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A B S T R A C T

Language comprehension has been argued to be expectation-based, with more predictable linguistic units
being easier to process. However, as a communicative tool, language is often used to deliver messages that
are novel and informative, suggesting the necessity of some cognitive mechanisms handling less predictable
but more informative content. This paper proposes strategic memory allocation as one such mechanism.
Although less predictable linguistic units require greater processing effort for memory encoding, recognizing
the inconsistency between top-down predictions and bottom-up perceptual input may signal the working
memory system to prioritize these units, enhancing the robustness of their representation against interference.
We examine this hypothesis through the lens of the agreement attraction effect in two self-paced reading
experiments. In Experiment 1, we find that less predictable but more informative target nouns exhibit weaker
agreement attraction in online reading times, especially with more fine-grained measures of predictability
such as the surprisal from large language models. This weaker agreement attraction effect for less predictable
target nouns confirms our hypothesis that informative linguistic units are prioritized and receive more robust
memory representation. In Experiment 2, however, no modulation of agreement attraction emerges when we
manipulate the predictability of distractor nouns, suggesting the need for a more nuanced characterization
of how information is structured and operated in memory. Our findings highlight an interplay of memory,
predictive processing, and implicit learning. We also discuss the implications of our result for memory efficiency
and memory compression. More broadly, by demonstrating that the limited memory resources are dynamically
optimized for the relevant processing task, the current study highlights a connection to the resource-rational
analysis of human cognition in general.
Introduction

Language use is under the tension between predictability and in-
formativity. On the one hand, comprehenders make predictions about
upcoming linguistic units, with less expected units being more difficult
to process (DeLong, Urbach, & Kutas, 2005; Kutas & Hillyard, 1980).
This observation has inspired an influential line of expectation-based
psycholinguistics theories, which seeks to characterize how the diffi-
culty of incremental language processing is shaped by the surprisal of
each increment conditioned on its linguistic context (Hale, 2001; Levy,
2008a). While a positive correlation between surprisal and processing
difficulty is theoretically and empirically well-established (e.g., Boston,
Hale, Kliegl, Patil, and Vasishth 2008, Demberg and Keller 2008,
Kuperberg and Jaeger 2016, Shain, Meister, Pimentel, Cotterell, and
Levy 2024, Smith and Levy 2013, Wilcox, Gauthier, Hu, Qian, and
Levy 2020, Wilcox, Pimentel, Meister, Cotterell, and Levy 2023, Xu,
Chon, Liu, and Futrell 2023), it is unlikely to be the full story of
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how surprisal affects language processing (see also Huang et al., 2024;
Huettig & Mani, 2016; Staub, 2024; van Schijndel & Linzen, 2021).
From an information-theoretic perspective, surprisal corresponds to
information content: linguistic units with higher surprisal in a given
context are interpreted as carrying higher information load (Shannon,
1948). Considering that human language functions as a communicative
tool for conveying messages that are often novel and informative (Luke
& Christianson, 2016), and that the ultimate goal of language compre-
hension is to extract information, it is crucial to ask whether there
exist any cognitive mechanism to handle less predictable but more
informative linguistic units in language comprehension.

The role of informativity in sentence comprehension

The role of informativity in comprehension has been previously ap-
proached from the perspective of expectation-based processing. Many
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studies demonstrate that unexpected information does not always lead
o increased processing difficulty. In these studies, predictability and
nformativity are interpreted in relative terms. That is, information con-
idered implausible and unexpected based on long-term global experi-
nce may actually become unsurprising within a specific local context.
n support of this idea, it has been found that the comprehender’s ex-
ectations about the novelty of upcoming information can be reversed,
anifested as a decreased processing difficulty associated with glob-

lly unpredictable linguistic units (e.g., Arnold, Tanenhaus, Altmann,
nd Fagnano 2004, Corley, MacGregor, and Donaldson 2007, Hald,
teenbeek-Planting, and Hagoort 2007, Nieuwland and Van Berkum

2006, Rohde, Futrell, and Lucas 2021, Xiang and Kuperberg 2015). For
example, consider the sentences below in (1), taken from Xiang and

uperberg (2015). The verb celebrated in a is somewhat unpredictable,
since Elizabeth ‘‘took the test and failed it,’’ and based on our long-term
knowledge this is not something people typically celebrate. However,
in the specific local context in b, the phrase even so inverses our
xpectation, and we indeed become more likely to expect the verb
celebrated.

(1) Global vs. local surprisal (Xiang & Kuperberg, 2015)

a. Elizabeth had a history exam on Monday. She took the
test and failed it. She went home and celebrated wildly.
[ globally surprising ]

b. Elizabeth had a history exam on Monday. She took the
test and failed it. Even so, she went home and celebrated
wildly. [ locally unsurprising ]

However, most of these studies do not directly address the effect of
nformativity per se. Instead, they focus on how the anticipated level
f novelty interacts with the actual level of novelty encountered in a
entence. That is, rather than looking into how sentence processing
ay benefit from unpredictable but informative linguistic units, these

tudies mostly investigate how the expectation, or informativity, of a
nit can be dynamically changed across different linguistic or non-
inguistic environments. In other words, if a globally surprising message
ecomes unsurprising in a local context, as in (1), the informativity

effect has essentially been reduced to a regular predictability effect.
There are only a limited number of expectation-based studies that

directly address the concept of informativity per se. Viewing language
omprehension as a reverse-engineering process of the speaker’s com-

municative intention (Frank & Goodman, 2012; Goodman & Frank,
2016), some studies propose a comprehension model that integrates
the speaker’s pressure to deliver novel information. Specifically, they
propose a U-shaped effect of informativity, suggesting that linguistic
units should carry an intermediate level of informativity that is neither
too low nor too high (Rohde et al., 2021). Although this informativity
pressure has been documented in many studies from the production
ide (e.g., Jaeger 2010, Jaeger and Levy 2006, Meister, Pimentel,
iher, and Cotterell 2023), the empirical support for this effect in

comprehension remains limited (Kravtchenko & Demberg, 2022).
Another commonality among these expectation-based studies on

nformativity is their focus on the immediate impact of surprisal at the
moment a linguistic unit is received by the comprehender. However,
the real benefit may not show up until later stages of processing.
Indeed, implications for this delayed informativity effect can be gleaned
from the literature focusing on memory-based sentence processing
mechanisms. The idea is that informative linguistic units, after being
encoded in memory, can be more readily re-accessed later. One source
of evidence for the delayed informativity effect consists in the pro-
cessing of non-local syntactic dependencies. Consider the sentences in
(2), where the antecedent of this non-local dependency a communist
needs to be re-accessed later from working memory at the retrieval site
anned:
 r

2 
(2) Semantic complexity facilitates memory retrieval (Experiment 1
in Hofmeister 2011).

a. It was a communist who the members of the club banned
from ever entering the premises.

b. It was an alleged Venezuelan communist who the members
of the club banned from ever entering the premises.

Some studies discover that referents with higher semantic complexity,
despite their higher difficulty in memory encoding, are actually easier
to access at the retrieval site (e.g., Hofmeister 2011, Hofmeister and
Vasishth 2014, Karimi, Diaz, and Ferreira 2019, Karimi, Swaab, and
Ferreira 2018, Troyer, Hofmeister, and Kutas 2016). For example, in the
case of (2), encoding the noun phrase at the beginning of the sentence
takes higher processing effort if it features a more complex represen-
tation (a communist vs. an alleged Venezuelan communist). However, at
the verb site banned, the noun phrase with higher complexity in b can
e more easily retrieved, compared to the one in a. Studies of this

line, however, often interpret the concept of informativity as semantic
or representational complexity, rather than as predictability, which
is a common assumption from an information-theoretic perspective.
Moreover, it is still under debate whether this facilitated retrieval stems
solely from the additional processing effort itself, or also from the
enhanced distinctiveness that contrasts the retrieval target with other
memory elements (Hofmeister, 2011; Hofmeister & Vasishth, 2014;
Karimi, Diaz, & Wittenberg, 2020, 2023).

Hypothesis: Strategic memory allocation based on informativity

The delayed informativity effect outlined above points to a poten-
tial interaction between the expectation-based and the memory-based
mechanism. Here is our hypothesis. On the one hand, as put forward
by the original surprisal theory, less predictable but more informative
linguistic units induce greater processing effort when they are first
encountered, in that the inconsistency between the top-down prediction
and the actual perceptual input needs to be resolved; however, on the
other hand, this additional effort might actually help the comprehender
construct a memory representation that is more robust against noise
and interference in the communicative context. Moreover, we further
propose that the rationale behind this hypothesis is a principle that
we refer to as strategic memory allocation. That is, the limited pool
of working memory resources should be strategically allocated during
sentence processing to encode, maintain, and retrieve information in
memory, prioritizing novel and unexpected information that deviates
from top-down predictions.

This strategy of prioritizing unexpected information may arise from
a rational process. First and foremost, there is always noise and in-
terference in the communication channel, and there is always the
possibility of memory representations being lossy (Brady, Robinson,
 Williams, 2024; Gibson, Bergen, & Piantadosi, 2013; Levy, 2008b;

Ma, Husain, & Bays, 2014). Despite this seemingly deficient property
f memory, through reverse-engineering, language users can in fact

use statistical cues to effectively reconstruct the linguistic units whose
representation is lost or degraded (Futrell, Gibson, & Levy, 2020;
Gibson et al., 2013; Levy, 2008b; Levy, Bicknell, Slattery, & Rayner,
2009; Li & Ettinger, 2023; Ryskin et al., 2021). However, the success
rate of this reconstruction is not always the same, and units that are
more predictable from the context are more likely to be successfully
econstructed (Futrell, Gibson, & Levy, 2020). When a linguistic unit

is lost in memory, comprehenders rely on their prior knowledge to
infer what the original sensory input might have been. Among all
he possible alternatives, the representation more probable a priori is
ore likely to be selected by the comprehender. In contrast, if the

ctual representation is not probable in prior knowledge, it is less
ikely to be selected, thus less likely to be reconstructed. Therefore, to
educe the overall error rate of memory representation, it is rationally
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beneficial to avoid memory loss for those unpredictable units in the
irst place, and this can be done by putting more effort into encoding
npredictable units to enhance the robustness of their representation.
his account of strategic memory allocation falls under the resource-

rational approach to human cognition in general (Gershman, Horvitz,
& Tenenbaum, 2015; Lewis, Howes, & Singh, 2014; Lieder & Griffiths,
2020), a theoretical framework that can be further traced back to the
idea of bounded rationality (Simon, 1955). As one branch of the ra-
ionalist approach (Anderson, 1990), the resource-rational framework

emphasizes both the functional constraints of the external environment
nd the structural constraints of the internal cognitive system, seeking
n optimal, or near-optimal, solution to a computational problem that
trikes a balance between them.

Implications for strategic memory allocation can be seen in the
esource-rational sentence processing model by Hahn, Futrell, Levy,

and Gibson (2022). Their model is trained to make next-word pre-
dictions based on a lossy memory context (Futrell, Gibson, & Levy,
2020), where only a limited number of previous words can be pre-
served. With this memory constraint, they observe that words highly
predictable from the context, such as function words, are most likely
to be dropped without undermining the model performance in the
next-word prediction task. More recently, the idea of strategic memory
allocation has been more directly examined in a preliminary analysis
by Xu and Futrell (2024b) in the context of dependency locality.
n a cross-linguistic corpus study, they find that although there is a
eneral pressure to keep subparts of a syntactic dependency linearly
lose to each other in order to minimize non-local memory retrieval
e.g., Ferrer-i-Cancho 2004, Futrell, Levy, and Gibson 2020, Gibson

1998, 2000, Hawkins 1994, 2004, Liu 2008), this pressure can be
elaxed when the left co-dependent has higher surprisal. They argue
hat such a relaxed locality pressure may result from strategic memory
llocation, where highly surprising co-dependents are prioritized in
orking memory, making their representations less likely to decay, thus
ore likely to tolerate longer dependency length.

The allocation of working memory resources has been extensively
investigated in other cognitive domains as well. In visual working
memory, it has been widely observed that memory resources are not
equally distributed, with some information being prioritized to main-
tain higher representational fidelity (e.g., Bays and Husain 2008, Ma
et al. 2014, van den Berg, Shin, Chou, George, and Ma 2012). Im-
portantly, this flexible distribution of memory resources is strongly
influenced by the statistical structure of the environment. For example,
tatistically correlated input data can be stored in a more compressed
nd abstract form in working memory, without encoding many of the

quantitative sensory details (Bates & Jacobs, 2020; Brady, Konkle, &
Alvarez, 2009; Brady et al., 2024; Brady & Tenenbaum, 2013). Statisti-
al regularities stored in prior knowledge also play a crucial role. In a
elayed-estimation task, Bruning and Lewis-Peacock (2020) show that
ovel information can be strategically prioritized for memory encoding
ver familiar information. At a more implementational level, the neural

system is adapted to environmental statistics for efficient coding (Atick,
1992; Barlow, 1961; Olshausen & Field, 1996; Rieke, Bodnar, & Bialek,
1995; Simoncelli & Olshausen, 2001; Wiechert, Judkewitz, Riecke, &
Friedrich, 2010). Specifically, a group of neurons maximizes the use
of its available computing resources by ensuring that every possible
combination of neural response levels is equally likely to be used.
This efficient coding is achieved by removing redundancies from the
original sensory input through a transformation that decorrelates input
statistics.

The current study

We examine our hypothesis of strategic memory allocation through
the lens of the agreement attraction effect. The phenomenon was first
approached from the production side (Bock & Cutting, 1992; Bock &
Eberhard, 1993; Bock & Miller, 1991). In English, as illustrated in
3 
(3), the head noun key of the subject noun phrase, which we refer
o as the target noun, licenses the number feature of the main verb
as, forming a subject–verb agreement. However, when there is an

ntervening distractor noun whose number feature mismatches the
arget noun (cabinet vs. cabinets), speakers are more likely to make pro-
uction error as in b, using a main verb that agrees with the distractor

noun instead of the target noun. A similar effect is observed from the
comprehension side as well (Dillon, Mishler, Sloggett, & Phillips, 2013;
Jäger, Mertzen, Van Dyke, & Vasishth, 2020; Pearlmutter, Garnsey, &
Bock, 1999; Wagers, Lau, & Phillips, 2009). For comprehenders, the
rocessing difficulty of the ungrammatical main verb in b is reduced

when it shares the same number feature with a distractor.

(3) a. The key to the cabinets unsurprisingly was rusty from
years of disuse.

b. *The key to the cabinets unsurprisingly were rusty from
years of disuse.

The role of predictability, or informativity, in agreement attraction
has been mostly examined at the retrieval site, which is the right co-
dependent of a non-local dependency (e.g., Lago, Shalom, Sigman, Lau,
and Phillips 2015, Parker and Phillips 2017, Wagers et al. 2009). Many
studies argue that comprehenders predict the number feature of the
erb based on the memory representation of the target noun in the

subject. According to these studies, when the actual number feature
in the bottom-up perceptual input violates the prediction, cue-based
retrieval as a reanalysis process is triggered to resolve the prediction
error. This mechanism explains why empirically there is a grammati-
cality asymmetry in the agreement attraction effect (e.g., Dillon et al.
2013, Hammerly, Staub, and Dillon 2019, Tanner, Nicol, and Brehm
2014, Wagers et al. 2009). That is, in a grammatical sentence, the
erceptual input of the verb matches the comprehender’s prediction,

therefore no retrieval is triggered and no attraction is induced by the
istractor. This mechanism also accounts for the observation that the
ubject–verb agreement exhibits attraction effect more reliably than
he reflexives (Dillon et al., 2013): subject–verb agreement is a more
redictable dependency than reflexives, making it a more reliable

structural cue for retrieval.
Less explored in the literature, however, is how the memory in-

erference can be influenced by the informativity of any linguistic
nit outside the retrieval site (Tung & Brennan, 2023). Our hypoth-

esis of strategic memory allocation makes two predictions regarding
the informativity of non-retrieval site units. Our primary prediction
is that the magnitude of the agreement attraction effect should be
modulated by the informativity of the target noun, as illustrated in
Fig. 1 (top panel). When the target noun conveys novel and unexpected
information, we predict that the additional processing effort would help
the comprehender to construct a more robust representation of the
target noun, reducing the likelihood of interference from the distractor
when it needs to be retrieved later. Consequently, we expect a weaker
agreement attraction effect for less predictable but more informative
target nouns. This primary prediction aligns somewhat with the find-
ings of Hofmeister (2011), which also manipulates the informativity
of the retrieval target. However, compared to our study, Hofmeister
(2011) focuses more on the retrieval process itself, and the context
is held constant across conditions in their stimuli without directly
manipulating the interference from the context.

Our secondary prediction is about the informativity of the dis-
ractor noun, as illustrated in Fig. 1 (bottom panel). If we assume

that the processing of the target noun shares the same limited pool
of working memory resources with the distractor, the informativity
of the distractor noun should also modulate the agreement attraction
effect. Specifically, if more working memory resources are allocated to
encoding a novel and unpredictable distractor noun, fewer resources
will remain to maintain the representation of the target noun (Brady
et al., 2009; Cowan, Rouder, Blume, & Saults, 2012; Thalmann, Souza,
& Oberauer, 2019), thereby increasing the likelihood of interference
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Fig. 1. Strategic memory allocation in agreement attraction. Predictions: target noun of higher surprisal elicits weaker agreement attraction (Experiment 1); distractor noun of
igher surprisal elicits stronger agreement attraction (Experiment 2).
s
t
i
o
o
i

e

t
i
w
p

m
f
t
m

from the distractor. As a result, in this secondary prediction, we ex-
ect the informativity effect for the distractor noun to operate in the

opposite direction, with more informative distractors inducing stronger
agreement attraction.

We report two self-paced reading experiments to examine the two
redictions above. Experiment 1 aims to test our primary prediction,
hich posits that the subject–verb agreement with less predictable
ut more informative target noun should be less susceptible to the
nterference from the distractor, leading to a weaker agreement attrac-

tion effect in comprehension. Experiment 2 aims to test the secondary
prediction, which posits that the more informative distractor noun
should induce a stronger agreement attraction effect. To preview the
results, we find that the informativity of the target noun approximated
as the information-theoretic surprisal generated from GPT-2 language
model reliably modulates the magnitude of the agreement attraction
effect. Specifically, the more surprising the target noun, the weaker the
agreement attraction (Experiment 1). However, no reliable modulation
of the agreement attraction effect emerges when we manipulate the
informativity of the distractor noun, raising the question about how
linguistic elements are structured and operated in memory to compete
for cognitive resources (Experiment 2).

Experiment 1

This first experiment aims to examine our primary prediction, which
posits that less predictable but more informative target nouns yield
 r

4 
more robust memory representation, and thus exhibit weaker agree-
ment attraction effect at the retrieval site. In a 2 × 2 × 2 within-
ubject design, we manipulate the predictability, or surprisal, of the
arget noun, the grammaticality of the subject–verb agreement (that
s, the number feature of the main verb), and the number feature
f the distractor noun. Surprisal, as a concept from information the-
ry, corresponds to the level of predictability, with higher surprisal
ndicating lower predictability (Shannon, 1948). Considering that the

agreement attraction effect is predominantly observed with singular
target nouns (Bock & Miller, 1991; Pearlmutter et al., 1999; Wagers
t al., 2009), the number feature of the target noun is held constant as

singular in the current study across all conditions.
Following previous studies (Dillon et al., 2013; Wagers et al., 2009),

he agreement attraction effect is instantiated as a Grammatical-
ty × Distractor two-way interaction. That is, first, for sentences
ith a singular subject target noun, there should be an increased
rocessing difficulty if the main verb is in the ungrammatical plural

form, compared to its grammatical singular counterpart. However, this
grammaticality effect is reduced when there is an intervening plural
distractor noun that matches the number feature of the ungrammatical

ain verb. On top of this baseline agreement attraction effect, we
urther predict an additional interaction between agreement attrac-
ion and target noun surprisal, based on our hypothesis of strategic
emory allocation. That is, if novel information indeed enhances the
obustness of the target noun’s memory representation against the
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interference from the distractor noun, we expect a weaker agreement
ttraction effect associated with more surprising target nouns, as illus-
rated in Fig. 1 (top panel). This should result in a Grammaticality
× Distractor × Surprisal three-way interaction.

Method

Participants
250 English native speakers living in the U.S. were recruited via

rolific and were paid $4.5 at the rate of around $11 per hour for taking
the experiment (median = 24.5 min, SD = 14.3 min).

Materials
Table 1 presents a set of sample stimuli.1 As aforementioned, we

manipulated three factors of the subject–verb dependency: (1) pre-
dictability, or surprisal, of the target noun; (2) the number feature of
the distractor noun; and (3) the grammaticality of the main verb. Each

anipulation has two conditions, resulting in eight conditions in total.
The manipulation of the target noun surprisal follows the design of the
Experiment 3 in Hofmeister (2011): the subject noun phrase that hosts
the target noun in the matrix clause is in the form of Det Adj N, where
he adjective is manipulated into a typical and an atypical condition
for example, the evil monster vs. the cute monster). The distractor noun
n the subject relative clause does not contain any modifier.

The binary manipulation on the target noun gives us the first
easure of surprisal, which is a binary categorization of the surprisal

f the target noun (high surprisal vs. low surprisal) as in Table 1. We
refer to this measure as Binary Surprisal in the rest of this article. We
also obtained a second measure of surprisal, which is a gradient one,
formalized as the negative of the log probability of a word 𝑤𝑡 given its
preceding context 𝑤<𝑡:

𝑆𝑡 ≡ − log 𝑝 (𝑤𝑡 ∣ 𝑤<𝑡
)

. (1)

We retrieved the estimation of log probability for each target noun from
the GPT-2 small (Radford et al., 2019). We refer to this second measure
as GPT-2 Surprisal in the rest of this article.2 Transformer-based large
anguage models such as the GPT family provide the state-of-the-
rt probabilistic measures for next-word prediction, and have been

increasingly used in psycholinguistics (Goodkind & Bicknell, 2018; Hao,
endelsohn, Sterneck, Martinez, & Frank, 2020; Hoover, Sonderegger,

Piantadosi, & O’Donnell, 2023; Hu, Gauthier, Qian, Wilcox, & Levy,
2020; Schrimpf et al., 2021; Shain et al., 2024; Wilcox et al., 2023;
Xu et al., 2023). Moreover, some recent studies observe that surprisals
enerated from earlier and smaller models such as GPT-2 correlate
etter with human behaviors than those from more recent and larger
odels that are trained on much larger amount of data (Oh & Schuler,

2023; Oh et al., 2024).
There are 32 target items and 96 filler items randomly distributed

in the experiment session. Each target item has eight conditions as

1 The SPR regions are phrase-by-phrase, such that each region is more
or less a legitimate constituent of the sentence. We hope this phrase-by-
phrase segmentation can create a more naturalistic reading setup than the

ord-by-word SPR.
2 We originally used the GPT-3 base (text-davinci-001; Brown et al.,

2020) to generate surprisal measures and to develop our stimuli. We later
witched to GPT-2 following the reviewers’ suggestion, and also for the
eproducibility of our result since GPT-3 is no longer accessible from OpenAI
ince January 2024. In fact, the critical Grammaticality × Distractor ×
urprisal three-way interaction has a stronger effect with GPT-2 surprisals

han GPT-3, consistent with some recent findings that GPT-2 surprisals better
lign with human judgments and behaviors (Oh & Schuler, 2023; Oh, Yue, &

Schuler, 2024).
5 
aforementioned.3 The target items are latin-square distributed, such
that each participant only reads one of the eight conditions for each
tem and is exposed to all the eight conditions throughout the exper-
ment session. The critical region in the target items is the one that
ontains the main verb (e.g., was/were gone) and the spill-over region
mmediately follows the critical region (e.g., before). Five of the 96 filler
tems are designed to be infelicitous and serve as attention check.

Procedure
Participants recruited via Prolific were directed to PCIbex (Zehr &

Schwarz, 2018) to take the experiment. After being presented with a
legal notice and completing a questionnaire on their language back-
ground, participants were given the instructions of the experiment.
Several questions were asked during this process to help participants
better understand the instructions. Six practice trials were given before
the main experiment session. In each target trial, participants first read
an experimental sentence in the moving-window self-paced reading
(SPR) paradigm, and then rated the acceptability for the sentence they
read on a 0–100 slider scale, with 100 being the most acceptable.
The experimental sentence was not displayed on the screen when
participants made acceptability ratings.

Data exclusion
The exclusion of participants consists of two steps. The first step is

based on the acceptability judgment rates on filler items. We calculated
the average of acceptability judgment rates of infelicitous filler items
for each participant, and excluded participants whose average rating
over infelicitous fillers is three standard deviations beyond the mean
across all the participants (8 participants removed). The second step is
based on the online reading times, where participants were excluded
if their average reading time per SPR region during the experiment
session is three standard deviations beyond the mean among all the par-
ticipants (5 participants further removed). The trial-level data cleaning
for reading time responses also follows two steps. In the first step, we
excluded reading time responses that are faster than 100 ms and slower
than 4000 ms; in the second step, we further removed reading time data
that are beyond three standard deviations from the mean per region and
per condition (a total of around 2% reading time data points removed in
the critical and the spillover region). For acceptability judgments, we
excluded responses that are three standard deviations from the mean
er condition (around 0.1% acceptability data points removed).4

Data analysis
We ran Bayesian multilevel linear models with brms package

Bürkner, 2017) in R on reading times and acceptability judgments. For
cceptability judgments, we used beta regression, which is appropriate
or data with an upper and lower bound such as a scale of proportion
r percentage. The dependent variable in beta regression is assumed
o follow a beta distribution, which has two parameters that can be
nterpreted as the mean 𝜇 and the precision 𝜙. The precision is similar
o the idea of variance, in the sense that higher precision can be inter-
reted as more consistent outcomes closer to the mean. Beta regression
hus has two components corresponding to the two parameters of a
eta distribution. The support of beta distribution is an open interval
0, 1) that does not include 0 and 1. Therefore, following (Smithson &

Verkuilen, 2006), acceptability judgments as the dependent variable
𝑌 were transformed from its original space [0, 100] to (0, 1) given the

3 In the original development of stimuli, the intended manipulation of
binary surprisal (low vs. high) for Item 5, 7, 13, 14, 15, 25, and 26 was
ater found to be inconsistent with the surprisal estimates from GPT-2. In the
nalysis using binary surprisal, we corrected this discrepancy by adjusting the
abels for these items to align with the GPT-2 surprisal values.

4 Although this data exclusion process was not preregistered, we performed
ome sanity checks to ensure that our data exclusion is reasonable and not

biased (see details in Appendix ‘‘Data Exclusion’’).
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Table 1
Experiment 1 sample stimuli. In a 2 × 2 × 2 design, we manipulated the surprisal of the target noun, the number feature of the distractor,
and the grammaticality of the main verb. Slashes indicate phrase-by-phrase SPR regions. The critical and the spillover region for data analysis
are underlined. The critical region contains the main verb; the spillover region goes immediately after the critical region.

Low Surprisal Target Noun

1. Grammatical, not distracted The evil monster/ who/ chased/ the kid/ seemingly/ was gone/ before/ the sunset.
2. Grammatical, distracted The evil monster/ who/ chased/ the kids/ seemingly/ was gone/ before/ the sunset.
3. Ungrammatical, not distracted The evil monster/ who/ chased/ the kid/ seemingly/ were gone/ before/ the sunset.
4. Ungrammatical, distracted The evil monster/ who/ chased/ the kids/ seemingly/ were gone/ before/ the sunset.

High Surprisal Target Noun

5. Grammatical, not distracted The cute monster/ who/ chased/ the kid/ seemingly/ was gone/ before/ the sunset.
6. Grammatical, distracted The cute monster/ who/ chased/ the kids/ seemingly/ was gone/ before/ the sunset.
7. Ungrammatical, not distracted The cute monster/ who/ chased/ the kid/ seemingly/ were gone/ before/ the sunset.
8. Ungrammatical, distracted The cute monster/ who/ chased/ the kids/ seemingly/ were gone/ before/ the sunset.
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following formula:

𝑌 ′ =
(𝑌 ∕100)(𝑁 − 1) + 0.5

𝑁
, (2)

where 𝑁 is the sample size.5 The same linear predictors were used for
oth the mean 𝜇 and the precision 𝜙 in our analysis.

For reading time data, we used the standard linear regression that
ssumes its outcomes to follow Gaussian distribution. We assume that
eading times are log-normally distributed. Therefore, the reading time
esponses were log-transformed before statistical analyses, a common
ractice in psycholinguistics literature (Burchill & Jaeger, 2024). We

analyzed two SPR regions: the critical region where the subject noun
phrase is retrieved and where the subject–verb agreement is processed,
and the spillover region that immediately follows the critical region.

We report two variants of analysis, corresponding to the two sur-
risal measures mentioned above, namely the Binary Surprisal and the
GPT-2 Surprisal. In the main analysis, all the categorical variables are ef-
fect coded (Grammaticality: grammatical 1 vs. ungrammatical −1;
Distractor: plural 1 vs. singular −1; Surprisal: high 1 vs. low
−1). The continuous variable is 𝑧-scaled. For both measures of surprisal,
we included a Grammaticality × Distractor × Surprisal
three-way interaction as well as all the corresponding lower-order
terms as the predictors in statistical models. For both acceptability
judgments and reading times, we included by-item and by-participant
random effects with the maximal random structure (Baayen, Davidson,
 Bates, 2008; Barr, Levy, Scheepers, & Tily, 2013; Bates, Kliegl, Va-

sishth, & Baayen, 2015). Following the principles of Bayesian statistics,
a strict threshold is not assumed on the posterior probability to reject
the null hypothesis, and the effect is considered reliable if almost all the
probability mass of the posterior distribution for the effect estimate is
t one side of zero (Schad, Betancourt, & Vasishth, 2021).6 See more

details of model specification in Appendix ‘‘Statistical Models’’.

5 Another way to handle value 0 and 1 in the dependent variable is zero-
nflated beta regression. It is a mixture of two processes, one being a beta
egression to generate outcomes within (0, 1), and the other being a logistic
egression to generate binary outcomes that are exactly 0 or 1. For the current
tudy, however, it is less motivated to have two separate data-generating
rocesses, and we assume that 0 s and 1 s in the acceptability judgment rates
re simply values that are extremely close to the end points of the scale,
ollowing the same generative process as other outcomes that are not 0 or
. Therefore, instead of using zero-inflated beta regression, we applied the
egular beta regression after re-scaling the dependent variable to avoid 0 s
nd 1 s.

6 Despite this gradient interpretation of posterior probability in Bayesian
tatistics, when describing the statistical results, we did adopt thresholds in
 seemingly frequentist fashion to decide whether to interpret the effect as

reliable (P(|𝛽| > 0) > 0.95), preliminary (P(|𝛽| > 0) > 0.9), or unreliable
(P(|𝛽| > 0) < 0.9). However, these thresholds are merely heuristic for detecting

hich effects are likely to exist, and should not be considered strict thresholds

o reject the null hypothesis. n

6 
Result: Acceptability judgments

Fig. 2 shows the acceptability judgment rates on target items. We
focus on the interpretation of the statistical result on the mean 𝜇 com-
ponent of the Bayesian beta regression models, which is summarized in
Table 2. The same predictors were used for the precision 𝜙 component
n the model (see the full result with the precision 𝜙 component
n Appendix ‘‘Statistical Results on Acceptability Judgments’’). The
esult is qualitatively the same between binary surprisal and GPT-
 surprisal. The target nouns are always singular in all conditions.
herefore, plural distractors should elicit more interference of number
eature than singular distractors. There is reliable evidence for all the
hree main effects: for Grammaticality, grammatical sentences are
ated more acceptable than ungrammatical ones; for Distractor,
entences with the plural distractor are rated more acceptable; for
urprisal, sentences with less surprising target noun are rated more
cceptable. There is also reliable evidence for a Grammaticality
Distractor interaction, indicating an agreement attraction effect
here the grammaticality effect is reduced when the distractor bears

he same number feature as the target noun. The data also support a
rammaticality × Surprisal interaction, whereby the grammat-

cality effect is reduced when the target noun is of higher surprisal.
here is also a Distractor × Surprisal interaction, whereby the
istractor effect is reduced when the target noun is of higher surprisal.
o evidence is found for a Grammaticality × Distractor ×
urprisal three-way interaction.

Result: Reading times

Fig. 3 shows raw reading times in the critical and the spillover
region. Panel A shows the result with the binary categorization of target
noun surprisal. Panel B shows the result with the GPT-2 surprisal of
the target noun. As a reminder, plural distractors should elicit more
interference of number feature than singular distractors, since the tar-
get nouns are in singular form in all conditions. The result of Bayesian
statistical models on log-transformed reading times is summarized in
Table 3, and the posterior distributions are visualized in Fig. 4.

Binary categorization of surprisal
Critical region. There is a Grammaticality main effect,

hereby grammatical sentences are read faster than ungrammatical
nes. There is also a Distractor main effect, whereby plural dis-
ractors induce shorter reading times on average than singular ones at
he retrieval site. No Surprisal main effect is observed. The data
upport a Grammaticality × Distractor interaction, indicative
f the classic agreement attraction effect where the Grammaticality
ffect is reliably reduced with plural distractors. There is little evidence
or either a Grammaticality × Surprisal or a Distractor ×
urprisal two-way interaction. For the critical Grammaticality
Distractor × Surprisal three-way interaction, the effect is

umerically in the expected direction, where the agreement attraction
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Fig. 2. Experiment 1 acceptability judgment rates. Target nouns are singular in all conditions. Panel A corresponds to the binary surprisal (low vs. high) of the target noun; error
bars represent standard errors of the mean. Panel B corresponds to the GPT-2 surprisal of the target noun.
Table 2
Experiment 1 statistical result of the mean 𝜇 component in the Bayesian beta regression on acceptability judgment rates.
Mean 𝜇 Binary surprisal GPT-2 surprisal

Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality 0.903 [0.796, 1.013] P(𝛽 > 0) = 1 0.901 [0.791, 1.010] P(𝛽 > 0) = 1
Distractor 0.061 [0.035, 0.086] P(𝛽 > 0) = 1 0.060 [0.034, 0.087] P(𝛽 > 0) = 1
Surprisal −0.068 [−0.106, −0.029] P(𝛽 < 0) = 0.999 −0.100 [−0.163, −0.031] P(𝛽 < 0) = 0.996
Gram × Distr −0.045 [−0.071, −0.019] P(𝛽 < 0) = 0.999 −0.045 [−0.072, −0.018] P(𝛽 < 0) = 0.999
Gram × Surp −0.027 [−0.052, −0.003] P(𝛽 < 0) = 0.985 −0.044 [−0.079, −0.009] P(𝛽 < 0) = 0.992
Distr × Surp −0.034 [−0.059, −0.009] P(𝛽 < 0) = 0.996 −0.030 [−0.056, −0.004] P(𝛽 < 0) = 0.988
Gram × Distr × Surp 0.004 [−0.021, 0.028] P(𝛽 > 0) = 0.615 0.004 [−0.023, 0.031] P(𝛽 > 0) = 0.619
effect instantiated as a Grammaticality × Distractor interaction
s numerically reduced for target nouns of higher surprisal. However,

this effect is not statistically reliable in this analysis.
Spillover region. First, although there is a Distractor main

effect, this effect is in the opposite direction to the one in the critical
region. That is, unlike the effect in the critical region, plural distractors
now induce longer, not shorter reading times compared to singular
distractors. There is no evidence for either a Grammaticality or
a Surprisal main effect. In terms of the Grammaticality ×
Distractor interaction, the effect is also numerically in the opposite
direction to the one in the critical region. This suggests that the classic
agreement attraction effect originally observed in the critical region
s now reversed in the spillover region, whereby the longer reading
ime associated with plural distractors is numerically more pronounced
n ungrammatical sentences. However, this numerically flipped Gram-
aticality × Distractor interaction does not seem statistically
eliable based on the current experiment data. There is no evidence
or either a Grammaticality × Surprisal or a Distractor
Surprisal two-way interaction. In the end, there is evidence

or a Grammaticality × Distractor × Surprisal three-way
nteraction in the spillover region, indicating that the reversed Gram-
aticality × Distractor interaction is more pronounced for
igh-surprisal target nouns.

Summary. In the critical region, we first successfully replicated the
baseline agreement attraction effect manifested as a Grammatical-
ty × Distractor two-way interaction. We also observed a Gram-
aticality × Distractor × Surprisal three-way interaction,
hereby the agreement attraction effect is numerically reduced with
ore surprising target nouns. However, this effect is not statistically

eliable. In the spillover region, there is no longer a classic agreement
ttraction effect, and the Grammaticality × Distractor two-way
nteraction is in fact in the opposite direction to the one in the critical
egion, possibly driven by a reversed Distractor effect, which we
 r

7 
will discuss below in Section ‘‘Discussion’’. To sum up, although the
reading time pattern is mostly consistent with our predictions in the
critical region, the statistical evidence is weak in the current analysis
with binary surprisal.

Surprisal from GPT-2 language model
Critical region. For the three main effects, the result is qual-

itatively the same as the analysis with the binary categorization of
surprisals. That is, the data support a Grammaticality and a Dis-
tractor main effect, while there is no evidence for a Surprisal
main effect. There is also a reliable Grammaticality × Distrac-
tor interaction, suggesting a classic agreement attraction effect that
is in line with the result with binary surprisal. For the Distractor
× Surprisal interaction, unlike the analysis with binary surprisal,
there is clearer evidence for a reduced Distractor effect in general
when the target noun is of higher surprisal estimates from GPT-2.
The target noun surprisal does not modulate the Grammaticality
effect, resulting in an absence of Grammaticality × Surprisal
interaction for both surprisal measures. Most importantly, with the
surprisal estimates from GPT-2, we indeed observed a Grammatical-
ity × Distractor × Surprisal three-way interaction, an effect
that is now more reliable compared to the earlier result with binary
surprisal. As predicted, this three-way interaction clearly indicates that
the classic agreement attraction instantiated as a Grammaticality
× Distractor interaction is reliably reduced when the surprisal of
the target noun increases.

Spillover region. Unlike the analysis with binary surprisal, there
is now preliminary evidence for a Surprisal main effect with GPT-
2 surprisal, indicating that more surprising target nouns elicit shorter
reading times at the retrieval site. The rest of the effects are qualita-
tively the same for both surprisal measures. As in the analysis with
binary surprisal, the result with GPT-2 surprisal shows a Distractor
main effect that is in the opposite direction to the one in the critical
egion, suggesting that plural distractors induce longer reading times
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Fig. 3. Experiment 1 reading times in the critical and the spillover region. Target nouns are singular in all conditions. Panel A corresponds to the binary surprisal (low vs. high)
f the target noun; error bars represent standard errors of the mean. Panel B corresponds to the GPT-2 surprisal of the target noun, each point representing the aggregated reading
ime by item per condition.
c

than singular ones in the spillover region. The Grammaticality ×
istractor two-way interaction, although not statistically reliable,

s numerically in an unexpected direction, too, driven by the reversed
istractor effect. There is no evidence for the other two two-

way interactions. In the end, although there is still some preliminary
vidence for a Grammaticality × Distractor × Surprisal
hree-way interaction in an unexpected direction, the effect is less

prominent compared to the analysis earlier with binary surprisal.

Summary. With GPT-2 surprisal, the reading time result is more clearly
onsistent with our predictions in the critical region. Again, in the
ritical region, we first replicated the baseline agreement attraction
ffect instantiated as a Grammaticality × Distractor two-way
8 
interaction. Most importantly, the data now support a Grammati-
ality × Distractor × Surprisal three-way interaction, an

effect that is more statistically reliable than in the earlier analysis
with binary surprisal. This three-way interaction indicates that target
nouns of higher surprisal exhibit weaker agreement attraction effect
in the critical region. In terms of the spillover region, however, the
pattern is still complicated, in the sense that the Grammaticality
× Distractor two-way interaction is numerically in an unexpected
direction driven by the reversed Distractor effect.

Attraction effect by grammaticality
Given the Grammaticality × Distractor × Surprisal

three-way interaction we observed in the critical region in the main
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Table 3
Experiment 1 statistical results on log-transformed reading times.
Binary surprisal Critical region Spillover region

Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality −0.064 [−0.074, −0.053] P(𝛽 < 0) = 1 −0.001 [−0.010, 0.007] P(𝛽 < 0) = 0.613
Distractor −0.006 [−0.014, 0.002] P(𝛽 < 0) = 0.936 0.006 [−0.001, 0.012] P(𝛽 > 0) = 0.959
Surprisal −0.003 [−0.011, 0.006] P(𝛽 < 0) = 0.752 −0.003 [−0.010, 0.003] P(𝛽 < 0) = 0.846
Gram × Distr 0.009 [0.001, 0.018] P(𝛽 > 0) = 0.982 −0.004 [−0.010, 0.003] P(𝛽 < 0) = 0.862
Gram × Surp 0.001 [−0.007, 0.009] P(𝛽 > 0) = 0.596 0.001 [−0.006, 0.008] P(𝛽 > 0) = 0.584
Distr × Surp 0.005 [−0.003, 0.014] P(𝛽 > 0) = 0.897 0.003 [−0.004, 0.011] P(𝛽 > 0) = 0.829
Gram × Distr × Surp −0.005 [−0.013, 0.003] P(𝛽 < 0) = 0.896 −0.006 [−0.013, 0.001] P(𝛽 < 0) = 0.951

GPT-2 surprisal Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality −0.064 [−0.075, −0.054] P(𝛽 < 0) = 1 −0.002 [−0.011, 0.006] P(𝛽 < 0) = 0.683
Distractor −0.007 [−0.015, 0.002] P(𝛽 < 0) = 0.943 0.006 [−0.001, 0.012] P(𝛽 > 0) = 0.952
Surprisal −0.004 [−0.017, 0.009] P(𝛽 < 0) = 0.75 −0.007 [−0.017, 0.003] P(𝛽 < 0) = 0.909
Gram × Distr 0.009 [0.000, 0.018] P(𝛽 > 0) = 0.981 −0.003 [−0.010, 0.003] P(𝛽 < 0) = 0.852
Gram × Surp −0.005 [−0.014, 0.005] P(𝛽 < 0) = 0.849 0.001 [−0.007, 0.009] P(𝛽 > 0) = 0.583
Distr × Surp 0.007 [−0.002, 0.018] P(𝛽 > 0) = 0.932 −0.001 [−0.008, 0.006] P(𝛽 < 0) = 0.637
Gram × Distr × Surp −0.011 [−0.020, −0.001] P(𝛽 < 0) = 0.986 −0.005 [−0.013, 0.003] P(𝛽 < 0) = 0.904
Fig. 4. Experiment 1 posterior distributions with log-transformed reading times. Panel A: binary surprisal (low vs. high) of the target noun; Panel B: GPT-2 surprisal of the target
oun. Black circles represent the mean of posterior estimates. Error bars represent 66% (thick) and 95% (thin) credible intervals.
analysis above, we further looked into whether this effect is mainly
driven by ungrammatical or grammatical sentences. That is, in this
additional analysis, we looked into the agreement attraction within
grammatical and ungrammatical sentences separately, and we exam-
ined their interaction with the surprisal of the target noun. Compared
to the main analysis above, the agreement attraction effect, instead
of being instantiated as a Grammaticality × Distractor two-
way interaction, is represented by the predictor Distractor alone
but estimated within each Grammaticality condition. Therefore,
we used contrast coding with nested effects in this analysis, as in
9 
Table 4, following Nicenboim, Schad, and Vasishth (2024). The nested
coding results in a factor with three levels that contrasts: (1) plural and
singular distractors within ungrammatical sentences (Distractor in
ungrammatical); (2) plural and singular distractors within grammatical
sentences (Distractor in grammatical); and (3) grammatical and
ungrammatical sentences (Grammaticality main effect). With this
nested coding, the statistical model in this analysis is specified in a way
that estimates how the target noun surprisal interacts with each of these
three levels. Details of model specification are in Appendix ‘‘Statistical
Models’’.
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Table 4
Nested contrast coding for the attraction effect within each condition of Grammaticality.
Condition Distractor in ungram Distractor in gram Grammaticality

grammatical, plural 0 1/2 1/2
grammatical, singular 0 −1/2 1/2
ungrammatical, plural 1/2 0 −1/2
ungrammatical, singular −1/2 0 −1/2
Table 5
Experiment 1 attraction effect within each grammaticality condition (nested coding) in the critical region.

Binary surprisal GPT-2 surprisal

Estimate 95% CrI Post probability Estimate 95% CrI Post probability

Grammaticality −0.127 [−0.148, −0.106] P(𝛽 < 0) = 1 −0.129 [−0.150, −0.108] P(𝛽 < 0) = 1
Surprisal −0.003 [−0.011, 0.006] P(𝛽 < 0) = 0.75 −0.004 [−0.017, 0.009] P(𝛽 < 0) = 0.75
Gram × Surp 0.002 [−0.014, 0.018] P(𝛽 > 0) = 0.597 −0.010 [−0.028, 0.009] P(𝛽 < 0) = 0.856
Distractor (ungrammatical) −0.031 [−0.055, −0.006] P(𝛽 < 0) = 0.992 −0.032 [−0.057, −0.006] P(𝛽 < 0) = 0.992
Distractor (grammatical) 0.006 [−0.018, 0.028] P(𝛽 > 0) = 0.689 0.005 [−0.018, 0.028] P(𝛽 > 0) = 0.667
Distr × Surp (ungrammatical) 0.021 [−0.003, 0.046] P(𝛽 > 0) = 0.955 0.036 [0.007, 0.066] P(𝛽 > 0) = 0.991
Distr × Surp (grammatical) −0.000 [−0.014, 0.018] P(𝛽 < 0) = 0.507 −0.007 [−0.033, 0.019] P(𝛽 < 0) = 0.73
Fig. 5. Experiment 1 posterior distributions for the attraction effect within each grammaticality condition at the critical region. Black circles represent the mean of posterior
stimates. Error bars represent 66% (thick) and 95% (thin) credible intervals.
a
r
t

As summarized in Table 5 and visualized in Fig. 5, the statistical
esults in this analysis are qualitatively the same for both surprisal
easures. First, there is a Grammaticality main effect, whereby
ngrammatical sentences are read more slowly than their grammatical
ounterparts. There is little evidence either for a Surprisal main

effect or for a Grammaticality × Surprisal interaction. For
he baseline attraction effect, which is represented by the predictor
istractor in this analysis, the data support a reliable attraction
ffect only within ungrammatical sentences, whereby the ungrammat-
cal main verb is read faster when there is a plural distractor. No
aseline attraction effect was observed within grammatical sentences.
ore importantly, there is reliable evidence for a reduced attraction

ffect for surprising target nouns within ungrammatical sentences.
o modulation of the baseline attraction effect was observed within
rammatical sentences.

Discussion

We highlight two critical empirical findings of this experiment.
First, we successfully replicated the baseline agreement attraction effect
both in acceptability ratings and in the reading time responses, whereby
the plural distractor makes sentences with ungrammatical plural main
verbs more acceptable in offline judgment and easier to process in the
critical reading time region. Second, the most important finding of this
10 
first experiment is that target nouns of higher surprisal induce weaker
greement attraction effect in the reading time responses of the critical
egion. A closer look into the by-item and by-subject effects shows that
he effect is not dominantly driven by a small subset of participants

or experimental items (See Fig. C.1 in Appendix ‘‘Experiment 1 by-
item and by-subject effects’’). This finding indicates that the number
feature of the less predictable but more informative target noun is less
susceptible to the interference from the intervening distractor noun,
and therefore can be more accurately retrieved at a later point in the
sentence. In support of our hypothesis of strategic memory allocation,
this finding suggests that less predictable linguistic units, although re-
quiring more cognitive resources to process during encoding, may turn
out to yield a more robust memory representation against noise and in-
terference in the context. This target noun surprisal effect on agreement
attraction, however, is not observed in acceptability judgment data.

Moreover, both the baseline agreement attraction effect and its
interaction with the target noun surprisal are more reliably observed
in ungrammatical sentences than in their grammatical counterpart.
As pointed out by previous studies, such a grammaticality asymmetry
challenges the view that similarity-based interference is mainly caused
by feature distortion in the representation of the target noun, in that
the originally grammatical sentences should have been perceived un-
grammatical if the number feature of the target noun is overwritten by

Hammerly et al. (2019) for a different view
that of the distractor (see



W. Xu and R. Futrell

a
a

l

t
r
d
s
m
e

n
i
t
m
t
t
a
w
t
f
t
s
a
a
a
c
f
c
c
w

a

s
c

d
i
o
i

d

I
o
s

t
o
i

n
f
A
a
p

t
p
a
p

n
−
r

Journal of Memory and Language 142 (2025) 104603 
on the grammaticality asymmetry). A test that directly probes offline
interpretations may be needed in the future, in order to see whether
the effect we observed is indeed induced by feature overwriting in the
representation of the target noun (Dempsey, Christianson, & Tanner,
2022; Patson & Husband, 2016). We also acknowledge that we cannot
rule out the possibility that such a grammaticality asymmetry is an
rtifact of the design of this experiment, where the subject head nouns
re always singular. However, it is commonly observed that plural

target nouns are rarely attracted by singular distractors, making it even
ess likely to observe a grammaticality asymmetry (Bock & Miller, 1991;

Pearlmutter et al., 1999; Wagers et al., 2009).
It is worth noting that the reading time pattern in the spillover

region is complicated by the unexpectedly reversed Distractor
effect. That is, plural distractors used to yield shorter reading times in
he critical region due to agreement attraction, but now yield longer
eading times than singular ones in the spillover region. This reversed
istractor effect is numerically more pronounced for ungrammaitcal
entences and for high-surprisal target nouns, resulting in a Gram-
aticality × Distractor × Surprisal three-way interaction
ffect. This reversed effect seems to point to a trade-off between the

critical and the spillover region. One possible explanation is that even
though plural distractors can initially elicit agreement attraction in the
critical region, comprehenders may later realize their misprocessing
and take additional time to reanalyze this misprocessing in the spillover
region. Moreover, this reanalysis effect, if it exists, seems to be more
pronounced with high surprisal target nouns as evidenced by the three-
way interaction. Potentially consistent with our hypothesis of strategic
memory allocation, this effect may indicate that high surprisal target
nouns, even if they are erroneously processed initially due to the
distractor, are still possibly easier for comprehenders to later realize
their misprocessing since their representation is more robust. We ac-
knowledge that the current study is not designed to directly test this
hypothesis, but it is worth investigating this later-stage processing in
future work in greater detail.

Another caveat, as mentioned above, is that high-surprisal target
ouns exhibit reduced agreement attraction effect only in online read-
ng time data, but not in offline acceptability judgments. We speculate
hat this inconsistency may be because online and offline data are
easuring different psychological processes. Reading time data, on

he one hand, reflect to what extent comprehenders have detected
he inconsistency of number feature on the subject–verb dependency
nd how much effort they have put into addressing this inconsistency,
hereas the offline acceptability judgments, on the other, more reflect

he ultimate interpretation. There are in fact many decision points
rom detecting an agreement error to generating the ultimate interpre-
ation (Paape, Avetisyan, Lago, & Vasishth, 2021). For example, the
entence may be judged as bad as it is if an error is detected. Or,
n error correction may take place to re-write the number feature,
nd the sentence may be ultimately judged acceptable even though an
greement error was indeed detected. All these processes are potential
onfounds that may obscure the pattern of offline data. In order to
ully understand the offline data, it is necessary to directly probe the
ontent of the memory representations and to have a more detailed
haracterization of the linkage between online and offline data in future
ork.

To sum up, in Experiment 1, we successfully replicated the baseline
greement attraction effect, and mostly importantly, as predicted, we

observed that this agreement attraction effect is reduced when the
target noun is of higher surprisal. In support of our hypothesis of
trategic memory allocation, this finding suggests that linguistic units
arrying less predictable but more informative content have more

robust memory representation against interference, possibly because
they are prioritized for cognitive resources in memory encoding. We
also noted two caveats in our result. First, the critical effects are only
observed in online reading time data in the critical SPR region. Second,
although the critical effects are in the predicted direction in the critical
SPR region, the effects seem to be reversed in the spillover region.
 r

11 
Experiment 2

In the second experiment, we examine our secondary prediction:
if more memory resources are used to encode the less predictable but
more informative distractor noun, fewer resources will be left for the
target noun, thus increasing the likelihood of interference from the
istractor at the retrieval site. If this is the case, we predict that the
nformativity of the distractor operates in the opposite direction to that
f the target noun, such that more surprising distractor noun should
nduce a stronger agreement attraction effect, as illustrated in Fig. 1

(bottom panel). As in Experiment 1, the target noun in Experiment 2
is singular in all conditions. However, compared to Experiment 1, the
istractor noun in Experiment 2 is always in plural form, which means

that there is always high interference from the distractor in terms of the
number feature. Therefore, instead of a 2 × 2 × 2 design, Experiment
2 is in a 2 × 2 within-subject manipulation. We make this modification
in order to, first, increase the statistical power to better detect the
expected effect if it exists. Second, we dropped the conditions with sin-
gular distractors while maintaining the manipulation of grammaticality
in order to minimize any potential confounding effect from reading
too many ungrammatical sentences. With this simplified design, the
agreement attraction effect is manifested as a grammaticality illusion,
such that ungrammatical sentences will be perceived more grammat-
ical when there is stronger attraction. Therefore, since we expect
stronger agreement attraction to be associated with more surprising
distractor nouns, we predict that the more surprising plural distractor
noun should induce stronger grammaticality illusion, resulting in a
Grammaticality × Surprisal two-way interaction.

Method

Participants
105 English native speakers living in the U.S. were recruited via

Prolific and were paid $4.5 at the rate of around $12.6 per hour for
taking the experiment (median=21.5 min, SD=12 min).

Materials and procedure
The materials of Experiment 2 are adapted from Experiment 1.

n a 2 × 2 within-subject design, we manipulated the grammaticality
n the main verb and the surprisal of the distractor noun. A set of
ample stimuli is presented in Table 6. We maintain the same num-

ber of experimental items as in Experiment 1 (𝑁=32).7 Compared to
Experiment 1, Experiment 2 only includes plural distractors, such that
he number feature on the distractor noun always mismatches the one
n the target noun, and therefore there is always certain degree of
nterference from the distractor in terms of number feature. In terms

of surprisal, similar to Experiment 1, we manipulated the surprisal of
the distractor noun through a pre-nominal adjective, so the distractor
NP in the relative clause is in the form of Det Adj N. There is no
adjective before the target noun in this experiment. Again, we used
two measures of surprisal in the subsequent analysis, namely the Binary
Surprisal and the GPT-2 Surprisal. The GPT-2 surprisals of the distractor
oun were generated based on the context within the distractor NP,
or example − log 𝑝(‘‘kids’’ ∣ ‘‘the playful’’).8 There are 64 filler items.
s in Experiment 1, five filler items were designed to be infelicitous
nd served as attention check. The data collection and experiment
rocedure are identical to Experiment 1.

7 Before the current Experiment 2, we have run another experiment with
he same 2 × 2 within-subject design, but with smaller sample size (60
articipants) and with only 16 experimental items. The current Experiment 2 is
 replication with more items and participants in order to boost the statistical
ower. The result did not qualitatively change.

8 An alternative way to generate the GPT-2 surprisal of the distractor
oun is based on the context that includes the entire prefix, for example
 log 𝑝(‘‘kids’’ ∣ ‘‘The monster who chased the playful’’). Since the statistical

esult does not qualitative differ between these two types of context, we only

eport the result with the surprisal generated from within the distractor NP.
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Table 6
Experiment 2 sample stimuli. In a 2 × 2 design, we manipulated the surprisal of the distractor noun, the number feature of the distractor, and
the grammaticality of the main verb. Slashes indicate phrase-by-phrase SPR regions. The critical and the spillover region for data analysis are
underlined. The critical region contains the main verb; the spillover region goes immediately after the critical region.

Low Surprisal Distractor Noun

1. Grammatical The monster/ who/ chased/ the playful kids/ seemingly/ was gone/ before/ the sunset.
2. Ungrammatical The monster/ who/ chased/ the playful kids/ seemingly/ were gone/ before/ the sunset.

High Surprisal Distractor Noun

3. Grammatical The monster/ who/ chased/ the bald kids/ seemingly/ was gone/ before/ the sunset.
4. Ungrammatical The monster/ who/ chased/ the bald kids/ seemingly/ were gone/ before/ the sunset.
Fig. 6. Experiment 2 acceptability judgment rates. Target nouns are singular in all conditions. Distractors are plural in all conditions. Panel A corresponds to the binary surprisal
low vs. high) of the distractor noun; error bars represent standard errors of the mean. Panel B corresponds to the GPT-2 surprisal of the distractor noun.
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Data exclusion and analysis
As in the previous experiment, the subject-level exclusion is based

n both the acceptability judgment rates and reading times. For ac-
eptability judgments, the exclusion consists of two steps. In the first
tep, participants were removed if their mean acceptability rate for
nfelicitous fillers is above 50/100 (8 participants removed). Then, in
he second step, participants were removed if their mean acceptability

rating over infelicitous fillers is 3 standard deviations away from the
mean across all the participants (4 participants removed).9 The trial-
evel data exclusion follows the same procedure as in Experiment 1.

Around 2.3% of the reading time responses were removed in the critical
and the spillover region; around 0.07% of the acceptability judgments
were removed. The data analysis on acceptability judgments and read-
ing times follows the same method as in Experiment 1. Again, we ran
nalysis based on both the binary surprisal and the GPT-2 surprisal of
he distractor noun. See details of the specification of statistical models
n Appendix ‘‘Statistical Models’’.

Result: Acceptability judgments

Fig. 6 shows acceptability judgment rates on the target items. As
entioned above, Experiment 2 is in a simplified design that only

ncludes plural distractors and the target nouns are always singular in

9 In Experiment 2, subject-level exclusion based on acceptability ratings
involved an additional step compared to Experiment 1. Specifically, before the
exclusion based on standard deviation, we first excluded participants whose
mean rating over infelicitous fillers was above 50/100. This additional step
was necessary because the second step alone in Experiment 2 could not exclude
all inattentive participants who assigned disproportionately high ratings (that

is, above 50/100) to the infelicitous filler items.

12 
all conditions. As in Experiment 1, here we focus on the statistical result
n the mean 𝜇 component of the Bayesian beta regression models,
hich is summarized in Table 7 (see the full result with the precision

𝜙 component in Appendix ‘‘Statistical Results on Acceptability Judg-
ments’’). The result with binary surprisal does not qualitatively differ
rom the one with GPT-2 surprisal. There is a Grammaticality main
ffect, whereby grammatical sentences are rated more acceptable than

ungrammatical ones. There is also a Surprisal main effect, whereby
sentences with more surprising distractors noun are rated less accept-
able. There is no evidence for a Grammaticality × Surprisal
two-way interaction effect.

Result: Reading times

Fig. 7 shows reading times with the binary surprisal and the GPT-2
surprisal of the distractor noun in the critical and the spillover region.
As a reminder, distractors are always plural, and target nouns are
always singular across all conditions. The result of Bayesian statistical
models on log-transformed reading times is summarized in Table 8, and
the posterior distributions are visualized in Fig. 8.

Critical region. First, there is a Grammaticality main effect
with both surprisal measures, whereby ungrammatical sentences are
read more slowly. Second, there is also a distractor Surprisal main
ffect with both surprisal measures, whereby distractors of higher
urprisal result in faster reading times at the retrieval site. In the
nd, we observed preliminary evidence for a Grammaticality ×
urprisal interaction in the analysis with binary surprisal, whereby

he Grammaticality effect is reduced when the distractors are of
higher surprisal. This interaction effect, however, is not observed in
the analysis with GPT-2 surprisal.
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Table 7
Experiment 2 statistical result of the mean 𝜇 component in the Bayesian beta regression on acceptability judgment rates..
Mean 𝜇 Binary surprisal GPT-2 surprisal

Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality 0.585 [0.448, 0.723] P(𝛽 > 0) = 1 0.581 [0.438, 0.724] P(𝛽 > 0) = 1
Surprisal −0.118 [−0.162, −0.073] P(𝛽 < 0) = 1 −0.172 [−0.237, −0.107] P(𝛽 < 0) = 1
Gram × Surp −0.004 [−0.041, 0.034] P(𝛽 < 0) = 0.573 −0.026 [−0.077, 0.026] P(𝛽 < 0) = 0.839
Fig. 7. Experiment 2 reading times in the critical and the spillover region. Target nouns are singular in all conditions. Distractors are plural in all conditions. Panel A corresponds
to the binary surprisal (low vs. high) of the distractor noun; error bars represent standard errors of the mean. Panel B corresponds to the GPT-2 surprisal of the distractor noun,
each point representing the aggregated reading time by item per condition.
Table 8
Experiment 2 statistical results on log-transformed reading times.
Binary surprisal Critical region Spillover region

Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality −0.056 [−0.076, −0.037] P(𝛽 < 0) = 1 0.003 [−0.015, 0.023] P(𝛽 > 0) = 0.638
Surprisal −0.012 [−0.026, 0.001] P(𝛽 < 0) = 0.965 −0.009 [−0.022, 0.003] P(𝛽 < 0) = 0.933
Gram × Surp 0.009 [−0.004, 0.022] P(𝛽 > 0) = 0.925 −0.001 [−0.012, 0.010] P(𝛽 < 0) = 0.585

GPT-2 surprisal Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality −0.057 [−0.078, −0.037] P(𝛽 < 0) = 1 0.003 [−0.017, 0.022] P(𝛽 > 0) = 0.603
Surprisal −0.021 [−0.042, −0.001] P(𝛽 < 0) = 0.978 −0.016 [−0.037, 0.004] P(𝛽 < 0) = 0.944
Gram × Surp 0.007 [−0.010, 0.025] P(𝛽 > 0) = 0.805 −0.003 [−0.016, 0.010] P(𝛽 < 0) = 0.705
13 
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Fig. 8. Experiment 2 posterior distributions for log-transformed reading times. Panel A: Binary surprisal (low vs. high) of the distractor noun; Panel B: GPT-2 surprisal of the
distractor noun. Black circles represent the mean of posterior estimates. Error bars represent 66% (thick) and 95% (thin) credible intervals.
r

Spillover region. The result in the spillover region does not qual-
tatively differ between the two surprisal measures. There is no longer
vidence for a Grammaticality main effect in this region. There is
till a main effect of distractor Surprisal, whereby more surprising
istractors are associated with faster reading time at the retrieval site.
o Grammaticality × Surprisal interaction is observed in the

pillover region.

Discussion

In a simplified design, we only included plural distractors in Ex-
eriment 2. Since target nouns are in singular form in all conditions,
his simplified design means that there is always some degree of
nterference from the distractor in terms of the number feature. The
odulation on the attraction effect, therefore, is manifested as a mod-
lation on the grammaticality illusion in this second experiment, such
hat a weaker grammaticality effect indicates stronger attraction from
he plural distractor. As mentioned above, compared to Experiment 1,
hich looks into the effect of target noun surprisal on agreement
ttraction, we expect the surprisal of distractor noun to operate in the
pposite direction, such that more surprising distractor noun should
esult in stronger attraction in Experiment 2. However, this is not what
e observed. In Experiment 2, neither in acceptability judgments nor

n online reading times did we observe a reliable effect of distractor
urprisal on grammaticality, suggesting that distractor nouns of higher
urprisal may not elicit stronger attraction to the retrieval of target
ouns. At first glance, this lack of effect of distractor surprisal may seem
t odds with our hypothesis of strategic memory allocation based on the
ssumption that both the target noun and the distractor noun share the
ame pool of working memory. That is, if more resources allocated to
he encoding of the distractor noun result in fewer resources remained

or the storage of the target noun, there should have been an effect

14 
of distractor surprisal as well, as opposed to the null result we actually
observed in Experiment 2. This thus raises the question of how different
linguistic units are structured in working memory to compete for
the limited cognitive resources. We discuss our speculation below in
General Discussion.

General discussion

In this paper, we proposed that linguistic units carrying more novel
and unexpected information are prioritized for working memory re-
sources, and are thus encoded with more robust memory representation
against interference, a mechanism that we refer to as strategic mem-
ory allocation. We examined this hypothesis through the lens of the
agreement attraction effect. In particular, we examined two predictions:
(1) target nouns of higher surprisal should lead to weaker agreement
attraction effect if they have more robust representation; (2) distractor
nouns of higher surprisal should lead to stronger agreement attraction
effect if they draw more memory resources from maintaining the
representation of the target noun.

The first prediction was confirmed by our Experiment 1. As pre-
dicted, we found that more surprising target nouns are less disrupted by
distractors, resulting in weaker agreement attraction effect. Moreover,
this target noun surprisal effect on attraction magnitude is much more
eliable when surprisal is measured as a fine-grained continuous vari-

able from GPT-2 language model rather than as a binary categorization.
This finding substantiates our hypothesis that novel and unexpected
linguistic units are prioritized for working memory resources with more
robust representation.

We also note two caveats in our result. First, the effect of target
noun surprisal is only observed in online reading time data, but not
in acceptability judgments, a divergence that needs to be reconciled
in future work with a more detailed characterization of the linkage
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between online and offline data. Second, although the reading time
data shows the predicted pattern in the critical region, the effects in
he spillover region are in an unexpectedly reversed direction. We have

discussed our speculation about how this reversed effect may point to a
ater-stage reanalysis process for the originally misprocessed agreement
eatures under attraction.

The second prediction, however, was not supported by our Exper-
ment 2. Neither in the online reading time data nor in the offline
cceptability judgments did we observe a statistically reliable effect
f distractor surprisal on the magnitude of agreement attraction. As
iscussed below, this absence of informativity effect on distractors
uggests that, rather than assuming a naive shared pool of resources
or all the information, a more nuanced account of how information
s structured and operated in both working and long-term memory is
eeded.

Absence of the effect of informativity on distractors

The absence of the distractor informativity effect in Experiment 2
aises the question about how different linguistic elements are struc-
ured in working memory. In order for the informativity of distractor
ouns to influence the retrieval of the target noun, an important
ssumption is that these two linguistic units are structured in a way
hat they form a fair competition for the same pool of working memory
esources.

Many previous studies, however, have observed that elements lo-
cated in different linguistic contexts may not trigger memory interfer-
ence to the same extent (Kim & Xiang, 2024; Van Dyke & McElree,
2011). For example, Van Dyke and McElree (2011) find that the con-
figuration where the distractor is positioned between the target noun
and the retrieval site (retroactive interference) induces stronger dis-
ruptive effect than the one where the distractor precedes the target
noun (proactive interference). This observation implies that the linear
order of memory elements does matters, possibly due to time-related
decay (Barrouillet, Bernardin, & Camos, 2004; Lewis & Vasishth, 2005;
Page & Norris, 1998; Portrat, Barrouillet, & Camos, 2008) and/or
feature-overwriting exerted by subsequent information (Oberauer &
Kliegl, 2006; Oberauer & Lange, 2008). This recency effect may have
created a ceiling effect in our Experiment 2, such that the interference
effect is already close to its maximum, leaving little room for further
modulation by the surprisal of the distractor.

Another possibility is that informativity may have influenced the
processing depth and the extent to which the underlying syntactic
structure of the sentence is specified in memory. When the distractor
is highly predictable and does not require much effort, the processing
may be shallow, with many details of the syntactic structure under-
specified (Ferreira, 2003a; Ferreira, Bailey, & Ferraro, 2002; Ferreira,
Christianson, & Hollingworth, 2001; Ferreira & Patson, 2007; Sanford
 Sturt, 2002; Tabor, Galantucci, & Richardson, 2004). On the con-

trary, an unexpected distractor noun may encourage the comprehender
to perform deeper-level of processing, and to specify more detailed
features of the syntactic structure. As a result, the less predictable
distractor noun in our stimuli (as repeated below in (4)) may be better
ncoded with more robust representation as an embedded object inside
he subject relative clause. This strengthened representation as an em-
edded object may create a stronger mismatch with the retrieval cue,
hich looks for a matrix subject. As a result, the attraction effect on

he target noun may be canceled, even if the more surprising distractor
oun is indeed prioritized and draws more working memory resources.

(4) *The monster [who chased the bald kidsembedded obj] seemingly
were gone...

In fact, if the representation of the distractor is indeed strengthened
s an embedded object, it provides another perspective to support
ur main hypothesis. Although our prediction for Experiment 2 fo-
uses on how the informativity of the distractor may influence the
15 
representation of the target noun, it is also possible that the target
noun’s representation influences that of the distractor. Specifically, the
structural feature of the target noun as a matrix subject interferes with
the structural feature of the distractor noun, which is supposed to be an
embedded object in the relative clause. According to our hypothesis, if
the distractor noun is prioritized in working memory, it should receive
a more robust representation as an embedded object, making it less
usceptible to the interference from the target noun as a matrix subject.
f this is the case, more unexpected distractor noun can potentially
ead to weaker agreement attraction, too, due to the stronger mismatch
ith the retrieval cue, resulting in an empirical pattern that is in the

ame direction as our primary prediction in Experiment 1. In order to
ake more accurate empirical predictions, a model that quantifies the

ompetition between the target noun and the distractor noun is needed
n future work.

An interplay of memory, expectation, and learning

Both the relationship between expectation and memory, and the
elationship between expectation and learning, have been long in-
estigated in psycholinguistics. For the interplay between expectation
nd memory, on the one hand, much of the empirical work aims to

tease apart the memory-based and the expectation-based mechanism
in the processing of certain linguistic structures, for example, relative
clauses (e.g., Grodner and Gibson 2005, Konieczny 2000, Levy 2013,
Levy and Keller 2013, Nakatani and Gibson 2010, Ronai and Xiang
2023, Vasishth and Lewis 2006). On the other hand, some modeling
tudies attempt to account for both the surprisal effect and the locality
ffect within a unified sentence processing model (Demberg & Keller,

2009; Futrell, Gibson, & Levy, 2020; Rasmussen & Schuler, 2018). For
example, grounded in the framework of surprisal theory (Levy, 2008a),
he lossy-context surprisal model by Futrell, Gibson, and Levy (2020)

integrates the mechanism of memory distortion into the prediction of
upcoming linguistic units. Specifically, the prediction of the next word
𝑝(𝑤𝑖|𝑟𝑤1 ...𝑤𝑖−1

) is based on the lossy memory representation 𝑟 of the
preceding context 𝑤1 …𝑤𝑖−1 after memory distortion, instead of the
true context as in the original surprisal theory 𝑝(𝑤𝑖 ∣ 𝑤1 …𝑤𝑖−1).

For the interplay between expectation and learning, the implicit
learning account of priming and adaptation holds that learning goes
hand-in-hand with processing over the life span of a language user,
and that the adaptation of the mental model is driven by predic-
tion error (Chang, Dell, & Bock, 2006; Jaeger & Snider, 2013; Xu
& Futrell, 2024a). Specifically, the larger the prediction error, the
stronger the learning effect, a pattern that is often empirically mani-
fested as an inverse frequency effect in the priming literature (Bock,
1986; Ferreira, 2003b; Hartsuiker & Kolk, 1998; Kaschak, Kutta, &
Jones, 2011; Scheepers, 2003). The prediction-driven learning has
also been studied more generally in many statistical learning theo-
ries beyond the domain of language (Courville, Daw, & Touretzky,
2006; Elman, 1990; Rumelhart, Hinton, & Williams, 1986; Wagner &
Rescorla, 1972).

Beyond how expectation interacts with memory and learning sepa-
ately, the strategic memory allocation we proposed in this paper raises
 potential mechanism that ties all three elements together. Upon en-
ountering a linguistic unit with novel and unexpected information, the
omprehender first puts much effort into encoding this unit. According
o expectation-based theories, this additional processing effort arises
ue to the inconsistency between the bottom-up perceptual input and
he top-down prediction generated by the mental model (Hale, 2001;

Levy, 2008a). Presumably, what has been predicted depends on, first,
hat has been stored in memory, including both the long-term and

the working memory (Futrell, Gibson, & Levy, 2020; Hahn, Degen, &
Futrell, 2021; Ryskin & Nieuwland, 2023). Second, it also depends on
ow the mental model makes use of the information in memory to
arse the perceptual input (Levy, 2008a; MacDonald, Pearlmutter, &

Seidenberg, 1994; Trueswell, 1996; Trueswell, Tanenhaus, & Garnsey,
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1994). Therefore, when there is an inconsistency between bottom-up
perceptual input and top-down predictions, it may serve as a signal to
inform the comprehender that there is a need to update the mental
model and the long-term knowledge, in order to make more accurate
predictions in the future. As a result, more cognitive resources, such as
attention and memory, are allocated to unpredictable linguistic units
since they might be more important for updating the mental model.

At a more implementational level, the interplay of memory, expecta-
ion, and learning points to the predictive coding mechanism (Aitchison

& Lengyel, 2017; Friston, 2005, 2010; Gagnepain, Henson, & Davis,
2012; Rao & Ballard, 1999). The theory holds that one of the main
goals of the brain is to optimize its internal representation of what
auses the sensory input by explaining away its prediction error, which
s the difference between its prediction and the actual sensory input. In
upport of predictive coding, many studies focusing on perception find
hat it is the prediction error that is encoded in neural responses, and
hat the neural responses are enhanced when the sensory input is less
xpected (Blank & Davis, 2016; Murray, Kersten, Olshausen, Schrater,
 Woods, 2002; Rao & Ballard, 1999; Sohoglu & Davis, 2016, 2020).

This predictive coding in the brain is consistent with our proposal
f strategic memory allocation, in the sense that unexpected sensory
nformation that generates stronger prediction errors is prioritized in
eural coding.

Memory efficiency and memory compression

The strategic memory allocation can be considered an efficient use
f working memory resources, one of the major topics in working
emory research both within and beyond the domain of language. An

mportant mechanism for working memory efficiency is memory com-
ression, or abstraction. The idea is that the encoded representation can
e recoded into more compressed and abstract forms, dropping certain
etails and redundancies in the original sensory input (Bates & Jacobs,

2020; Brady et al., 2009, 2024; Brady & Tenenbaum, 2013; Christiansen
& Chater, 2016). This corresponds to our intuition that sometimes
what has been remembered in comprehension is not the full linguistic
sequence in its exact form, but a gist of message with many details
unspecified (Bradshaw & Anderson, 1982). The input data whose rep-
resentation is more compressible can be more efficiently stored in
memory, saving more memory space for other information (Bates,
Lerch, Sims, & Jacobs, 2019; Brady et al., 2009). Compression can be
implemented in a symbolic fashion such as chunking, with multiple
low-level features being holistically represented by a high-level abstract
one (Brady & Tenenbaum, 2013; Christiansen & Chater, 2016; Miller,
1956). More recently, compression is implemented with distributive
representation. Under the framework similar to a variational autoen-
oder (VAE), Bates and Jacobs (2020) propose a model that encodes
he input information through a latent memory representation of lower

dimensionality that functions as memory bottleneck. A crucial objective
of their model, then, is to find a representation, such that the original
input can be decoded and reconstructed as accurately as possible, and
that the performance of downstream cognitive tasks can be optimized.

Importantly, and highly relevant to the current study, memory
compression is strongly sensitive to the statistical regularities in the
input data. In vision working memory, as mentioned earlier in Intro-
uction, the input stimuli is more compressible if the sensory features
ollow a highly correlated statistical distribution (e.g., Bates and Jacobs

2020, Brady et al. 2009, 2024, Brady and Tenenbaum 2013). In our
esult, we find that highly predictable target nouns elicit stronger

agreement attraction effect. A potential mechanism from the perspec-
tive of memory compression is that linguistic units that are more
statistically predictable from the context are more likely to be encoded
in an abstract and compressed form, without putting much effort into
encoding many of the morphosyntactic details in the original sensory
input. This is because, according to our hypothesis, the original content

of the more predictable units are easier to be reconstructed from their p

16 
compressed forms. As a result, the underspecified morphosyntactic
features on the predictable target noun may leave it more susceptible
to the interference from distractors. This compression-based explana-
tion for our findings in agreement attraction is consistent with many
usage-based linguistics theories, where a sequence of linguistic units,
f frequently used, becomes more likely to be automatically processed

as a holistic construction, undergoing phonological reduction and mor-
phosyntactic rigidification (e.g., Arnon and Snider 2010, Bybee 2006,
Bybee, Perkins, and Pagliuca 1994, Fillmore, Kay, and O’Connor 1988,
Goldberg 2003, Mansfield 2021, Tomasello 2005). It also echos the
distinction between deep versus shallow processing mode mentioned
above in Section ‘‘Absence of the effect of informativity on distractors"
, in the sense that less predictable surprising information encourages
he processor to go through deeper-level of processing and encode a

representation that is less compressed.
The role of statistical regularities in memory compression also

points to the interaction between working memory and long-term
emory. From an information-theoretic perspective, an efficient way

o use both long-term and working memory is probably to decorrelate
he representations between them, such that things encoded in working
emory bear little to low mutual information with those already stored

in long-term memory. In other words, the coding strategy may be
inefficient if working memory keeps re-encoding what has already been
encoded in long-term memory. Therefore, a more efficient working
memory encoding would be to prioritize information that is not yet
ncoded in long-term memory, which is in line with the strategic mem-

ory allocation that we have proposed in the current study. This idea
of decorrelating working and long-term memory echos the previously
proposed efficient coding strategy for neural populations (Atick, 1992;
Barlow, 1961; Olshausen & Field, 1996; Rieke et al., 1995; Simoncelli
& Olshausen, 2001; Wiechert et al., 2010), which claims that every
possible combination of neural response levels should be equally likely
to be used in order to maximize the computing resources of a neural
opulation, resulting in a neural representation that is statistically
ecorrelated. It is also consistent with the predictive coding mechanism
entioned above, in the sense that the brain’s strategy to encode
rediction errors can be considered an efficient way to maximize the
se of its neural resources by decorrelating the encoded information.

The interaction between long-term and working memory has also
een discussed in the literature of chunking. Some studies propose that
hunks are only stored in long-term memory, with the information in
orking memory stored in its uncompressed original form (Botvinick,

2005; Botvinick & Bylsma, 2005; Norris & Kalm, 2021; Norris, Kalm, &
Hall, 2020; Norris et al., 2020). According to these studies, the memory
performance for units that better match the statistical patterns in prior
knowledge is enhanced since the chunks in long-term memory help to
reconstruct the degraded representations in working memory, a process
often referred to as redintegration in this line of research. Since the
working memory representation itself is not compressed, these studies
predict that redintegration only benefits units that have formed a chunk
and the memory performance of other units should be unaffected.
This prediction is indeed consistent with the absence of effect in our
Experiment 2, where the distractor informativity does not affect the
memory performance of the target noun. Besides redintegration, some
other studies propose that statistically predictable units do form a com-
pressed representation in working memory, and the compressed form
serves as a content-free label that points to certain pieces of knowledge
stored in long-term memory (Huang & Awh, 2018; Kanwisher, 1987;
Thalmann et al., 2019). These studies predict that it takes additional
ffort to decode the compressed information by retrieving information
rom long-term memory through that content-free label. This prediction
s actually consistent with a tendency in our result that low-surprisal
arget nouns are numerically more difficult to retrieve, an observation
lso reported in Hofmeister (2011).

In the end, contradictory as it might initially appear to our main
roposal, it is worth noting that predictable information, when encoded
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in a more compressed form to increase memory efficiency, often leads
o improved memory performance in many empirical studies. That is,
timuli that are more consistent with prior knowledge (such as familiar
r natural items), are easier to be encoded with greater accuracy in
ehavioral tasks (Bates & Jacobs, 2020; Blalock, 2015; Girshick, Landy,

& Simoncelli, 2011; Jackson & Raymond, 2008; Xie & Zhang, 2017).
In this sense, the memory representation of predictable information is
robust, too. This is because, as mentioned earlier, predictable input is
easier to be reconstructed based on prior knowledge. As long as the
statistical structure of the experimental stimuli aligns with participants’
long-term experience, as is indeed the case in many of these studies,
behavioral performance should remain intact. In fact, this is why
compressing predictable information improves memory efficiency: the
reconstructed representation works well most of the time in long-term
experience. However, in scenarios requiring more sensory details of
the original input, which is possibly the case in the current study,
unpredictable information should yield better behavioral performance
since it is likely encoded in less compressed forms.

Conclusion

We have proposed that linguistic units with novel and unexpected
nformation, despite their higher processing difficulty when first en-
ountered, may actually be prioritized for working memory resources
nd receive a more robust memory representation against noise and in-
erference in the communicative context, a mechanism that we refer to
s strategic memory allocation. In support of this hypothesis, we have

found that more surprising and informative target nouns indeed elicit
stronger agreement attraction in online reading times. Moreover, the
effect is much more reliable with the GPT-2 surprisal of target nouns,
which is a more fine-grained predictability measure than a binary
categorization. This finding substantiates strategic memory allocation
by showing that the representation of surprising target nouns is indeed
more robust and less susceptible to interference. Having established
the effect on target nouns, we then manipulated the predictability of
the distractor noun, assuming that more surprising distractors should
draw more resources away from the target noun if they share the
same pool of memory resources. However, no reliable modulation on
agreement attraction was observed by the surprisal of distractor noun.
This absence of distractor effect suggests the need for a more nuanced
characterization of how information is structured and operated in
memory. Our findings highlight an interplay of memory, predictive
processing, and implicit learning, in the sense that more memory re-
sources are allocated to unpredictable linguistic units since they might
be more important for updating the comprehender’s mental model. We
also argued that the strategic memory allocation we proposed is an in-
stantiation of efficient coding for both working and long-term memory.
More broadly, by demonstrating that the limited working memory is
efficiently and dynamically optimized for the relevant processing task,
the current study provides a connection between sentence processing
and the resource-rational analysis of human cognition in general.
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Appendix A. Statistical models

Reading times

The prior of the Bayesian linear mixed-effect models on
log-transformed reading times (RT) are specified as in (1):

(1) Prior on log RT
prior(normal(6, 1), class=Intercept)
prior(normal(0, 1), class = b)
prior(normal(0, 1), class = sigma)
prior(normal(0, 1), class = sd)
prior(lkj(2), class = cor)

Experiment 1 regression formulas on log-transformed RTs are in
(2). The main analysis tests the Grammaticality × Distractor
× Surprisal three-way interaction using the effect coding (that is,
the sum contrast). The additional analysis tests the attraction effect
within each grammaticality condition using the nested contrast, where
the variable Condition has three levels contrasting: (a) plural and
singular distractors within ungrammatical sentences (Distractor in
ungrammatical); (b) plural and singular distractors within grammatical
entences (Distractor in grammatical); and (c) grammatical and un-
rammatical conditions (Grammaticality main effect). Experiment

2 regression formulas on log-transformed RTs are in (3).

(2) Experiment 1 regression formula for log RT

• Effect Coding/Sum Contrast:
logRT ∼ 1 + Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal +
(1 + Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal ∣ Subj) + (1 +
Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal ∣ It em)

• Nested Contrast:
logRT ∼ 1 + Condit ion ∗ Sur pr isal + (1 + Condit ion ∗ Sur pr isal ∣
Subj) + (1 + Condit ion ∗ Sur pr isal ∣ It em)

(3) Experiment 2 regression formula for log RT

• logRT ∼ 1 + Gr ammat icalit y ∗ Sur pr isal + (1 + Gr ammat icalit y ∗
Sur pr isal ∣ Subj) + (1 + Gr ammat icalit y ∗ Sur pr isal ∣ It em)

The posterior probabilities were calculated using the function
s_draws_df() in the brms package. The hypotheses tested are
irectional, since our prediction explicitly states that the attraction
ffect should be weaker when the target nouns are more surprising.
e did not add the word length of the RT region of analysis into the

tatistical model since it does not qualitatively change the result.

Acceptability judgments

The acceptability judgment rates are re-scaled from [0, 100] to (0, 1)
efore statistical analysis, as introduced in the main article. The prior of
he Bayesian linear mixed-effect models on the re-scaled acceptability
udgments (AJ) in both experiments are specified as in (4).

(4) Prior on re-scaled AJ
prior(normal(0, 1), class=Intercept)
prior(normal(0, 1), class = b)
prior(normal(0, 1), class = sd)
prior(lkj(2), class = cor)

We used beta regressions that fit both the mean 𝜇 and the precision
𝜙 on the re-scaled AJ. The formulas for Experiment 1 and Experiment 2
are in (5) and (6) respectively:

(5) Experiment 1 regression formula for re-scaled AJ
bf (AJ ∼ 1 + Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal + (1 +
Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal ∣ Subj) + (1 + Gr ammat icalit y
∗ Dist r act or ∗ Sur pr isal ∣ It em), 𝑝ℎ𝑖 ∼ 1 + Gr ammat icalit y ∗
Dist r act or ∗ Sur pr isal + (1 + Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal ∣
Subj) + (1 + Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal ∣ It em))
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Table B.1
Experiment 1 full statistical result of the Bayesian beta regression on acceptability judgment rates.

Binary surprisal GPT-2 surprisal

Mean 𝜇 Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality 0.903 [0.796, 1.013] P(𝛽 > 0) = 1 0.901 [0.791, 1.010] P(𝛽 > 0) = 1
Distractor 0.061 [0.035, 0.086] P(𝛽 > 0) = 1 0.060 [0.034, 0.087] P(𝛽 > 0) = 1
Surprisal −0.068 [−0.106, −0.029] P(𝛽 < 0) = 0.999 −0.100 [−0.163, −0.031] P(𝛽 < 0) = 0.996
Gram × Distr −0.045 [−0.071, −0.019] P(𝛽 < 0) = 0.999 −0.045 [−0.072, −0.018] P(𝛽 < 0) = 0.999
Gram × Surp −0.027 [−0.052, −0.003] P(𝛽 < 0) = 0.985 −0.044 [−0.079, −0.009] P(𝛽 < 0) = 0.992
Distr × Surp −0.034 [−0.059, −0.009] P(𝛽 < 0) = 0.996 −0.030 [−0.056, −0.004] P(𝛽 < 0) = 0.988
Gram × Distr × Surp 0.004 [−0.021, 0.028] P(𝛽 > 0) = 0.615 0.004 [−0.023, 0.031] P(𝛽 > 0) = 0.619

Precision 𝜙 Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality 0.041 [−0.051, 0.133] P(𝛽 > 0) = 0.813 0.047 [−0.046, 0.142] P(𝛽 > 0) = 0.835
Distractor −0.058 [−0.095, −0.020] P(𝛽 < 0) = 0.998 −0.055 [−0.095, −0.016] P(𝛽 < 0) = 0.997
Surprisal −0.040 [−0.079, −0.001] P(𝛽 < 0) = 0.979 −0.055 [−0.110, −0.003] P(𝛽 < 0) = 0.981
Gram × Distr 0.028 [−0.011, 0.067] P(𝛽 > 0) = 0.918 0.025 [−0.015, 0.065] P(𝛽 > 0) = 0.887
Gram × Surp −0.045 [−0.082, −0.007] P(𝛽 < 0) = 0.99 −0.059 [−0.112, −0.009] P(𝛽 < 0) = 0.99
Distr × Surp 0.009 [−0.028, 0.046] P(𝛽 > 0) = 0.688 0.026 [−0.015, 0.067] P(𝛽 > 0) = 0.896
Gram × Distr × Surp −0.045 [−0.087, −0.004] P(𝛽 < 0) = 0.984 −0.041 [−0.086, 0.002] P(𝛽 < 0) = 0.97
Table B.2
Experiment 2 full statistical result of the Bayesian beta regression on acceptability judgment rates.
Mean 𝜇 Binary surprisal GPT-2 surprisal

Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality 0.585 [0.448, 0.723] P(𝛽 > 0) = 1 0.581 [0.438, 0.724] P(𝛽 > 0) = 1
Surprisal −0.118 [−0.162, −0.073] P(𝛽 < 0) = 1 −0.172 [−0.237, −0.107] P(𝛽 < 0) = 1
Gram × Surp −0.004 [−0.041, 0.034] P(𝛽 < 0) = 0.573 −0.026 [−0.077, 0.026] P(𝛽 < 0) = 0.839

Precision 𝜙 Estimate 95% CrI Posterior probability Estimate 95% CrI Posterior probability

Grammaticality 0.027 [−0.073, 0.129] P(𝛽 > 0) = 0.705 0.027 [−0.077, 0.131] P(𝛽 > 0) = 0.698
Surprisal −0.002 [−0.060, 0.056] P(𝛽 < 0) = 0.523 0.009 [−0.058, 0.074] P(𝛽 > 0) = 0.606
Gram × Surp −0.039 [−0.101, 0.021] P(𝛽 < 0) = 0.898 −0.030 [−0.106, 0.044] P(𝛽 < 0) = 0.783
f
f
t
i
m

(6) Experiment 2 regression formula for re-scaled AJ
bf (AJ ∼ 1 + Gr ammat icalit y ∗ Sur pr isal + (1 + Gr ammat icalit y ∗
Sur pr isal ∣ Subj) + (1 + Gr ammat icalit y ∗ Sur pr isal ∣ It em), 𝑝ℎ𝑖 ∼
1 + Gr ammat icalit y ∗ Sur pr isal + (1 + Gr ammat icalit y ∗ Sur pr isal ∣
Subj) + (1 + Gr ammat icalit y ∗ Sur pr isal ∣ It em))

Appendix B. Statistical results on acceptability judgments

See Tables B.1 and B.2.

Appendix C. Experiment 1 by-item and by-subject effects

See Fig. C.1.

Appendix D. Data exclusion

For participant-level exclusion based on the acceptability judgment
ates (AJ) of infelicitous filler items, we tried to avoid an arbitrary
hreshold by removing participants whose mean AJ of infelicitous fillers
s three standard deviations away from the mean across all the partic-

ipants. For Experiment 1, this method was quite effective in removing
articipants who gave high ratings to infelicitous fillers, as shown.

For Experiment 2, probably because of the smaller sample size, this
method is less effective in removing participants who gave high ratings
to infelicitous fillers. Therefore, for Experiment 2, we first removed
participants whose mean AJ for infelicitous fillers is above 50/100,
and then we further removed those whose mean AJ is beyond three
standard deviations away from the mean across all the participants,
as what we did for Experiment 1. After this step of exclusion, the
AJ rate distribution for infelicitous fillers roughly aligns between both
experiments.

In addition, we also did participant-level exclusion based on the
ean reading times (RT) across the whole experiment. We performed
 e
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Table E.1
Interpretation of Bayes factors (Jeffreys, 1939).
Bayes factor (𝐵 𝐹10) Interpretation

> 100 Extreme evidence for 𝑀1
30–100 Very strong evidence for 𝑀1
10–30 Strong evidence for 𝑀1
3–10 Moderate evidence for 𝑀1
1–3 Anecdotal evidence for 𝑀1
1 No evidence for 𝑀1
1/3–1 Anecdotal evidence for 𝑀0
1∕10–1∕3 Moderate evidence for 𝑀0
1∕30–1∕10 Strong evidence for 𝑀0
1∕100–1∕30 Very strong evidence for 𝑀0
< 1∕100 Extreme evidence for 𝑀0

this step of participant-level exclusion because we noticed on Prolific
that there were some participants taking unreasonably long time to
finish the experiment. This is especially the case for Experiment 2,
as the mean RT per region is over 2 s for some participants. Again,
we have checked that the distribution of mean RT across the whole
experiment session roughly align between two experiments after this
step of data exclusion.

For trial-level data exclusion, we checked that there is a relatively
uniform distribution of removed RT data across all experimental con-
ditions, indicating that our trial-level exclusion is reasonable and is not
biased toward any specific experimental condition.

Appendix E. Bayes factors for critical region RT data

We calculated the Bayes factors (BF) for critical reading time ef-
ects in both experiments. For Experiment 1, we calculated the BF
or the Grammaticality × Distractor two-way interaction and
he Grammaticality × Distractor × Surprisal three-way
nteraction. We focus on the critical SPR region, where the effects were
ost reliably detected. For Experiment 2, we calculated the BF for the
ffect of Grammaticality × Surprisal interaction.
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Fig. C.1. Experiment 1 by-subject and by-item effects of the Grammaticality × Distractor × GPT-2 Surprisal three-way interaction in the critical region. Solid vertical line shows
the mean estimate of the fixed effect, with dashed vertical lines representing 95% credible intervals.
Bayes factors quantify the evidence for or against the effects of inter-
est by comparing the alternative model (𝑀1) with the null model (𝑀0),
analogous to the hypothesis testing using the likelihood ratio test in fre-
quentist statistics (Gelman, Carlin, Stern, & Rubin, 2013; Schad, Nicen-
boim, Bürkner, Betancourt, & Vasishth, 2022). The analysis was im-
plemented with brms package in R (Bürkner, 2017), and the marginal
ikelihoods were calculated through bridge_sampler (Gronau et al.,

2017; Meng & Wong, 1996). Since the estimates of BFs can be unstable
for models with complicated random effects, we simplified the random
effects and only included by-item and by-participant random intercepts.

e also increased the number of iterations to 20,000 per chain.
In Experiment 1, the regression formulas of null model 𝑀0 and the

full model 𝑀1 are specified as in (7) and (8). When calculating BFs for
the two-way interaction, we used the model with binary surprisal. In
19 
Experiment 2, the regression formulas of null model 𝑀0 and the full
model 𝑀1 are specified as in (9).

(7) Experiment 1 model comparison for the Grammaticality ×
Distractor × Surprisal three-way interaction

• Null Model 𝑀0:
logRT ∼ 1 + Gr ammat icalit y ∗ Dist r act or + Gr ammat icalit y ∗
Sur pr isal + Dist r act or ∗ Sur pr isal + (1 ∣ Subj) + (1 ∣ It em)

• Full Model 𝑀1:
logRT ∼ 1 + Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal + (1 ∣
Subj) + (1 ∣ It em)
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Table E.2
Experiment 1 Bayes factors (BF10) in the critical region for the effects of Grammaticality × Dis-
tractor two-way interaction and Grammaticality × Distractor × Surprisal three-way
interaction, with a range of standard deviations on the prior of the effects. For both interactions
tested below, the null model includes all other interactions. BF10 quantifies the evidence for the
alternative hypothesis (H1) against the null hypothesis (H0).BF10 > 1 favors H1; BF10 < 1 favors H0.

Prior BF10 (Gram × Distr) BF10 (Gram × Distr × Surp)

Binary surprisal GPT-2 surprisal
 (𝜇 = 0, 𝜎 = 0.01) 31.85 1.01 27.20
 (𝜇 = 0, 𝜎 = 0.05) 9.59 0.24 10.31
 (𝜇 = 0, 𝜎 = 0.1) 4.97 0.13 5.22
 (𝜇 = 0, 𝜎 = 0.5) 0.99 0.02 1.05
 (𝜇 = 0, 𝜎 = 1) 0.50 0.01 0.53
S

a

Table E.3
Experiment 2 Bayes factors (BF10) in the critical region for the effect of Grammati-
cality × Surprisal interaction, with a range of standard deviations on the prior.

F10 > 1 favors H1; BF10 < 1 favors H0.
Prior BF10 (Gram × Surp)

Binary surprisal GPT-2 surprisal
 (𝜇 = 0, 𝜎 = 0.01) 1.16 0.71
 (𝜇 = 0, 𝜎 = 0.05) 0.35 0.18
 (𝜇 = 0, 𝜎 = 0.1) 0.18 0.09
 (𝜇 = 0, 𝜎 = 0.5) 0.04 0.02
 (𝜇 = 0, 𝜎 = 1) 0.02 0.01

(8) Experiment 1 model comparison for the Grammaticality ×
Distractor two-way interaction

• Null Model 𝑀0:
logRT ∼ 1 + Gr ammat icalit y ∗ Sur pr isal + Dist r act or ∗
Sur pr isal + Gr ammat icalit y ∶ Dist r act or ∶ Sur pr isal + (1 ∣
Subj) + (1 ∣ It em)

• Full Model 𝑀1:
logRT ∼ 1 + Gr ammat icalit y ∗ Dist r act or ∗ Sur pr isal + (1 ∣
Subj) + (1 ∣ It em)

(9) Experiment 2 model comparison for the Grammaticality ×
Surprisal two-way interaction

• Null Model 𝑀0:
logRT ∼ 1 + Gr ammat icalit y + Sur pr isal + (1 ∣ Subj) + (1 ∣ It em)

• Full Model 𝑀1:
logRT ∼ 1 + Gr ammat icalit y ∗ Sur pr isal + (1 ∣ Subj) + (1 ∣ It em)

As suggested by previous work, we obtained BFs with a range of
tandard deviations on the priors of the target effects as a sensitivity

analysis (Schad et al., 2022). That is, the prior for log RT is set up
as above in Appendix ‘‘Statistical Models", except that the standard
deviation of the target effect in the full model 𝑀1 is changed to the
ones in Table E.2 and Table E.3 as a sensitivity analysis. Smaller prior
standard deviations indicate that the models assume an effect close
o zero, that is, a small effect size. Since Bayes factors compare the
arginal likelihood of the observed data between 𝑀0 and 𝑀1, a smaller

tandard deviation for the prior of the target effect in 𝑀1 makes the
odel more likely to capture the observed data if the effect size is

ndeed close to zero, and therefore makes the BF favors 𝑀1 to a greater
xtent.

We followed the scale in Table E.1 proposed by Jeffreys (1939) to
interpret Bayes factors. The BF result of Experiment 1 RT critical region
is summarized in Table E.2. We obtained moderate to strong evidence
or the Grammaticality × Distractor two-way interaction, and
or the Grammaticality × Distractor × Surprisal three-way
nteraction with GPT-2 surprisal. This is true even for models assuming
20 
a 0.1 standard deviation in the prior, which should correspond to a
decent effect size given that the model’s dependent variable is RT in log
scale. The BF result of Experiment 2 RT critical region is summarized
in Table E.3. There is almost no evidence for a Grammaticality ×
urprisal interaction with any surprisal measure.

Data availability

The trial-level data, analysis code, and the full list of stimuli are
vailable at https://osf.io/e5dsv/.
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