Z Z 1a§t<zsa,...,z (42>

t=1 1<a<---<z<T

T
= Z (Z 1a§t<z> Sa,...,z (43>
1<a<--<z<T \t=1

= Y (2-a)Sa.. (44)

1<a<--<2<T

O

Remark. It can easily be checked that the formula recovers Eq. 24, which was used in the proof of
Theorem 2, for T' = 2.

Remark. This result goes some way toward linking the hierarchical and well-nested structure of
human language with predictive information. In fixed-length languages that minimize predictive
information, groups of words or letters will tend to be close to each other as a function of how much
they covary, in a way that is nested according to the structure of the coinformation lattice. Ill-nested
configurations, in which groups of variables with high synergistic information are placed in such a
way that other variables intervene, would contribute more to the predictive information, since the
synergistic information in groups of variables is weighted by the span of those variables.

A.6 Predictive information for a random permutation

The following result shows that random orders have average predictive information that grows
linearly with the sequence length. This is in contrast to our results from Section A.2 showing that,
for finite-state processes, the predictive information is bounded independently of L.

Theorem 6. Let ..., X _1, Xy, X1,... be a bi-infinite stationary process. Let L € N, and consider
the length-L language given by X1 ... Xp. Assume the process contains predictive information beyond
its ergodic components (Debowski, 2009), in the sense that:

Jnf T[Xy : Xow-a] <X X w-20-1] (45)
Consider the uniform distribution over bijections p: [1,...,L] — [1,...,L]. Then
1 L
E, 7 ZI [Xp(l,_.i) : Xp(z'—i-l...L)} =0(L) (46)
i=1

where the expectation describes an average over all bijections p, and constants in (L) depend on
the HMM but not L.



The intuition is that for any process with local statistical structure, beyond its ergodic compo-
nents, permutations of the positions will tend to disrupt this local structure and create long-range
dependencies.

Proof. The expectation is evidently O(L); we need to show it is Q(L). Define A = p(1...1),
B =p(i+1...L). The proof idea is to focus attention on positions w where w € A but a contiguous
sequence of positions to its left is in B. Such situations create opportunity for Xp to provide
predictive information about X 4. Formally, for any A > 0:

E[l[X4 : XB]]

=E Z I Xy : XjeB|Xj<w,jeal
weA

I
M=

E [1weAI[Xw : XjEB|Xj<w,jEAH

g
Il
i

M=

E [Twealpp—aw-1)na=ol[Xw : Xjen|Xj<w jeal]

g
Il
—

E [lwealjw—aw—-1)na=01[Xw : Xjw—a,w—1]Xj<w jeal]

M=

g
Il
—

I
M=

E [1w€A1[w—A,w—1]ﬁA:®I[Xw : X[w—A,w—l] ’Xj<w—A,j€A]]
1

g
Il

I
M=

ppw e Ajfw—Aw—1NA=0E [I[Xy : Xpenw_1]Xjcw-ajeallw € A, 1jy_aw-_1)na=0)

g
l‘

We now need to show that, for large A,
11X Xpw—nw-1]| Xj<w—n,jeal (47)
is bounded away from 0 uniformly over A. Consider!
Xyt Xpw—aw-1) | Xj<w-ajeal
=1[Xu : Xjyoaw—1)] = IXw : Xjcw—njea] +1[Xw : Xjcw-ajea | Xjw—nw-1)]

> I[Xw : Xp—aw-1)) — I Xw : Xjcw—a jea
> I[Xw : X[wa,wfl]] - I[Xw : Xj<w_A]

When A — oo, the first term converges to I[X,)| X 2 ,—1]. By assumption, the difference between
this and the second term is strictly greater than zero. Overall, this shows (47) is bounded strictly

'Reflecting the general identity
I[A:B|C]=H[A|C]—-H[A|C,B]
=H[A]-H[A|B]-H[A|+ H[A|C]+ H[A| B]—-H[A| B,C]
=1[A:B]-1[A: C]+1[A: C| B]



away from zero independently of A, for some sufficiently large A which we henceforth fix for the
given HMM, independently of L. Let C' > 0 be this lower bound for (47).

It remains to understand why, assuming |A| and |B| are sufficiently large, E[I[X 4 : Xp]] is Q(L).
Given the A we have fixed,

po(w € Ajlw—Aw—-1NA=0)>D>0 (48)

for a constant D independent of w, for L sufficiently large, when 0.1L < |A| < 0.9L. For, in this
case, we have

po(w € A;jlw—Aw—1]NA=0)

A
:pp(weA)-pr(w—j€B|w€A,w—1EB,...,w—j—i—leB)
j=1

A
= plp(w) <i)- [ p(p(w = 5) > ilp(w) < i, plw —1) >d,...,p(w = j +1) > i)
j=1

i _L—i—j+1
L T IL—j
7 L—i1—A A
>7
- L L
1 /0.1L — A\?
D —
=10 L
Sl
— 10 2028

where the last step holds when L > 20A. Taken together,
E[llX4a:Xg]]>L-D-C=Q(L) (49)
when 0.1L < |A| < 0.9L. The claim follows. O

We note that one can strengthen the proof to provide a high-probability bound, showing that
most permutations p satisfy such linear scaling. The reason is that a random permutation, when |A]
and | B| are both large, is very likely to satisfy the event described in (48) on a constant fraction of
positions w.

B Sources over Two Features

Simulation results in the main text are based on distributions of the form
p(M) = p(My) x p(Mz, M3) (50)

for varying levels of correlation between the binary random variables My and M3. The main result is
that when My and M3 have lower mutual information, a systematic code for these features minimizes
predictive information, but as mutual information increases, a holistic code is more preferred. Here
we complement these results with a more in-depth study of a source distribution over two features of
the form p(M) = p(M;, My) for binary random variables M; and My, looking at a grid of possible
distributions over 4 outcomes. This comprehensive approach allows us to examine the effects of the
marginal probabilities for M; and M, as well as the effects of different kinds of correlations between
features on the relative preference for systematic vs. holistic codes.
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Outcome Corr. Source Anticorr. Source Systematic cnot(1,2) cnot(2,1)

00 Em s 0 ac ac ac
01 = % E=m ) ad ad bd
10 = % == Y4 be bd bc
11 Em s Emmmm 2 ad bc ad

Table 1: Some possible sources and codes for the two binary random variables M7, My. The correlated
source has Pearson’s r = 1/2. The anticorrelated source has r = —1/3.

The main result is shown in Figure 2, which shows predictive information for all possible mappings
from the four outcomes of M to strings in {a,b} x {c,d}. The rows indicate different marginal
probabilities for p(M; = 1), the columns indicate different marginal probabilities for p(Ms = 1),
and the x axis indicates the Pearson correlation between M7 and Ms. The Pearson correlation is
necessary to make sense of the pattern here, because two kinds of correlation can induce mutual
information between M7 and Ms: a positive correlation between the most probable outcomes and
a negative correlation, as shown in Table 1. In the positive correlation case, the features M; and
My are effectively ‘fused’—at maximal correlation, there is actually only one feature here, as we
always have My = Ms. In the negative correlation case, it is as if one of the four outcomes has been
effectively removed from the probability distribution.

There are two conclusions to be drawn from Figure 2 beyond the conclusions in the main text.
First, the level of preference for systematicity in the low-correlation case depends on the marginal
distributions being imbalanced: at p(M;) = p(Ms) = 3, even when there is zero correlation between
the features, the holistic code is just as good as the systematic code. This makes sense because for a
uniform distribution over 4 outcomes, there is no reason to favor any one factorization over another.
However, as the marginals become more imbalanced (moving downward or to the right in the figure),
the systematic code becomes better in the low-correlation range. For these imbalanced marginals,
there are generally two red lines to be seen in the figure, corresponding to the two possible classes of
non-systematic codes for the source: cnot(1,2) and cnot(2, 1), which differ in which feature is used
as the control bit to flip the other one.

The second conclusion to be drawn from Figure 2 is that there is different behavior for positive
and negative feature correlations when the marginals for M7 and My are both imbalanced. In
particular, in the lower right corner, the systematic code is sometimes better than the holistic code
when there is a negative correlation. This happens because, in the negatively correlated source,
the systematic code allows the appearance of individual symbols to be correlated with the overall
probability of the string: for example, in the systematic code for the negatively correlated source in
Table 1, high-frequency strings always have d, and a only appears in low-frequency strings. The
result is that the unigram entropy is minimized by the systematic code for such a source.

Figure 3 shows predictive information for codes as a function of mutual information between
random variables M; and Ms, with the negatively-correlated sources separated out and indicated
with a dotted line. We see that the preference for holistic codes as a function of mutual information
is weaker for the negatively correlated sources, and also that these sources cannot achieve mutual
information as high as the positively correlated ones.
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Figure 2: Predictive information (labelled as excess entropy) of length-2 codes for a grid over the
simplex of possible sources over two binary random variables, p(M) = p(Mi, M3). Rows show the
marginal probability p(M; = 1). Columns show the marginal probability p(Ms = 1). The z axis
shows the Pearson correlation between M7 and Ms.
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Figure 3: Predictive information (labelled as excess entropy) of codes for a grid over the simplex of
possible sources over two binary random variables as in Figure 2, but now by mutual information
instead of Pearson correlation. Dotted lines indicate codes for sources whose Pearson correlation is
negative.

13



Acholi Alekano Amharic Armenian Arrernte Ata yacucthuechu4 Bargam

N W A~ O
=N W N
N w »
N W s
N W b
RN W0
oo uno
EPNONWWA DS
onouiom
RPNNWWHS
couocuo

Benabena Bunama Chickasaw (ChineseMandarin| Dadibi Daga Delaware Dobu

N WS
/
N W
/
N Wb
/
w b~ O
= N WS
/
=N W
/
N WS
/
N
/

Dutch English French Georgian German Greek Guarani HaitianCreole

N WA O
%
N S
/
w EY
/
N W S
/
N WA O
/
PN WS
oo uo
/
N W A O
/
NWWHD
oo wum
/

N}

Hausa Hebrew Hindi lamalele Iduna Javanese Kewa Khmer

N Wb O
/
NN WWS
oo uo
/
N w S (4,1
/
N w Y
/
N w n
/
w »
/
N w £y
/
N WS O
/

LakeMiwok Lithuanian Maisin Mauwake Mengen Mianmin MoroccanArabic MountainKoiali

N oW s oa
N I
NV WWS
cwouwio
Now S
NN W W
cwvow
Now A
(RS
NN W W
ocwowu

n—gram Entropy Rate (bits)

Muna Muyuw Polish Romanian Rotokas Ryan SepikMende Siroi

NN WWA
ocwouwo
NNWWS S
ocuviovow
Now oS o
Now S
PN ®W®
mowvow
[NINYAFAENEN
cuwowowm
Now A
PONWWA
towouio

Sudest Suena Tatar ThompsonSalish Turkish Waffa Wantoat Waris

N} EN
PONWWS
mouwowo

Now
Now RO
NNWWAN
cuowow

N oW

N
IS
o
Now A
[N}
IS
=2}
Now A
N
IS
[

o
o
o

Waskia Woleaian Yana Yup'ik Zulu

o

N oW b
N
IS
o
N IS
N
IS
o
Now N
[N}
IS
o
NI WA
ocwowo
NNWWA N
ouvouwou

o
o

0 2 4 6 0 2 4 6
n-gram Order

— manner — shuffled — real

Figure 4: Calculation of predictive information for all 61 languages in the WOLEX database, for the
attested forms (black), a deterministic shuffle that preserves manner of articulation (red), and a
general deterministic shuffle (blue).

C Phonological Locality in 61 languages

Figure 4 shows the calculation of predictive information for all 61 languages in the WOLEX database,
for the real languages compared against two baselines generated by applying deterministic shuffling
functions to the attested forms. Table 2 shows the calculated predictive information values.

D NP Orders with Other Source Distributions

The noun phrase ordering results in the main text were derived using a source distribution over
NPs estimated from the German Universal Dependencies corpus. Here we show results using other
naturalistic source distributions, from corpora of Spanish (Figure 5), English (Figure 6), Czech
(Figure 7), Icelandic (Figure 8), and Latin (Figure 9). We also show results using the artificial source
developed by Mansfield and Kemp (2023) to study NP order in Figure 10.
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Language Real Manner Shuffled

Acholi 5.64 6.17 6.39
Alekano 7.42 8.79 9.60
Ambharic 5.62 6.67 7.42
Armenian 6.91 8.04 8.60
Arrernte 6.34 8.17 8.37
Ata 5.98 6.76 7.59
Ayacucho Quechua 6.49 7.23 7.82
Bargam 6.26 6.74 7.45
Benabena 6.57 8.92 9.33
Bunama 6.94 7.59 8.69
Chickasaw 8.60 10.80 11.30
Dadibi 7.43 8.43 9.15
Daga 7.99 9.70 10.60
Delaware 7.88 9.97 10.60
Dobu 6.99 7.86 8.91
Dutch 9.38 11.90 12.40
English 6.91 8.34 8.65
French 6.35 7.78 8.50
Georgian 7.52 8.83 9.38
German 8.83 11.20 11.60
Greek 8.10 10.20 10.90
Guarani 7.00 8.21 8.66
Haitian Creole 6.05 6.82 7.63
Hausa 8.35 9.21 9.83
Hebrew 5.96 6.83 7.33
Hindi 6.64 7.56 8.12
Iamalele 7.21 8.10 9.09
Iduna 8.02 9.38 10.60
Javanese 5.72 6.57 7.08
Kewa 7.22 7.92 8.82
Khmer 8.30 10.00 10.50
Lake Miwok 6.20 6.75 6.87
Lithuanian 7.24 8.54 9.00
Maisin 5.72 6.07 7.03
Mandarin Chinese 6.06 7.65 8.05
Mauwake 6.53 8.05 8.79
Mengen 4.66 4.95 5.85
Mianmin 6.80 8.01 8.83
Moroccan Arabic 6.20 6.71 6.99
Mountain Koiali 5.55 5.99 6.72
Muna 5.13 5.46 6.53
Muyuw 6.12 6.79 7.36
Polish 7.85 9.35 9.90
Romanian 7.44 8.37 8.67
Rotokas 6.49 7.49 8.41
Ryan 3.87 5.02 5.63
Sepik Mende 6.77 7.48 8.47
Siroi 5.79 6.37 7.06
Sudest 6.59 6.96 7.90
Suena 6.08 6.89 7.74
Tatar 7.96 8.82 9.39
Thompson Salish 7.49 7.87 8.38
Turkish 7.00 7.66 8.37
Walffa 6.64 7.74 8.49
Wantoat 6.63 7.69 8.17
Waris 6.55 7.39 7.98
Waskia 6.40 7.09 7.85
‘Woleaian 6.83 7.92 8.57
Yana 6.82 7.38 8.13
Yup’ik 6.09 6.75 7.43
Zulu 6.79 8.12 9.00

Table 2: Predictive information values (in bits) for 61 languages of the WOLEX sample, visualized in
Figure 4. ‘Real’ is the predictive information of the attested wordforms. ‘Manner’ is for wordforms
shuffled while preserving manner. ‘Shuffled’ is for wordforms shuffled without regard for manner.
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Figure 5: Typology frequencies of NP orders by predictive information estimated using the Spanish
UD source (Mariona Taulé and Recasens, 2008). Lines and statistics as in the figure in the main

text.
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Figure 6: Typology frequencies of NP orders by predictive information estimated using the English
UD source (Zeldes, 2017).
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(consisting of over 1000 years’ worth of text, much of it poetry or written by non-native speakers),
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MK23 source (Mansfield and Kemp, 2023).
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E Correlation of Semantic Features

In Figure 11 we present results of the study on correlation of semantic features, but using the semantic
feature norms from the Glasgow Word Norms (Scott et al., 2017), which rate words for features such
as dominance, valence, and arousal. Features are binarized and their frequencies and pairwise MIs
are calculated as in the main text. Results are similar to the main text: the across-morpheme and
across-word features largely have lower mutual information than within-morpheme and within-word
features.

F Phonotactic Results with Corpus Frequencies

Recall that our analysis of phonotactics assumed a uniform distribution over forms. This is because
the phonological forms, as listed in the WOLEX database, cannot straightforwardly be matched to
corpus data. However, for four languages (Dutch, English, French, and German), WOLEX provides
orthographic forms. Using these, we derived corpus frequencies from the full Wikipedia texts in
these languages. We applied simple Laplace smoothing at & = 1. Results as shown in Figure 12
closely agree with those derived under a uniform distribution.

G Hierarchically-Structured Sources

G.1 Varying Coupling Parameters in Tree Structures

We created further sources by keeping the tree structure from Main Paper, Figure 2F, but varying
the parameters «, 3,7 € [0, 1] randomly subject to the constraint 4o < 28 < . We created 70
random samples. Results, shown in Figure 13, reproduce the pattern from Main Paper, Figure 2F.

G.2 Sources Defined by PCFGs

We constructed probabilistic context-free grammars (PCFGs) defined by 5 terminals and 5 nonter-
minals. For each nonterminal a, we considered the 100 possible binary productions a — bc where
b, ¢ are terminals or nonterminals. For each nonterminal, we defined a distribution over these 100
possible productions a — bc by defining

p(a — be) o< exp(Tpa—sbe), (51)

where T > 0 is an inverse temperature parameter and each p, 4. € [0, 1] is a random number (cf.
DeGiuli, 2019). The probabilities are normalized to sum up to one for each left-hand side a. The
inverse temperature parameter controls the variability in the probabilities of different productions;
higher values result in a sparser source.

We then enumerated all 5° strings of length 6 over the given nonterminals, and used the CKY
algorithm to compute the probabilities of all of these strings under the given PCFG. This defines a
source over all strings of length 6.

At inverse temperatures T = 1,2, 3,4, 10,20 we sampled 10 PCFGs each, and compared the
predictive information of the language given by the PCFG (systematic and local), deterministic
permutations of the 6 positions (systematic and nonlocal), and 360 randomly chosen shuffles of the
mapping between forms and probabilities (neither local nor systematic).

Results (Figure 14) show that local orderings usually achieve lower predictive information.
Nonsystematic codes have much higher predictive information, very closely concentrated around
values clearly separated from the systematic codes.
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Figure 11: (A) Pairwise mutual information of semantic features from the Glasgow Word Norms
(Scott et al., 2017) across words and within words, for pairs of verbs and objects in Universal

Dependencies English corpora. (B) Pairwise mutual information of the Glasgow Word Norms along
with a number feature indicated by plural morphology. The across-word and across-morpheme

features have generally lower MI than the within-word and within-morpheme features.
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Main Paper, Figure 2F. Across samples, well-nested orderings achieve lower predictive information
than non-well-nested orderings.
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length-6 strings over 5 symbols, at six different inverse temperature parameters (7" in (51)). We
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the deterministic shuffles of the six positions (green), and an equal number (360, up to reversal) of
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and systematic codes tend to achieve lower predictive information than other systematic codes.
Unsystematic codes strongly concentrate at substantially higher predictive information.
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