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 A B S T R A C T

How is the limited capacity of working memory efficiently used to support human linguistic behaviors? In 
this paper, we propose Strategic Resource Allocation (SRA) as an efficiency principle for memory encoding in 
sentence processing. The idea is that working memory resources are dynamically and strategically allocated to 
prioritize novel and unexpected information. From a resource-rational perspective, we argue that SRA is the 
principled solution to a computational problem posed by two functional assumptions about working memory, 
namely its limited capacity and its noisy representation. Specifically, working memory needs to minimize 
the retrieval error of past inputs under the constraint of limited memory resources, an optimization problem 
whose solution is to allocate more resources to encode more surprising inputs with higher precision. One of the 
critical consequences of SRA is that surprising inputs are encoded with enhanced representations, and therefore 
are less susceptible to memory decay and interference. Empirically, through naturalistic corpus data, we find 
converging evidence for SRA in the context of dependency locality from both production and comprehension, 
where non-local dependencies with less predictable antecedents are associated with reduced locality effect. 
However, our results also reveal considerable cross-linguistic variability, suggesting the need for a closer 
examination of how SRA, as a domain-general memory efficiency principle, interacts with language-specific 
phrase structures. SRA highlights the critical role of representational uncertainty in understanding memory 
encoding. It also provides a reinterpretation for the effects of surprisal and entropy on processing difficulty 
from the perspective of efficient memory encoding.
Introduction

Language processing in humans relies on working memory, a cogni-
tive module known for its limited capacity to retain information (Bad-
deley, 1992; Fedorenko, Woodbury, & Gibson, 2013; Just & Carpenter, 
1992). Under this limitation, a linguistic signal, once perceived, is at 
the risk of being lost, rapidly overwhelmed by the continual torrent 
of new inputs (Christiansen & Chater, 2016). Meanwhile, language 
use seems effortless, with sophisticated linguistic representations be-
ing dynamically encoded and decoded within milliseconds. This dual 
nature of working memory raises the question: how is the limited ca-
pacity of working memory efficiently used to support human linguistic 
behaviors?

In this paper, we propose Strategic Resource Allocation (SRA) as an ef-
ficiency principle for memory encoding in sentence processing. Specif-
ically, working memory resources are dynamically and strategically 

I This article is part of a Special issue entitled: ‘Language Models & Psycholinguistics’ published in Journal of Memory and Language.
∗ Corresponding author.
E-mail address: weijie.xu@uci.edu (W. Xu).

allocated to prioritize novel and unexpected information. We argue 
that this efficiency principle, as a resource-rational theory (Gershman, 
Horvitz, & Tenenbaum, 2015; Lewis, Howes, & Singh, 2014; Lieder 
& Griffiths, 2020), naturally arises as the solution to a computational 
problem posed by two functional assumptions about working memory: 
its capacity is limited, and its representations are noisy. To examine this 
efficiency principle, we report three studies using naturalistic corpus 
data, where we demonstrate empirical support for strategic resource 
allocation through the lens of the locality effect in processing non-local 
syntactic dependencies.

Strategic Resource Allocation (SRA)

We first present the theoretical justification and existing empiri-
cal evidence for our proposal of Strategic Resource Allocation (SRA), 
drawing from the literature on sentence processing and psychophysics.
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Fig. 1. Working memory processes under the probabilistic framework. The lin-
guistic input 𝑤 is encoded with noisy internal memory representation 𝑟. Higher 
memory resources results in sharper representation concentrated around the 
true input with less uncertainty. Memory retrieval can be considered an 
inference process reconstructing linguistic input based on noisy representation.

Theoretical proposal

We propose that working memory resources are strategically allo-
cated in a way that prioritizes novel and unexpected information given 
the context, an efficiency principle that we refer to as Strategic Resource 
Allocation (SRA):

(1) Strategic Resource Allocation (SRA) in memory encoding: 

Principle. Working memory resources are dynamically and
strategically allocated in a way that prioritizes linguistic 
units that are unexpected and surprising given the context.

Core Prediction. The encoding of more surprising units is en-
hanced, resulting in more robust memory representations 
that are less susceptible to memory interference or decay.

This principle is in line with the resource-rational analysis of hu-
man mind (Gershman et al., 2015; Lewis et al., 2014; Lieder & Grif-
fiths, 2020). Grounded in the bounded-rational approach to cogni-
tion (Anderson, 1990; Simon, 1955), resource-rational analysis aims 
to integrate the functional goals of a computational problem into the 
structural constraints of the underpinning cognitive architecture, pro-
viding a linkage between the computational-level and the algorithmic-
level theories (Marr, 1982). In other words, instead of looking for an 
unbounded optimization, resource-rational analysis seeks to explain 
human behaviors under bounded rationality, that is, to identify an 
optimal solution that strikes the balance between maximizing the func-
tional utility and adhering to the structural constraints of the cognitive 
system.

In this section, we will first outline the computational problem faced 
by working memory: to infer past information from uncertainty with 
maximal accuracy under the constraint of limited memory resources. 
We will then explain how SRA provides an optimal solution to this 
computational problem.
2 
Inferring from uncertainty: A computational problem of working memory
As already mentioned, the resource-rational explanation for SRA 

is rooted in a computation problem posed by two functional assump-
tions about working memory. First, the capacity of working memory 
is limited. Although the exact nature of this limitation is still under 
debate, recent models in some non-linguistic domains have shifted 
from a discrete slot representation (Cowan, 2001; Luck & Vogel, 1997; 
Miller, 1956; Pashler, 1988) towards a continuous resource-based rep-
resentation, where the limited resources can be flexibly allocated across 
the encoded information (Bates & Jacobs, 2020; Brady, Störmer, & 
Alvarez, 2016; Brady & Tenenbaum, 2013; Jakob & Gershman, 2023; 
Ma, Husain, & Bays, 2014; Sims, 2016; Sims, Jacobs, & Knill, 2012; van 
den Berg & Ma, 2018; van den Berg, Shin, Chou, George, & Ma, 2012).

Second, memory representation is full of noise and uncertainty, with 
unpredictable corruption in the veridical forms of sensory input, result-
ing in distorted representations that undermine behavioral performance 
such as inaccurate recall and illusive comprehension (Brady, Robinson, 
& Williams, 2024; Ferreira, Bailey, & Ferraro, 2002; Gibson, Bergen, 
& Piantadosi, 2013; Levy, 2008b; Ma et al., 2014). This uncertainty 
is often represented under the probabilistic framework. As shown in 
Fig.  1, when a linguistic input 𝑤 is received, it can be encoded into 
an internal representation through certain memory model 𝑟 = 𝑀(𝑤). 
This 𝑟 is a probabilistic distribution centered around the true value of 
that input, such that the true input bears the highest probability in 
the encoding distribution compared to other alternatives.1 Given this 
noisy representation, the true state of a past input is inaccessible, and 
memory recall, decoding, or retrieval, is effectively an inferential pro-
cess that reconstructs past input from uncertainty using the statistical 
structure of long-term knowledge. The results of this process are often 
mathematically characterized using Bayes’ rule (e.g., Bays, Schneegans, 
Ma, & Brady, 2024; Futrell, Gibson, & Levy, 2020; Gibson et al., 2013; 
Levy, 2008b; Ryskin et al., 2021): 
𝑝(𝑤̂ ∣ 𝑟) ∝ 𝑝𝑀 (𝑟 ∣ 𝑤)𝑝(𝑤). (1)

The equation describes a rational Bayesian decoder which infers the 
input from a specific memory representation 𝑟 integrating prior knowl-
edge 𝑝(𝑤), yielding a posterior distribution 𝑝(𝑤̂ ∣ 𝑟). Then, marginalizing 
over all possible values of 𝑟, the distribution on the reconstructed word 
given the true input 𝑤∗ is 

𝑝(𝑤̂ ∣ 𝑤∗) = ∫ 𝑝(𝑤̂ ∣ 𝑟)𝑝(𝑟 ∣ 𝑤∗)𝑑𝑟. (2)

In this inferential process, inputs that are more probable in the prior are 
more likely to be accurately reconstructed, resulting in higher retrieval 
accuracy. See ‘‘Appendix A.1’’ for detailed mathematical formalization 
of this probabilistic memory encoding and retrieval process.

The two assumptions above naturally give rise to the following 
optimization challenge: how to maximize memory accuracy under the 
constraint of limited resources? At the core of this challenge lies an effi-
ciency problem for two reasons. First, there is a functional goal, which 
is memory accuracy, against which the working memory performance 
is evaluated. Such a functional nature situates the current proposal 
under the rationalist approach to human mind. Second, working mem-
ory has internal constraints, in the sense that there is something it 
cannot achieve due to the cost from its own structure. Without such 
constraints, there would be no reason to look for an efficient imple-
mentation of a functional goal. The acknowledgment of system-internal 

1 In many psychophysics studies, the encoded representation is assumed 
to be a specific stimulus value that is generated from certain probabilistic 
distribution. Here in our work, we take a different assumption and postulate 
that what has been encoded, instead of a specific stimulus value, is the 
distribution itself, either through sampling (Hoover, Sonderegger, Piantadosi, 
& O’Donnell, 2023) or through probabilistic population codes (Ma, Beck, 
Latham, & Pouget, 2006).
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Fig. 2. Conceptual framework of strategic resource allocation (SRA) versus uniform resource allocation in memory encoding. Compared to uniform allocation, 
SRA holds that more surprising units receive more memory resources, therefore less representational uncertainty in its encoding distribution. Upon retrieval, 
more surprising units are less reconstructable based on prior compared to less surprising ones. But SRA leads to lower retrieval error overall by improving the 
reconstruction of high-surprisal units with minimal loss to the retrieval accuracy on low-surprisal units.
cost, therefore, further situates the current proposal under resource-
rationality.2 Next, we will explain how SRA provides a principled 
solution to the computational challenge outlined above.

SRA as a resource-rational solution
First of all, an important assumption we make is that the precision 

of the encoded distribution is proportional to the amount of memory 
resources allocated to an input unit. That is, as illustrated in Fig.  1, 
more resources allocated to encode 𝑤 results in sharper distribution 
with less uncertainty, such that more probability mass is concentrated 
around the true input value 𝑤. Despite its lack of attention in the field 
of sentence processing, this assumption has been widely entertained 
in the literature of psychophysics (e.g., Bates & Jacobs, 2020; Bays, 
Catalao, & Husain, 2009; Bays et al., 2024; Ma et al., 2014).3 As 
shown below, such a relationship between allocated resources and 
representational uncertainty lays the foundation for the derivation of 
SRA.

Before demonstrating the rationale behind SRA, let us first consider 
a naive strategy in which memory resources are uniformly distributed 
across all linguistic units regardless of the statistical structure in the 
context (Fig.  2, bottom panel). Under this uniform distribution, each 
input unit will receive an encoding distribution with identical precision. 

2 In this paper, we simply represent the internal cost of working memory as 
a computational bound (i.e., the total amount of available memory resources) 
within which a given task such as memory retrieval is imperfectly optimized, 
an approach that has been termed bounded optimality (Icard, 2023).

3 One of the biggest challenges to apply such an encoding distribution in the 
domain of language is the specification of hypothesis space. In psychophysics, 
the hypothesis space is usually a quantitative spectrum that can be objectively 
specified based on certain physical features. But for language, the linguistic 
inputs are discrete units. Nowadays, with the advance of modern NLP tech-
niques, this challenge has been significantly mitigated given the distributive 
word representations such as word embeddings. However, it is still nontrivial 
work to figure out what kind of probabilistic distribution should be applied to 
word embedding space. See ‘‘Appendix A.1’’ for a Gaussian approximation to 
the probabilistic memory processes.
3 
However, under the influence of prior, inputs that are more surprising 
under the prior will be less reconstructable, and the retrieval distri-
bution will be more drawn towards the prior. Due to this difference in 
reconstructability, the same encoding distribution would yield different 
retrieval accuracy, disproportionally exerting impact on high surprisal 
inputs, reducing their retrieval accuracy more significantly than low 
surprisal ones. Therefore, a uniform distribution of memory resources 
is not the most efficient way to go for memory encoding, leaving 
substantial room for the improvement of overall retrieval accuracy.

Now, consider SRA, the strategic allocation of memory resources 
(Fig.  2, top panel). Recall that the idea is to strategically allocate more 
resources on linguistic units of higher surprisal a priori. That means, 
the prioritized more surprising units will receive sharper encoding 
with higher precision. This asymmetric allocation of resources is more 
efficient than the uniform strategy described in the last paragraph, since 
it achieves higher accuracy on average across inputs. By sacrificing a 
slight reduction in retrieval accuracy for low surprisal units, significant 
gains can be achieved for high surprisal ones by preventing these ir-
reconstructable units from being distorted in the first place. Put simply, 
when only a limited number of linguistic units can be encoded with 
minimal distortion, it is more important to encode the more surprising 
and less reconstructable ones (See ‘‘Appendix A.2’’ for mathematical 
derivation).4

Beyond memory, SRA aligns with theories such as predictive coding, 
free energy principle, and implicit learning. At the neural level, the 
predictive coding mechanism (Aitchison & Lengyel, 2017; Blank & 

4 By having an encoding strategy that optimizes faithful reconstruction 
of the true input, an implicit assumption we made is that the input signal 
is considered error-free. If the input itself contains errors (e.g., when there 
are speech errors produced by the speaker), a reconstruction that is strongly 
influenced by the prior may actually be preferred so that the signal errors can 
be corrected. How to deal with the errors in input signals is an important 
online processing task. But in the current proposal, we choose to analyze 
working memory as a system of information storage, whose main goal is to 
accurately encode and decode the information it receives (cf. Hasson, Chen, & 
Honey, 2015).
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Davis, 2016; Gagnepain, Henson, & Davis, 2012; Murray, Kersten, 
Olshausen, Schrater, & Woods, 2002; Rao & Ballard, 1999; Sohoglu & 
Davis, 2016, 2020) and the free energy principle (Friston, 2005, 2010; 
Gershman, 2019) hold that the brain seeks to minimize its prediction 
error, or surprise, as a way to optimize its internal model of the external 
environment. This principle is implemented by encoding prediction 
errors rather than the raw sensory input in neural signals. At the 
behavioral level, implicit learning theories often hold that learning is 
error-driven, with considerable empirical support showing that larger 
prediction errors lead to greater learning effect (Bock, 1986; Chang, 
Dell, & Bock, 2006; Courville, Daw, & Touretzky, 2006; Elman, 1990; 
Ferreira, 2003; Hartsuiker & Kolk, 1998; Jaeger & Snider, 2013; Rumel-
hart, Hinton, & Williams, 1986; Scheepers, 2003; Wagner & Rescorla, 
1972; Xu & Futrell, 2024). Taken together, all these theories delivered a 
similar implication for our proposal in the domain of working memory. 
That is, when predictions conflict with the actual perceptual input 
(that is, when there is high surprisal input), it signals the need for 
comprehenders to update their mental model in order to make more 
accurate predictions in the future. Given this critical role of more 
surprising linguistic units in refining the mental model, it is reasonable 
to allocate more memory resources to them.

Predictability–precision trade-off

SRA can also be construed as a predictability–precision trade-off, 
as illustrated in Fig.  3. Imagine there are multiple linguistic units 
to be stored in working memory, with the goal of minimizing their 
total retrieval error (or, maximizing the retrieval accuracy). In most 
cases, for each unit, higher memory resources suggest higher encoding 
precision, which lead to lower retrieval error.5 However, given a fixed 
amount of resources, allocating more to one unit necessarily reduces 
what is available to others. Therefore, the gain of retrieval accuracy 
for one unit necessarily comes with the loss for others. Consequently, to 
minimize total retrieval error, the optimal distribution of a fixed amount 
of resources should balance the gain and the loss in retrieval accuracy 
across units.

Where, then, does the balance hold? The intuition is illustrated in 
Fig.  3. First, let us start from the uniform distribution of resources, 
where both high- and low-surprisal inputs receive the same amount of 
resources, and are thus encoded with the same degree of precisions 
(i.e., gray dots in Fig.  3). Importantly, the retrieval error decreases 
faster for high-surprisal input. Therefore, at this point of uniform 
distribution of resources, there is a momentum to redistribute more 
resources to high-surprisal input. This is because such a redistribution 
towards high-surprisal input reduces the error faster. In other words, 
given a fixed amount of resources, the pressure to lower the overall 
retrieval error will push the encoding precision of high-surprisal input 
to increase from a uniform distribution of resources, and vice versa for 
low-surprisal one. This redistribution continues until there is balanced 
marginal effects, that is, when the slopes of the two error functions are 
equal, as in Fig.  3 (see ‘‘Appendix A.2’’ for details).

Precision, accuracy, and robustness

It is important to point out that the key prediction of SRA is not 
simply about the mean accuracy of memory retrieval. As shown in Fig. 
2 (top panel), both predictable and unpredictable units can achieve 
relatively high accuracy with respect to the mean of retrieval distri-
bution. For predictable input, this is supported by prior knowledge; 

5 In some borderline cases, where the input word is too close to the prior 
prediction and the prior precision is too unreliable, the retrieval error may 
not monotonically decrease with increasing encoding precision. However, as 
shown in ‘‘Appendix A.2’’, in either case, the strategic resource allocation 
should still hold in the sense that more resources should be allocated to high 
surprisal units in order to minimize the expected total error.
4 
Fig. 3. Retrieval error as a function of encoding precision for high-surprisal 
and low-surprisal inputs. The optimal encoding strategy balances the potential 
gain and loss in retrieval accuracy across linguistic inputs.

for unpredictable input, this is achieved by more precise encoding 
representation. In fact, one of the critical consequences of SRA is 
that the retrieval mean accuracy should remain approximately similar 
across different linguistic units.6

But what does differ is the precision, or uncertainty in the represen-
tation. By allocating more resources, more surprising linguistic units 
are encoded with lower uncertainty (see the sharper distributions with 
high resources in Fig.  2). We thus propose that the uncertainty in the 
memory representation, rather than being linked to retrieval accuracy, 
is more directly related to memory robustness. That is, memory represen-
tation of higher robustness is less susceptible to the interference from 
other elements in memory. It of course remains a debatable question 
what the linking hypothesis is for representational uncertainty, but 
the linkage between uncertainty and robustness gives us a working 
hypothesis that is readily testable, as shown below in the rest of this 
paper. We will return to this point later in General Discussion ‘‘The role 
of representational uncertainty’’.

Our theoretical framework of SRA alludes to three effects on mem-
ory encoding precision:

(2) Three predicted effects of strategic resource allocation on encod-
ing precision 

a. Effect of input surprisal
Surprising linguistic units bear higher encoding precision, 
resulting in more robust memory representation against 
interference.

b. Effect of memory constraint
More available memory resources result in higher encod-
ing precision overall.

c. Effect of prior precision
Precision of prior prediction does not necessarily increase 
or decrease encoding precision.

6 SRA does not necessarily predict the retrieval mean accuracy to be an 
absolute constant across all linguistic units. In fact, the accuracy for low 
surprisal units may still be higher than high surprisal ones in Bayesian 
inference. However, due to SRA, this difference can be reduced compared to 
a naive encoding strategy such as uniform resource allocation.
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The most important prediction of SRA is (2a), the effect of input 
surprisal. As outlined earlier, the optimal strategy to minimize overall 
retrieval error is to allocate more memory resources to encode surpris-
ing input. This strategy results in higher precision in the representation, 
thus higher memory robustness against interference. This is the critical 
prediction that we are going to examine empirically in the current 
study.

For the effect of memory constraint (2b), SRA predicts that more 
available memory resources results in higher encoding precision in 
general. This will also lead to higher memory robustness and more 
accurate retrieval overall.

For the precision of prior prediction (2c), its effect on encoding 
precision is in fact less straightforward. When the true input is very 
close to the prior prediction, it is indeed possible that less uncertainty 
in the prior can better support memory retrieval, thus less precise 
encoding is needed. However, when the true input is far from the prior 
prediction, it is not necessarily the case that more precise prior can still 
support better retrieval. We will discuss this effect in more detail and its 
implication for the effect of prediction entropy on processing difficulty 
in General Discussion ‘‘Processing difficulty as encoding difficulty: 
Reinterpreting the effect of surprisal and entropy’’.

Some existing empirical evidence

A dynamic similar to strategic resource allocation (SRA) is ob-
served in the resource-rational model of sentence processing by Hahn, 
Futrell, Levy, and Gibson (2022). Grounded in the framework of lossy-
context surprisal (Futrell, Gibson, & Levy, 2020), their model involves 
a contextual representation that represents only those words that are 
most useful for a downstream next-word prediction task. Their model 
predicts that function words, which are mostly predictable from the 
linguistic context, are more likely to undergo decay. In fact, our pro-
posal of strategic resource allocation and lossy-context surprisal theory 
form two sides of the same coin in many aspects. We will discuss the 
relationship between these two theories in General Discussion Section 
‘‘Relationship with lossy-context surprisal’’.

Studies focusing on memory retrieval mechanisms find that linguis-
tic units of higher semantic complexity can be more easily retrieved 
in later stages of processing despite the initial encoding difficulty, 
implicating an enhanced accessibility for informative content from 
the model-theoretic perspective of informativity (Hofmeister, 2011; 
Hofmeister & Vasishth, 2014; Karimi & Ferreira, 2016; Troyer, Hofmeis-
ter, & Kutas, 2016). However, the exact cognitive underpinning for this 
empirical observation is still debatable (Hofmeister & Vasishth, 2014; 
Karimi, Diaz, & Wittenberg, 2023), and there is lack of clear empirical 
evidence for whether this effect can be extended to the information-
theoretic view of informativity based on probabilistic prediction (Shan-
non, 1948). In spite of these unsettled issues, as a preliminary evidence 
from the existing literature, the effect of facilitated retrieval for seman-
tically complex units aligns with our rational account outlined above, 
in the sense that the enhanced accessibility associated with informative 
units results from the prioritized resources allocated to their encoding.

Recently, SRA is more directly examined by Xu and Futrell (2025) 
through the lens of the agreement attraction effect in English. As shown 
below, even though the sentences in (3) are ungrammatical in English 
due to the mismatch of number feature between the subject head noun 
and the main verb, they are often perceived grammatical by native 
speakers due to the interference from the distractor noun in between, 
which shares the number feature with the ungrammatical main verb. 
In Xu and Futrell (2025), by manipulating the surprisal of the subject 
head noun through a prenominal adjective, they find that, compared to 
more surprising subject head nouns (e.g., cute monster), less surprising 
ones (e.g., evil monster) lead to stronger agreement attraction effect, 
such that the processing of the main verb is less susceptible to the 
interference from the distractor noun. They interpret the result as 
evidence for an enhanced memory representation of more surprising 
linguistic units against memory interference.
5 
(3) a. *The evil monster who chased the kids seemingly were
gone before the sunset.   [low surprisal]

b. *The cute monster who chased the kids seemingly were
gone before the sunset.  [high surprisal]

In visual working memory, statistical regularities in long-term knowl
edge have been shown to shape memory performance. Despite the 
fact that items more consistent with prior knowledge are easier to 
be encoded with lower neural activity and enhanced behavioral per-
formance (Bates & Jacobs, 2020; Blalock, 2015; Girshick, Landy, & 
Simoncelli, 2011; Jackson & Raymond, 2008; Xie & Zhang, 2017), 
some recent studies indeed observe that, in later stages of processing, 
these familiar items are de-prioritized to save more resources for the 
processing of novel ones (Brady et al., 2024; Bruning & Lewis-Peacock, 
2020; Hedayati, O’Donnell, & Wyble, 2022; Kowialiewski, Lemaire, 
& Portrat, 2022). For example, in a delayed-estimation task, Bruning 
and Lewis-Peacock (2020) ask participants to first memorize and then 
recall the exact locations of six colored balls on a circle after a brief 
delay. Before the task, a sub-area on the circle has been previously 
illustrated to certainly contain the ball with a specific color (e.g., red 
ball) as a prior information. Their critical finding is that colors not 
included in the prior information (e.g., non-red balls) have lower 
recall accuracy when positioned closer to that sub-area, suggesting 
that memory resources have been shifted away from the prior area to 
prioritize other areas where novel information is more likely to appear.

SRA and dependency locality

The empirical focus of this paper to examine SRA is the locality effect
in sentence processing, which has been considered a representative 
example of the efficient use of working memory resources. In this 
section, we will first introduce the empirical background of dependency 
locality effect. Then, we will present the empirical predictions of SRA 
in the context of dependency locality.

Dependency locality

Consider the sentence pair in (4). In (4a), codependents in the 
subject–verb dependency are adjacent to each other, whereas in (4b), 
there is additional linguistic material in between:

(4) a. The monster approached the princess...
b. The monster who stayed in the tower approached the 
princess...

The Dependency Locality Theory (DLT) (Gibson, 1998, 2000) holds 
that the formation of the non-local structures is constrained by the 
limited capacity of working memory. Specifically, as dependency dis-
tance increases, there is a higher memory cost to store the incomplete 
dependency as well as a higher integration cost to compute the new 
structural representation when the other codependent is encountered. 
In support of DLT, increased processing difficulty is often associated 
with structures that have longer dependency distance (e.g., Bartek, 
Lewis, Vasishth, & Smith, 2011; Ford, 1983; Gordon, Hendrick, & 
Johnson, 2001; Grodner & Gibson, 2005; King & Just, 1991; Miller & 
Isard, 1964; Traxler, Morris, & Seely, 2002; Yngve, 1960).7 Similarly, in 
the resolution of structural ambiguity where a constituent has multiple 
potential attachment sites, there is a tendency for comprehenders to 
prefer the structure with local attachment (Frazier & Fodor, 1978; 
Gibson, Pearlmutter, Canseco-Gonzalez, & Hickok, 1996; Pearlmutter 
& Gibson, 2001).

7 There is actually an anti-locality effect often found in some head-final 
dependencies, which is considered to be better explained by an expectation-
based mechanism (Konieczny, 2000; Levy & Keller, 2013; Nakatani & Gibson, 
2010; Vasishth & Lewis, 2006).
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Fig. 4. Empirical prediction of strategic resource allocation in dependency locality. High-surprisal antecedents are more tolerable to longer dependency length.
Due to the memory constraint involved in processing non-local 
dependencies, an efficiency principle for language structure should be 
that linguistic units connected in a syntactic dependency tend to stay 
close in linear order. This locality principle is evidenced by cross-
linguistic word-order patterns (Ferrer-i Cancho, 2004; Futrell, Levy, 
& Gibson, 2020; Futrell, Mahowald, & Gibson, 2015; Hawkins, 1990, 
1994, 2004; Liu, 2008, 2021; Liu & Wulff, 2023; Temperley & Gildea, 
2018) (cf. Liu, 2020), and has been argued to explain typological 
patterns such as the consistency in head direction, the contiguity of con-
stituents, and the asymmetry of short-before-long versus long-before-
short between head-initial and head-final languages (Futrell, Levy, & 
Gibson, 2020; Hawkins, 1994, 2004).

More recently, some studies propose a generalization from depen-
dency locality to information locality, where any pair of linguistic 
units with high co-occurrence statistics, no matter whether they are 
in the same syntactic dependency or not, should stay close in linear 
order (Futrell, 2019; Futrell, Gibson, & Levy, 2020; Hahn, Degen, & 
Futrell, 2021; Hahn & Xu, 2022). Compared to previous work, these 
studies highlight the role of predictive processing, pointing out an in-
teraction between the memory-based and the expectation-based mech-
anisms. Specifically, under the framework of Surprisal Theory (Hale, 
2001; Levy, 2008a), the processing difficulty of a linguistic unit is pro-
portional to how well it is predictable from the memory representation 
of the past input, which is prone to memory loss and distortion. The 
locality effect, as an efficient use of working memory, suggests that 
linguistic units carrying the most relevant information to predict the 
current one should stay in the recent past before they are forgotten.

These locality principles depend on the precise nature of work-
ing memory. Therefore, beyond the general capacity-based constraint 
proposed by DLT, it remains an open question how far this efficiency ac-
count can go with more and more realistic and detailed characterization 
of the nature of working memory constraints. Moreover, the existing 
discussion in the literature rarely addresses efficiency in processing per 
se. In other words, it is possible that memory limitations make language 
users not only actively choose a sentence form that is easier to process, 
but also develop an efficient processing strategy to better handle the 
information they passively receive.

The current study

We examine SRA in the context of dependency locality through 
naturalistic corpus data. If working memory resources are indeed dy-
namically and strategically allocated such that novel and unexpected 
information is prioritized, we predict that antecedents (i.e., left code-
pendents) that are more surprising should receive sharper encoding 
with less uncertainty. The consequence of this is that memory for more 
surprising antecedents is enhanced, making their representations less 
susceptible to memory decay and interference before they need to be 
re-accessed at the other side of the dependency. Therefore, as illustrated 
in Fig.  4, more surprising antecedents should be able to tolerate longer 
dependency length, resulting in a reduced locality effect. We approach 
6 
this prediction from both production (Study 1) and comprehension 
(Study 2a and 2b).

There are two terminological clarifications. First, we adopt a rela-
tively broad interpretation of the term memory encoding in this article, 
focusing on the representational aspect of working memory mecha-
nisms. Second, the term resources refers to any quantity that is limited 
and costly to use for better cognitive performance. Given the ongoing 
debate about the exact nature of working memory resources (Bays 
et al., 2024; Ma et al., 2014), we choose to restrict the use of this term 
to its abstract sense.

To preview our results, we find converging evidence from both 
production and comprehension that unexpected information is encoded 
with enhanced robustness against decay and interference. In Study 1, 
which focuses on production data, we observe that more surprising 
antecedents are associated with longer dependency lengths, an effect 
that is not reducible to a simple frequency effect. Moreover, the effect 
mostly exists within Indo-European and head-initial languages in our 
analysis, and is more consistent for subject relations. We discuss the 
cross-linguistic variability in General Discussion. In Study 2a and 2b, 
examining comprehension data from English reading-time corpora, we 
find a reduced locality effect at the retrieval site for more surprising 
antecedents. Consistent with Study 1, this effect is more pronounced in 
subject relations and is observed more reliably in the self-paced reading 
corpus (Study 2a) than in the eye-tracking corpus (Study 2b).

Study 1: Production side

We first examine strategic resource allocation in dependency lo-
cality in production. We predict that in production, the pressure to 
minimize dependency length can be relaxed when the antecedent con-
tains novel and unexpected information. Consider the subject–verb 
dependency in the sentences below in (5):
(5) a. The evil monster in the tower approached...

b. The cute monster who stayed in the tower near the castle
approached...

The subject ‘‘the cute monster’’ in (5b) is more surprising compared 
to ‘‘the evil monster’’ in (5a). According to our hypothesis, the un-
predictable ‘‘cute monster’’ should be prioritized with more memory 
resources for encoding, and therefore is more capable of resisting the 
interference or decay introduced by the intervening material before the 
verb. As a result, compared to (5a), the less predictable antecedent 
in (5b) is able to tolerate more intervening material before being re-
accessed at the retrieval site (i.e., the right codependent), leading to 
longer dependency length. We measure the predictability of word 𝑤 at 
position 𝑡 as surprisal 𝑆𝑡: 
𝑆𝑡 ≡ − log 𝑝

(

𝑤𝑡 ∣ 𝑤<𝑡
)

, (3)

which is the negative log likelihood of the word 𝑤𝑡 given its preceding 
context 𝑤<𝑡. The higher the surprisal, the less predictable a word is. 
Therefore, we predict a positive correlation between antecedent surprisal
and dependency length 𝐿 in production data.
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Besides antecedent surprisal, we also examined the role of antecedent 
frequency in shaping memory allocation. On the one hand, these two 
quantities are highly correlated, in that low frequency words are also 
unpredictable in general, thus yielding higher surprisal. However, on 
the other hand, compared to surprisal, frequency as a unigram proba-
bility does not contain any information from the context. By comparing 
the effects of antecedent surprisal and antecedent frequency, we aim to 
look into to what extent the contextual information contributes to 
the efficiency strategy of working memory encoding. We expect less 
frequent antecedents to associate with longer dependency length.

Method

Data
We used the corpora of 10 languages taken from Universal Depen-

dencies (UD) release 2.11 (Nivre et al., 2020), as summarized in Table 
1, with the aim to cover a wide variety of typological configurations 
(e.g., head-initial vs. head-final; free vs. rigid word order).8 An illus-
tration of UD annotations is shown in (6), where each arc represents a 
dependency whose direction is from the head to the dependent.9

(6) Example of UD annotation:

Compared to the Surface Syntactic Universal Dependencies (SUD)
(Gerdes, Guillaume, Kahane, & Perrier, 2018), which is another major 
project of dependency corpora, the UD annotation scheme is content-
word-oriented. That is, UD always labels content words as the head of a 
unit. As a result, UD favors lexical heads rather than functional heads 
in cases like adpositions, subordinating conjunctions, auxiliaries, and 
copulas. For the sentence above in (6), for example, SUD annotates the 
oblique relation as from the head ‘‘left’’ to the preposition ‘‘to’’ rather 
than to ‘‘Einstein’’. In the current work, we chose to use UD corpora 
since memory processes are more sensitive to content words rather than 
function words (Gibson, 1998; Grodner & Gibson, 2005).

Some UD corpora consist of out-of-context independent sentences, 
while others are organized document by document, which provide 
longer and enriched discourse context for each token. This difference 
may influence our surprisal estimates, which are sensitive to the pre-
ceding context of each token. We extracted all the dependencies of a 
sentence annotated in the UD corpora. All the UD corpora we used have 
a pre-defined split into training, dev, and test sets. We only used the 
pre-defined training sets since they already have decent sample size.

Estimating token surprisal
In this work, to ensure that the results are not the artifact of a 

specific language model, we generated surprisal measures from both 
the GPT-3 base (text-davinci-001 Brown et al., 2020) and the mGPT 
language models (Shliazhko et al., 2024), both being trained on multi-
lingual data. For each token 𝑤 in the dependency corpora, we obtained 
its surprisal − log 𝑝(𝑤𝑡 ∣ 𝑤<𝑡) given the preceding context from both 

8 The original Russian corpus has over 1.2M tokens with over 600 docu-
ments; we randomly sampled 300 documents from the original corpus in our 
analysis in order to save on computational power.

9 In our analysis, antecedent is defined as the left codependent of a 
dependency, and the retrieval site is always considered the right codependent, 
although as seen in (6) the direction of a dependency can either go from the 
left codependent to the right or the other way around.
7 
models. We used the maximally allowed context window in the cor-
responding document or sentence. It is worth noting that Mandarin 
Chinese, unfortunately, is not supported by mGPT. Therefore, we only 
report the results with GPT-3 surprisal for Mandarin.

Contemporary large language models (LLMs) implemented with ar-
tificial neural networks provide state-of-the-art probabilistic measures 
of linguistic sequences and next-word predictions for the approximation 
of human predictive processing in psycholinguistics research (Shain, 
Meister, Pimentel, Cotterell, & Levy, 2024; Wilcox, Gauthier, Hu, Qian, 
& Levy, 2020; Wilcox, Pimentel, Meister, Cotterell, & Levy, 2023; 
Xu, Chon, Liu, & Futrell, 2023). Empirically, the surprisal generated 
from LLMs highly correlates with human language processing difficulty 
indexed by both behavioral and neural responses (Goodkind & Bicknell, 
2018; Hao, Mendelsohn, Sterneck, Martinez, & Frank, 2020; Hoover 
et al., 2023; Hu, Gauthier, Qian, Wilcox, & Levy, 2020; Li & Ettinger, 
2023; Schrimpf et al., 2021; Shain et al., 2024; Wilcox et al., 2023; Xu 
et al., 2023).

Measuring dependency length
We did the analysis with two different measures of dependency 

length 𝐿. The first measure is an orthographic one 𝐿O, which is the 
number of words between the codependents of a dependency. The 
second measure is an information-theoretic one 𝐿I, which sums up the 
surprisal of all words between codependents from 𝑤𝑖 to 𝑤𝑖+𝑁 : 
𝐿I = − log 𝑝(𝑤𝑖…𝑖+𝑁 ∣ 𝑤<𝑖)

= −
𝑖+𝑁
∑

𝑗=𝑖
log 𝑝(𝑤𝑗 ∣ 𝑤<𝑗 ).

(4)

We used these two measures because different words presumably in-
duce memory interference to different extents. For example, compared 
to a content word that marks a discourse referent, a function word such 
as a determiner is way less informative, and may require much smaller 
memory load, thus inducing weaker memory interference (Gibson, 
1998; Grodner & Gibson, 2005). Compared to the orthographic 𝐿O, 
which treats all the words in the same way, the information-theoretic 
𝐿I may better capture the above-mentioned variability across different 
words (Hahn et al., 2021).10

Data transformation and exclusion
Constructions such as foreign phrases, multi-word proper names, 

and fixed expressions are annotated as flat structures in UD corpora. 
We merged flat structures such that the surprisal of the whole structure 
is the sum of all its components, and that the first word in the flat 
structure is treated as the head when calculating the length of a 
dependency. For example, the subject–verb dependency in (6) involves 
a flat structure in the subject position. The antecedent surprisal for 
this dependency is thus the sum of surprisal over both words ‘‘Isaac 
Newton’’, and the dependency length by word counts is 1, since the first 
word ‘‘Isaac’’ is one word away from the verb. We excluded sentences 
that are less than five-word long, since sentences that are too short 
may have limited room for the dependency length to vary and many 
of the short ‘‘sentences’’ are in fact titles and extended proper names 
(e.g., e-mail addresses and institution names). We excluded punctua-
tion tokens. We also excluded tokens whose surprisal value is greater 
than 20 bits, as the surprisal estimates for such rare word sequences 
may be unreliable. Moreover, exceedingly surprising information may 
introduce confounding factors in human processing. We then extracted 
all the dependencies in which both the head and the dependent are 
spared from data exclusion.

10 A potential problem with the information-theoretic 𝐿I lies in the dual 
role attributed to surprisal: it has been theorized as being proportional both 
to the allocated memory resources and to memory cost. Although intuitively 
more memory resources allocated may induce higher memory cost as well, we 
acknowledge that the extent to which these two concepts can be treated as 
interchangeable remains a debatable question.
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Table 1
Dependency corpora used in Study 1. ‘Genre’ refers to whether the texts in the corpus are organized as independent 
sentences (‘sent’), or as documents with larger coherent discourse size (‘doc’). ‘# All’ indicates the number of all 
the dependencies after data exclusion. ‘# Subj’ is a subset of ‘# All’ and indicates the number of dependencies 
with subject relations. ‘# Obj’ indicates the number of dependencies with object relations.
 Language Corpus Genre # All # Subj # Obj  
 Danish DDT (Johannsen, Alonso, & Plank, 2015) sent 45,976 4,203 3,963 
 English GUM (Zeldes, 2017) doc 89,947 7,881 7,296 
 German GSD (McDonald et al., 2013) sent 155,480 9,602 8,474 
 Italian ISDT (Bosco, Montemagni, & Simi, 2013) doc 208,939 10,323 11,735 
 Japanese GSD (Tanaka et al., 2016) sent 113,771 5,005 4,018 
 Korean Kaist (Chun, Han, Hwang, & Choi, 2018) doc 154,609 9,855 24,690 
 Mandarin GSDSimp (Nivre et al., 2020) sent 63,456 5,538 7,576 
 Russian SynTagRus (Droganova, Lyashevskaya, & 

Zeman, 2018)
doc 329,745 32,822 25,065 

 Spanish AnCora (Taulé, Martí, & Recasens, 2008) doc 333,728 21,472 31,143 
 Turkish BOUN (Marşan, Akkurt, Şen, Gürbüz, 

Güngör, Özateş, Üsküdarlı, Özgür, 
Güngör, & Öztürk, 2022)

sent 45,914 3,861 4,680 
Data analysis
For each language, the analysis consists of three parts. The first 

one is on the full dataset obtained as introduced above, with all types 
of dependency relations included. In addition, we also took a closer 
look into the dependencies whose dependent is a core argument in the 
sentence. Therefore, we also ran analysis on two subsets of the full 
dataset above, which include subject relations11 and object relations12 
respectively.

For the analysis with the full dataset, for each language, we ran 
separate linear mixed-effects models predicting the two variants of 
dependency length 𝐿 as the dependent variable, using the lmerTest
package in R (Kuznetsova, Brockhoff, & Christensen, 2017). The critical 
fixed-effect predictor is the antecedent surprisal, with random intercept 
by dependency types.13 For the analyses with subject and object rela-
tions, we ran linear models with the same fixed effects. We included 
five control variables for all the analyses, as in (7). Sentence position
aims to control the discourse-level information structure, where more 
information may be given as the discourse develops; Antecedent position
aims to control that antecedents appearing towards to the end of a 
sentence naturally tend to have shorter dependency length. Sentence 
length aims to control for two possible confounds: first, longer sentences 
may tend to have longer dependency length in general; second, longer 
sentences may tend to have more complex syntactic structure, which 
may be associated with more surprising antecedents. We also included
antecedent frequency in log scale retrieved from (Speer, 2022) in order 
to see whether the surprisal effect is reducible to a simple frequency 
effect. For the analysis with information-theoretic dependency length 
𝐿I, we included an additional control variable baseline surprisal, which 
is the surprisal averaged across all words within a sentence. This is 
to address the confound that sentences with higher baseline surprisal 
naturally leads to a positive correlation between antecedent surprisal 
and the information-theoretic 𝐿I. All variables are 𝑧-scaled.

(7) Control variables in Study 1 
• sentence position: position of the sentence in the current 
document (only included if the corpus is organized document-
by-document)

11 Annotated as nsubj and csubj in UD corpora.
12 Annotated as obj, iobj, ccomp, and xcomp in UD corpora.
13 As mentioned above, we also compare the effect of antecedent surprisal
with antecedent frequency in the current analysis. However, the models with 
random slopes for both effects rarely converge. Therefore, for better inter-
pretability of the statistical result, we only included random intercept by 
dependency types.
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• antecedent position: position of the antecedent in the current 
sentence

• sentence length: length of the sentence measured as word 
counts

• antecedent frequency: log frequency of the left codependent
• baseline surprisal: average surprisal across all words within 
a sentence (only included for the analysis with information-
theoretic dependency length 𝐿I)

Result

The result of the raw data in its original scale is presented in Fig.  5, 
which shows dependency length 𝐿 as a function of antecedent surprisal. 
The statistical result of the regression models is presented in Fig.  6 
for the effects of antecedent surprisal and antecedent frequency. A high-
level summary of the statistical evidence across languages is shown in 
Fig.  7. Since we used the surprisal measure from GPT-3 and mGPT, we 
describe an effect as robust and independent of model parameterization 
if it is significant in the same direction both in the analysis with GPT-
3 and in the one with mGPT (i.e., both positive or both negative, 
highlighted in dark red and dark blue in Fig.  7).14 We describe the effect 
as partially confirmed and less robust if it reaches significance with only 
one of the language models (highlighted in light red and blue in Fig. 
7). We describe the effect as inconclusive if it is not significant with 
any model, or if GPT-3 and mGPT show significantly conflicting result 
(i.e., significantly positive in one model but significantly negative in 
the other).15

All types of relations
Antecedent surprisal. In the analysis of the full dataset with all types 
of dependency relations, we indeed found a significant positive effect 
of antecedent surprisal for six out of ten languages, whereby more 
surprising antecedents are associated with longer dependency length. 
Specifically, for both measures of dependency length 𝐿, there is a pos-
itive effect in Danish, English, German, Italian, Russian, and Spanish. 
However, for Japanese, Korean, Mandarin and Turkish, contrary to our 
prediction, there is a negative antecedent surprisal effect.

14 Since Mandarin is not available for mGPT, a critical effect is highlighted 
in dark red or blue in Fig.  7 even though we only have the result with GPT-3.
15 The use of these terms (i.e., robust, less robust, partially confirmed, and
inconclusive) is only for expository purpose, and does not imply any direct 
statistical robustness test.
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Fig. 5. Dependency length 𝐿 as a function of antecedent surprisal. Panel A corresponds to 𝐿 measured as intervening word counts. Panel B corresponds to 𝐿
measured as the sum of surprisal over intervening words. Surprisal is binned into 20 categories, and the mean 𝐿 within each category is shown with a 95% 
confidence interval. A linear fit to these points is presented.
Antecedent frequency. The result is quite mixed for the effect of an-
tecedent frequency. When 𝐿 is measured as intervening word counts, 
there is a negative effect of antecedent frequency on 𝐿 in six languages 
(robust for English, Italian, Russian, and Spanish, while partially sup-
ported in Korean and Turkish). The effect, however, is unexpectedly 
positive in German, Japanese, and Mandarin, and is inconclusive in 
Danish. When 𝐿 is measured as surprisal, the antecedent frequency effect 
unexpectedly turns out to be positive for more languages, namely Dan-
ish, English, German, Japanese and Mandarin. There is still a negative 
effect for Russian, Spanish, Korean and Turkish.

Subject relations
Antecedent surprisal. For subject relations, when 𝐿 is measured as word 
counts, there is a positive effect of antecedent surprisal on 𝐿 as predicted 
in five languages (English, Italian, Russian, Spanish, and Mandarin), 
suggesting that more surprising antecedents are associated with longer 
𝐿 in these languages. However, contrary to our prediction, the effect 
is negative for German, Japanese, Korean, and Turkish, while Danish 
shows inconclusive result. Similar pattern was observed when 𝐿 is 
measured as intervening surprisal, except for Mandarin whose effect 
becomes inconclusive.
Antecedent frequency. The effect of antecedent frequency is the same for 
both measures of 𝐿. That is, there is a negative effect of antecedent 
frequency on 𝐿 in six languages (Danish, English, Italian, Russian, 
Spanish, and Korean), suggesting that more frequent antecedents lead 
to shorter 𝐿 in these languages. The effect is unexpectedly positive in 
German, and is inconclusive for Japanese, Mandarin, and Turkish.

Object relations
Antecedent surprisal. Surprisingly, for object relations, there is no pos-
itive effect of antecedent surprisal on 𝐿 in any language when 𝐿 is 
9 
measured as word counts. Instead, there is a negative effect in German, 
Russian, Spanish, Korean, and Mandarin, and the result is inconclusive 
for the rest of the languages. Similar pattern was observed when 𝐿 is 
measured as surprisal, except that in Italian a positive effect is partially 
supported, and that the originally negative effect with orthographic 𝐿
in Russian and Spanish becomes less robust.
Antecedent frequency. There is also a mixed picture for the effect of
antecedent frequency in object relations. When 𝐿 is measured as word 
counts, we only found a robust antecedent frequency effect on 𝐿 in 
four languages, two negative (Italian and Spanish) and two positive 
(English and German). The result for the rest of the languages is 
inconclusive. When 𝐿 is measured as intervening surprisal, there are 
three languages that show an unexpectedly positive effect (English, 
German, and Mandarin). Only in Spanish did we observe a negative
antecedent frequency effect. The result for the rest of the languages 
remains inconclusive.

Discussion

In this cross-linguistic corpus study, we indeed found emerging evi-
dence for a positive effect of antecedent surprisal on dependency length 
𝐿, with both measures of 𝐿 showing similar patterns. This effect still 
holds when we zoom into the subset that only includes subject or object 
relations. Overall, in many languages (especially Indo-Europeans), as 
predicted, this pattern indicates that more surprising antecedents are 
associated with longer dependency length, suggesting that the pressure 
to minimize dependency length is relaxed when the antecedent is of 
higher surprisal. Consistent with our hypothesis of strategic resource 
allocation, the result supports that novel and unexpected linguistic 
units can tolerate longer dependency length before its retrieval site, 



W. Xu and R. Futrell Journal of Memory and Language 146 (2026) 104706 
Fig. 6. Study 1 coefficient estimates for the effects of antecedent surprisal and antecedent frequency on dependency length 𝐿 across languages, with 95% confidence 
interval. Our hypothesis of strategic resource allocation predicts that more surprising antecedents are associated with longer 𝐿 (positive effect of antecedent 
surprisal), and that more frequent antecedents are associated with shorter 𝐿 (negative effect of antecedent frequency). Significance levels: *(𝑝<0.05), **(𝑝<0.01), 
***(𝑝<0.001).
possibly because unexpected information is prioritized for working 
memory resources during encoding, and is more resistant to memory 
decay and interference.

However, there are two caveats worth noting. First, there is con-
siderable cross-linguistic variability in our result, and the antecedent 
surprisal effect mostly exists within Indo-European and head-initial 
languages in our analysis. Second, although the analysis on the full 
dataset with all types of dependencies reveals a general trend for a 
positive antecedent surprisal effect, the result is much more consistent 
within subject relations. In object relations, the expected effect is 
reversed for most languages.

It is also worth noting that the positive antecedent surprisal effect on 
𝐿 cannot be reduced to a pure frequency effect. That is, there is still 
a significant effect of antecedent surprisal even though antecedent fre-
quency has been included in the regression models as a control variable. 
Moreover, compared to antecedent surprisal, the effect of antecedent 
frequency on 𝐿 is less consistent.
10 
In the end, to what extent does written corpus text approximate 
language production? Compared to spoken language, written language 
typically allows ‘‘speakers’’ more time to think, reducing much of 
the cognitive load involved in production, and the communicative 
goal is more geared towards listeners’ need. That being said, speaker-
oriented cognitive constraints, such as memory capacity, may play a 
less prominent role, and the need for strategic memory allocation may 
be diminished in written language production. Therefore, the effect 
observed in the current analysis using written text can be viewed as an 
lower bound, and we expect the effect of strategic memory allocation 
to be stronger when using spoken language corpora.

Study 2a: Comprehension side (Self-paced reading)

In this second study, we investigate whether the effect of strategic 
resource allocation also holds from the comprehension side. In particu-
lar, we examine to what extent the dependency locality effect observed 
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Fig. 7. Study 1 summary of statistical result for the effects of antecedent surprisal and antecedent frequency on dependency length 𝐿. Significant (𝑝<0.05) positive 
effects are highlighted in red; significant negative effects are highlighted in blue. Effects are considered not conclusive if insignificant with both language models, 
or if GPT-3 and mGPT show conflicting result where the effect is significant in opposite directions. According to our hypothesis, antecedent surprisal is expected 
to have a positive effect on 𝐿, whereas antecedent frequency is expected to show negative effect. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
in previous comprehension studies (Bartek et al., 2011; Gibson, 1998, 
2000; Grodner & Gibson, 2005) can be modulated by the surprisal 
of the antecedent, as illustrated in Fig.  8. First, we expect a baseline 
dependency locality effect, where the processing difficulty at the re-
trieval site, manifested as reading time, is expected to increase as the 
dependency length gets longer. Second, according to our hypothesis, 
more surprising antecedents are more capable of tolerating stronger 
memory interference. That is, the longer dependency length does not 
create too much additional processing difficulty for the retrieval of 
surprising antecedents, resulting in a reduced locality effect.

Consider the example in Fig.  8. As explained in Study 1, the more 
surprising ‘‘cute monster’’ in Fig.  8 (bottom) is more prioritized with 
encoding resources for its lower predictability, making it capable of 
tolerating longer dependency length. Therefore, when there is longer 
dependency distance, the processing difficulty at the retrieval site 
(i.e., the main verb ‘‘approached’’ in this example) should increase at 
slower rate for high surprisal antecedents than for low surprisal ones 
(Fig.  8; top), since the additional intervening material induces lower 
level of interference for more surprising antecedents. As a result, on 
top of the baseline dependency length effect on retrieval difficulty, 
we expect a negative interaction between dependency length 𝐿 and
antecedent surprisal at the retrieval site.

Method

Data
The data we used in Study 2a is taken from the Natural Stories 

Corpus (NSC) (Futrell et al., 2021). The text of the corpus is in English, 
and contains 10,245 lexical words in 485 sentences, taken from 10 
stories with around 1000 words each. The reading time (RT) data 
was collected from 181 native English speakers, using the self-paced 
reading task (SPR). The original corpus already excluded participants 
11 
with low comprehension accuracy, as well as the reading times either 
faster than 100 ms or slower than 3000 ms. Therefore, we did not 
perform additional exclusion of reading time data in the current study. 
We generated the surprisal estimates for each word from mGPT.16 The 
NSC corpus comes with dependency annotation in UD style.

Data transformation, exclusion, and analysis
As in Study 1, we analyzed three RT datasets as well here in the 

current study, namely the full dataset with all types of dependencies, 
a subset with subject relations only, and a subset with object relations 
only. The sample size is summarized in Table  2. We ran linear mixed-
effect models on the log-transformed RTs of two regions, the critical 
region and the spillover region. The critical region is the right code-
pendent of each dependency, which is considered the retrieval site for 
the antecedent. The spillover region is the word that goes immediately 
after the critical region. The critical effect is the interaction between 
dependency length 𝐿 and antecedent surprisal, with maximal converging 
random intercept and random slopes by participant. For the analysis of 
the full dataset, we also included maximal converging random effects 
by dependency type.

The control variables applied in Study 1 (namely, sentence position,
antecedent position, sentence length, and antecedent frequency) are also 
included here in Study 2a. Besides these, we included several addi-
tional control variables that are often considered highly relevant for 
reading time measures. First, we included word length, word surprisal
and word frequency of the right codependent itself. Second, to control 
the spillover effect often found in reading studies, we included word 
surprisal and word frequency of the two previous words before the right 

16 GPT-3 is no longer accessible from OpenAI since January 4th, 2024. 
Therefore, we only used the surprisal estimates from mGPT for the analyses 
in Study 2a and 2b.
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Fig. 8. Empirical prediction of strategic resource allocation in comprehension. Longer dependency length leads to higher processing difficulty at the retrieval 
site, and this retrieval difficulty increases more slowly for high-surprisal antecedents.
Table 2
RT data sample size in Study 2a and 2b.
 Study 2a Study 2b
 First-pass Total RT 
 All types 601,122 256,567 313,167  
 Subject relations 57,023 21,709 26,885  
 Object relations 48,091 20,361 24,990  

codependent. As in Study 1, frequency measures are in log scale, gener-
ated from (Speer, 2022). All variables are 𝑧-scaled. The transformation 
and exclusion of the dependency data follow the same procedure as in 
Study 1.

Results

Fig.  9A shows the interaction effect between dependency length 𝐿
and antecedent surprisal on raw reading times. The result of statistical 
models for the critical effects is summarized in Fig.  9B.

Critical region
All types of relations. In the analysis of the full dataset with all types of 
dependency relations, we found a baseline locality effect where depen-
dency length 𝐿 has a positive main effect on RTs at the retrieval site 
(i.e., the right codependent), suggesting that longer distance between 
codependents makes it more difficult to retrieve the antecedent at the 
right codependent. This main effect of 𝐿 is only significant when 𝐿
is measured as intervening surprisal. However, there is no significant 
main effect of antecedent surprisal. Importantly, we found a negative 
𝐿 × antecedent surprisal two-way interaction for both 𝐿 measures. 
Consistent with our prediction, this negative interaction suggests that 
the locality effect on the RT of right codependents is reduced when the 
antecedent is more surprising.
12 
Subject relations. For subject relation, although the main effect of 𝐿
is numerically positive in the critical region, it is not significant with 
any measures of 𝐿. There is no antecedent surprisal main effect, either. 
However, there is indeed a significant negative 𝐿 × antecedent surprisal
two-way interaction for both 𝐿 measures, suggesting a reduced locality 
effect for high surprisal antecedents.

Object relations. Again, for object relations, there is no main effect of 
𝐿 or antecedent surprisal for any measures of 𝐿 in the critical region. 
It is also worth noting that the 𝐿 main effect is numerically negative, 
pointing to an anti-locality effect, although this effect is not statistically 
significant. Surprisingly, there is a positive 𝐿 × antecedent surprisal
two-way interaction, although this effect is only significant when 𝐿 is 
measured as word counts.

Spillover region
All types of relations. In the spillover region, we first found a baseline 
locality effect, where dependency length 𝐿 leads to longer RT. This 
baseline locality effect holds for both measures of 𝐿. However, similar 
to the critical region, there is no evidence for an antecedent surprisal
main effect. In the end, again similar to the critical region, we found a 
negative 𝐿 × antecedent surprisal two-way interaction, suggesting that 
the locality effect is reduced when the antecedent is more surprising. 
This two-way interaction, however, only holds when 𝐿 is measured as 
surprisal.

Subject relations. First, unlike the critical region, a baseline locality 
main effect of 𝐿 was found for subject relations in the critical region, 
where longer 𝐿 leads to longer RT at the right codependent. This 𝐿
main effect is significant for both measures of dependency length 𝐿. 
Second, as in the critical region, there is no antecedent surprisal main 
effect with either measure of 𝐿 in the spillover region. In the end, 
we found a critical negative 𝐿 × antecedent surprisal two-way interac-
tion with both 𝐿 measures. As predicted, this negative interaction is 
indicative of a reduced locality effect for more surprising antecedents.
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Fig. 9. Study 2a reading time (RT) result. Panel A: raw RTs at the right codependent and its spillover region as a function of dependency length 𝐿 modulated 
by antecedent surprisal, which is binned into tertiles for visualization. Panel B: result of regression models with log-transformed RTs; coefficient estimates with 
95% confidence interval for the effects of 𝐿, antecedent surprisal, and the interaction between the two. Significance levels: *(p<0.05), **(p<0.01), ***(p<0.001).
Object relations. The result of object relations has a relatively complex 
pattern. First, there is an unexpected negative, not positive, main effect 
of 𝐿 on the RT at retrieval site. This negative main effect reaches 
significance when 𝐿 is measured as surprisal, and still numerically 
holds when 𝐿 is measured as word counts. Instead of a baseline locality 
effect, this negative 𝐿 effect suggests an anti-locality effect, where more 
intervening material between the two codependents leads to faster RT 
at the retrieval site. Moreover, as seen in Fig.  9A (right column), this
anti-locality effect is mostly driven by antecedents of low surprisal. 
Second, there is a negative antecedent surprisal main effect for both 
𝐿 measures, whereby more surprising antecedents induce faster RT 
at the retrieval site. In the end, unlike the negative 𝐿 × antecedent 
surprisal interaction observed in the previous two analyses, object 
relations exhibit a positive 𝐿 × antecedent surprisal interaction, which 
is significant for both 𝐿 measures. However, since the main effect of 𝐿
is negative in the first place, instead of an enhanced locality effect, this 
positive interaction actually suggests a reduced anti-locality effect for 
more surprising antecedents. It is not yet entirely clear to us why there 
is an anti-locality effect in the first place exclusively for object relations, 
but the result pattern in object relations seems to point to a potential 
trade-off between the direction of the 𝐿 main effect and the direction 
of the 𝐿 × antecedent surprisal interaction, which we will discuss below.

Discussion

To sum up, in Study 2a, through the analysis of the RT data in 
the Natural Stories Corpus, we first replicated the baseline locality 
effect in the analysis of all types of dependency relations and subject 
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relations, especially in the spillover region. This suggests that the non-
local retrieval of the antecedent at the right codependent becomes more 
difficult when there is more intervening material. However, we also 
found an anti-locality effect in object relations in the spillover region, 
which suggests that more intervening material actually facilitates the 
establishment of a non-local object relation. Second, only in object 
relations did we observe a negative main effect of antecedent surprisal
on the RT at the right codependent, but this effect only emerges 
in the spillover region. This negative antecedent surprisal main effect 
suggests that more surprising antecedents are easier to retrieve in 
object relations, which is consistent with the findings in Hofmeister 
(2011), where semantically more complex noun phrases are easier to be 
retrieved. However, more future work is needed to investigate why this 
effect only emerges in object relations. In the end, the most important 
finding of this Study 2a is the interaction between dependency length 
and antecedent surprisal, both in the critical and the spillover regions. 
Specifically, in the analysis of the full dataset and the one of subject 
relations, we found a reduced locality effect for more surprising an-
tecedents. This reduced locality effect is consistent with the prediction 
of strategic resource allocation, in that more surprising antecedents are 
prioritized for working memory resources and are encoded with more 
robust representation against memory interference and decay.

It is also worth noting that there seems to be a potential trade-
off between the direction of the 𝐿 main effect and the direction of 
the 𝐿 × antecedent surprisal interaction. On the one hand, when the 
main effect of 𝐿 is positive, there is a negative 𝐿 × antecedent surprisal
interaction, suggesting a reduced locality effect for more surprising 
antecedents. On the other hand, when the main effect of 𝐿 is negative to 
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start with, as in the object relations, the interaction becomes positive, 
indicating that the anti-locality effect is reduced for more surprising 
antecedents. The reduced locality effect is straightforward, as predicted 
by our hypothesis. But why is there a reduced anti-locality effect? In 
fact, the reduced anti-locality effect for more surprising antecedents 
can be consistent with our strategic resource allocation as well. Ac-
cording to experience-based processing theories, the anti-locality effect 
can be viewed as a facilitation effect on the prediction of the right 
codependent. That is, more intervening material may provide more 
information about the identity of the word at the right codependent, 
helping the comprehender to make better predictions (Levy, 2008a), 
canceling out the burden created by memory interference. However, for 
more surprising antecedents, if their representation is more enhanced 
due to strategic resource allocation, it is possible that comprehenders 
can already rely on the their memory of the antecedent to predict 
the right codependent. As a result, the intervening material may no 
longer provide too much additional help to make predictions. This 
reduced facilitation from the intervening material for more surprising 
antecedent, therefore, may manifest itself as a reduced anti-locality 
effect.

Study 2b: Comprehension side (Eye-tracking)

In Study 2b, we examine strategic resource allocation in dependency 
locality using an eye-tracking corpus. As in Study 2a, we expect to 
see a baseline locality effect, as well as an interaction between locality 
and antecedent surprisal, in the sense that a reduced locality effect is 
associated with more surprising antecedents.

Method

Data
The data we used in Study 2b is taken from the English part of 

Dundee corpus (Kennedy & Pynte, 2005). The corpus consists of 20 
texts, with 56,212 tokens in total (around 2800 words for each text). 
The eye-tracking data is collected from 10 English native speakers, with 
each text being split into 40 fine-line screens. We analyzed two eye-
tracking measures: first-pass reading time, defined as the sum of all the 
fixations on a region after first entering in the region and before first 
leaving it either to the left or to the right; and total reading time, defined 
as the sum of all the fixations on a region throughout a trial. Like 
NSC corpus, the Dundee corpus also comes with UD-style dependency 
annotation.

Data transformation, exclusion, and analysis
The transformation and exclusion of dependency data follow the 

same procedure as in Study 1 and Study 2a. The reading time responses 
are excluded if shorter than 100 ms or longer than 3000 ms. The sample 
size after data exclusion is summarized in Table  2. We ran linear mixed-
effects models on first-pass durations and total reading times. Both 
reading time measures are log-transformed. As in Study 2a, the critical 
effect is the interaction between dependency length 𝐿 and antecedent 
surprisal, with the same random structure and control variables as in 
Study 2a.

Results

Fig.  10A shows the interaction effect between dependency length 𝐿
and antecedent surprisal on raw reading times, including both the first-
pass duration and the total RT. The result of statistical models for the 
critical effects is summarized in Fig.  10B.17

17 No critical effects were found in the spillover region, so we only report 
the result of the critical region in this Study 2b.
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All types of relations. As shown in Fig.  10B (left column), no evidence 
was found for the main effect of dependency length 𝐿 with any measure 
of RT and 𝐿, suggesting the lack of the baseline locality effect. No 
significant main effect of antecedent surprisal was found, either. For 
the critical 𝐿 × antecedent surprisal interaction, although the effect is 
numerically negative on first-pass RT with both measures of 𝐿, it is 
only marginally significant. No evidence for the interaction effect was 
found on total RT.
Subject relations. Still, as shown in Fig.  10B (middle column), we 
did not find any evidence for either an 𝐿 or an antecedent surprisal
main effect with any measure of RT and 𝐿. However, there is indeed 
a negative 𝐿 × antecedent surprisal two-way interaction, suggesting 
that the locality effect at the retrieval site, although not statistically 
significant on average, is reduced for more surprising antecedents. This 
interaction effect reliably holds for first-pass RT with both 𝐿 measures, 
as well as for total RT with 𝐿 measured as word counts. It is, however, 
only marginally significant for total RT with 𝐿 as intervening surprisal.
Object relations. As shown in Fig.  10B (right column), we found in ob-
ject relations a baseline locality effect manifested as a positive 𝐿 main 
effect on RTs at the retrieval site, which holds for first-pass RT with 𝐿
as word counts and for total RT with both 𝐿 measures. There is no evi-
dence for an antecedent surprisal main effect. In terms of the critical 𝐿 ×
antecedent surprisal interaction, we only found a marginally significant 
negative interaction for total RT with 𝐿 measured as surprisal, and the 
effect is non-significant elsewhere.

Discussion

The result of the two main effects in the current Study 2b shows 
a very different pattern compared to Study 2a. First, unlike Study 2a, 
in the current Study 2b only in object relations did we find a baseline 
locality effect, whereas the locality effect is not observed in the analysis 
of the full dataset or in the one of subject relations. That is, longer 
dependency length does not lead to higher processing difficulty at the 
retrieval site for subject relations. This lack of the baseline locality 
effect aligns with the observation in Demberg and Keller (2008), where 
the locality effect in Dundee corpus is overall small and unreliable for 
verbs, which in our case is the retrieval site of subject relations. Second, 
there is no main effect of antecedent surprisal across the board in this 
Study 2b.

Although the baseline locality effect is relatively unreliable, we still 
observed evidence for a negative 𝐿 × antecedent surprisal interaction 
effect in this Study 2b, especially in subject relations. As shown in 
Fig.  10A (middle column), compared to antecedents with low-to-mid 
surprisal levels, those with high surprisal exhibit weaker locality effect. 
Similar to the interaction effect observed in Study 2a, the current result 
shows that more surprising antecedents is less susceptible to the effect 
of memory interference induced by intervening material, possibly due 
to their enhanced representation. Supplementing the self-paced reading 
data in Study 2a, the result of Study 2b thus lends support to our 
hypothesis of strategic resource allocation with data from eye-tracking 
paradigm.

General discussion

In three corpus studies, we examined strategic resource allocation 
(SRA) through the lens of dependency locality both in production and 
in comprehension. Study 1 explored this hypothesis in production by 
analyzing UD corpora of 10 languages. Our result reveals that more 
surprising antecedents can tolerate more intervening material before 
they need to be retrieved at the other side of the dependency, resulting 
in a positive correlation between antecedent surprisal and dependency 
length. However, it is worth noting that this reduced locality effect 
mostly exists within Indo-European and head-initial languages, and is 
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Fig. 10. Study 2b reading time (RT) result for first-pass duration and total RT. Panel A: raw RTs at the right codependent as a function of dependency length 
𝐿 modulated by antecedent surprisal, which is binned into tertiles for visualization. Panel B: result of regression models with log-transformed RTs; coefficient 
estimates with 95% confidence interval for the effects of 𝐿, antecedent surprisal, and the interaction between the two. Significance levels: *(p<0.05), **(p<0.01), 
***(p<0.001).
more consistent for dependencies of subject relations than for object 
relations.

In Study 2, we shifted gears and focused on comprehension, analyz-
ing two English reading-time corpora: one based on self-paced reading 
paradigm (Study 2a) and the other based on eye-tracking paradigm 
(Study 2b). The SPR data reveals a baseline locality effect, where longer 
dependency lengths lead to increased reading times at the retrieval site. 
Importantly, we found a 𝐿 × antecedent surprisal interaction, where 
the baseline locality effect is reduced for more surprising antecedents. 
Moreover, we again observed a subject–object asymmetry, such that 
the critical effect consistently holds only in subject relations. The eye-
tracking data shows a more nuanced pattern: although the baseline 
locality effect was observed only in object relations, we indeed found 
an 𝐿 × antecedent surprisal interaction in subject relations.

Overall, despite the caveats mentioned above, our result shows 
emerging evidence that a reduced locality effect emerges for more 
surprising antecedents in the processing of non-local dependencies, 
suggesting that more surprising antecedents are less susceptible to the 
interference from intervening material. This finding aligns with the 
notion of strategic resource allocation that we proposed, which holds 
that unexpected information is prioritized for memory resources and is 
encoded with enhanced memory representation.

Processing difficulty as encoding difficulty: Reinterpreting the effect of 
surprisal and entropy

In this section, we first reinterpret the processing difficulty of a 
word as its memory encoding difficulty. As shown in Fig.  11, the 
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encoding process in Fig.  2 can be considered a transformation from 
a flat uniform distribution over all possible words to one that is 
concentrated around the received input. The processing difficulty of a 
word at the encoding stage, therefore, can be considered the distance 
between the pre-encoding and the post-encoding distribution. As a 
result, less uncertain, or more precise encoding distribution is more 
distant away from the uniform pre-encoding distribution, leading to 
higher processing difficulty. With this encoding view in mind, let us 
consider two factors that have been previously argued to influence the 
processing difficulty of a word, namely surprisal and entropy.

For the surprisal effect, as shown in our main proposal of SRA, more 
surprising input should be encoded with higher precision, an efficiency 
strategy that we have argued to minimize the retrieval error at a later 
time point. As a result, SRA naturally predicts that the more precise 
encoding for more surprising inputs should lead to higher encoding 
or processing difficulty, which is consistent with the widely observed 
surprisal effect in the literature. Importantly, this memory encoding 
view provides a resource-rational account for the surprisal effect, rein-
terpreting it as a strategic solution to the efficiency problem of memory. 
We will discuss this in more detail below in Section ‘‘Surprisal effect as 
efficient coding: An adaptionist view’’.

For the effect of entropy, SRA yields complicated predictions. As 
mentioned in Introduction, SRA implies that higher uncertainty of prior 
does not necessarily increase or decrease the precision of encoding 
distribution, and therefore does not necessarily increase or decrease 
the processing difficulty of a word. To demonstrate the reason behind 
it, first recall that according to SRA the encoding precision depends 
on how the received input can be accurately reconstructed at a later 



W. Xu and R. Futrell Journal of Memory and Language 146 (2026) 104706 
Fig. 11. Processing difficulty as memory encoding difficulty.

time point, which is in turn dependent on to what extent such a re-
construction can be supported by the prior. Intuitively, when the prior 
is highly consistent with the actual received word (e.g., low surprisal 
words), the more precise the prior is, the less precise the encoding 
of that word needs to be for better reconstruction. In this case, the 
uncertainty of prior should have a positive effect on encoding difficulty, 
in the sense that the processing of a word is facilitated if its preceding 
context yields a high-constraining prior. However, when the prior is 
not compatible with the actual input (e.g., high surprisal words), such 
a facilitation effect is necessarily the case any more: a highly precise but 
incompatible prior may actually need to be counteracted by more effort 
into precisely encode the actual input. In fact, this complicated effect 
of prior precision echos the empirical observation in many previous 
studies, where the effect of prediction entropy is much less reliable than 
the effect of surprisal on processing difficulty (Linzen & Jaeger, 2016; 
van Schijndel & Linzen, 2021; Wilcox et al., 2023).

The role of representational uncertainty

Under SRA, there is a dissociation between accuracy and uncertainty
in memory representations. For accuracy, it is more related to the
mean, or point estimate of an underlying distribution with respect to 
how far it is from the true input value. For uncertainty, it corresponds 
to the precision, or variance of the distribution, reflecting the relative 
competitiveness of all alternative inputs. As mentioned in Introduction, 
the critical prediction of SRA is about the precision or uncertainty in 
the encoded memory representation, as reflected in the robustness 
against interference, rather than about the raw accuracy of retrieval. As 
shown in Fig.  2, although a relatively high retrieval accuracy may be 
maintained on average for all linguistic inputs, those that receive more 
resources will have less uncertainty in their encoded representation.

Both the point estimate and the uncertainty are important informa-
tion to understand the underlying representations of memory processes, 
as raised by more and more recent work in psychophysics (Bays et al., 
2024). However, compared to point estimates, the characterization of 
representational uncertainty is relatively underexplored in psycholin-
guistics research, both theoretically and empirically. For example, stud-
ies under the framework of cue-based retrieval often concern what 
representation has actually been retrieved, based on which an empirical 
prediction is derived. Similarly, studies under the noisy-channel frame-
work often focus more on interpreting the point estimate of posterior 
distribution, rather than how the probability mass is distributed over 
the hypothesis space.
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One of the major challenges to understand the role of represen-
tational uncertainty is possibly the lack of a straightforward linking 
hypothesis. In most psycholinguistics studies, the interpretation of on-
line dependent measures such as reading times is based on the point 
estimate of its mean, which is naturally linked to the point estimate 
of mental representations (cf. Huang & Dillon, 2023). But for repre-
sentational uncertainty, how this psychological construct is linked to 
any online behavioral measure remains unclear. Even though there 
might be some ways to probe the degree of representational uncertainty 
through certain offline measures (e.g., tasks that directly probe the 
errors in the interpretation of a sentence), it is still challenging to lay 
out the hypothesis space of alternative representations in a fine-grained 
manner.

In the current study, an important assumption we made is that less 
uncertainty leads to more robust representation against interference. 
That is, if the processor is more uncertain about the representation 
of a linguistic input, its encoding distribution may be more likely to 
be influenced and distorted by other information it holds in memory. 
Surely, this is a debatable assumption, and the specific mechanism of 
how the representation is distorted by other inputs needs to be further 
elaborated in future work.

The role of context in working memory efficiency

Earlier in Introduction, we have argued that the efficiency of work-
ing memory allocation depends on how likely a linguistic unit can 
be reconstructed based on the statistical structure of linguistic input. 
But an open question is: what kinds of statistics are being used? More 
specifically, to what extent is working memory efficiency guided by 
context-sensitive statistics?

The role of contextual information has been under debate across 
multiple domains of linguistic efficiency, especially in the context of 
signal reduction (Jaeger & Buz, 2017). One of the earliest evidence 
supporting the communicative efficiency pressure for linguistic struc-
ture is the well-known Zipf’s law, which observes that more frequent 
words tend to have short forms (Zipf, 1949). Similar reduction effect of 
linguistic forms as a function of usage frequency has also been found 
in the historical change of linguistic representations (e.g., Bybee, 2006; 
Bybee, Perkins, & Pagliuca, 1994; Cohen Priva, 2015; Pierrehumbert, 
2008). While most of these theories focus on frequency, which can 
be considered unigram probabilities independently generated from a 
stationary distribution, recent studies have begun investigating the role 
of context-specific probabilities in linguistic efficiency. The findings in 
this area are mixed. For example, building on Zipf’s observation, Pianta-
dosi, Tily, and Gibson (2011) find that a significant amount of word-
length variability is explained by contextual predictability in addition 
to the frequency effect. In contrast, Pimentel, Meister, Wilcox, Ma-
howald, and Cotterell (2023) argue that word length is better predicted 
by frequency. Beyond the structure of lexicons, in online processing, 
contextual predictability also shapes the reduction of referring expres-
sions (e.g., Mahowald, Fedorenko, Piantadosi, & Gibson, 2013; Tily & 
Piantadosi, 2009; Xu & Xiang, 2021) as well as syntactic structure (e.g., 
Jaeger, 2010; Jaeger & Levy, 2006).

In the current study, that the observed antecedent surprisal effect 
cannot be reduced to a pure frequency effect suggests that the statistics 
relevant to working memory efficiency go beyond unigram frequencies, 
and the strategic allocation of working memory resources is based on 
more fine-grained context-specific probabilities. As noted by Jaeger 
and Buz (2017), frequency can be understood as an averaged effect 
of contextual predictability. This is probably one of the reasons why 
linguistic theories focusing on the representational aspects of language 
often emphasize frequency, as it reflects the abstract, global properties 
of a language accumulated through long-term experience. That being 
said, the optimization of working memory efficiency not only relies on 
those ready-to-retrieve statistics already stored in long-term memory, 
but also incorporates statistics computed online, dynamically drawing 
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upon rich contextual information in a rapid and adaptive manner (for 
a different view, see Opedal, Chodroff, Cotterell, & Wilcox, 2024).

Moreover, the role of context in SRA has its implications for the 
asymmetry between proactive and retroactive interference. Proactive 
interference refers to the configuration where distractor information 
precedes the retrieval target, whereas for retroactive interference the 
distractor is located between the retrieval target and the retrieval 
site. Previous studies have observed that proactive interference has 
weaker effect than the retroactive one (Van Dyke & McElree, 2011), 
an empirical pattern that supports time-based decay of memory ac-
tivation (Barrouillet, Bernardin, & Camos, 2004; Lewis & Vasishth, 
2005; Page & Norris, 1998; Portrat, Barrouillet, & Camos, 2008). Under 
SRA, this asymmetry can be potentially explained from a resource-
rational perspective. As shown in Fig.  2, at the encoding stage of a 
linguistic unit, the processor already has access to the information in its 
preceding context, but not yet to the upcoming information in the right 
context. Therefore, during memory encoding, the strategic allocation 
is possibly based only on the preceding context. In other words, the 
encoded representation of an input is optimized for information it has 
already received in the preceding context, but not necessarily for what 
has not yet been received. If this is the case, SRA naturally explains 
why the distractor that goes before the target unit has less impact on 
its representation than the retroactive distractor, without necessarily 
resorting to a separate time-based decay mechanism.

Relationship with lossy-context surprisal

The theoretical framework of SRA we proposed shares similar theo-
retical and empirical implications with lossy-context surprisal theory 
and its variants (Futrell, Gibson, & Levy, 2020; Hahn et al., 2022). 
Focusing on the prediction mechanism, lossy-context surprisal holds 
that next-word predictions are based on lossy and faulty memory 
representations, rather than the veridical form of the past linguistic 
input. The theory explicitly includes a memory distortion process, 
where certain elements in an utterance are erased to form a lossy 
representation, subject to certain probabilistic erasure distributions.

In many aspects, our proposal and lossy-context surprisal form two 
sides of the same coin. For our SRA, we seek to understand and 
explain the working memory mechanism in sentence processing, and 
predictive processing is a component incorporated into the mechanism 
we proposed to better explain memory. For lossy-context surprisal, 
in contrast, the theory aims to understand the prediction mechanism 
in sentence processing, with a memory component included to better 
explain prediction. Despite these different goals, we both speak for an 
interaction between memory and prediction, as both of them should 
jointly support human linguistic behaviors as a cognitive task. That 
means, our proposal and lossy-context surprisal are not mutually ex-
clusive, theoretically or empirically, and we simply focus on different 
perspectives of a similar cognitive task.

In fact, our theoretical framework of SRA is on some level mutu-
ally translatable with lossy-context surprisal, so we do not see them 
necessarily as conflicting theories. On the one hand, in the language 
of lossy-context surprisal, the memory distortion process where certain 
linguistic units are erased is potentially where our strategic resource 
allocation could fit in, such that more surprising units given the context 
are less likely to be erased when predicting future units. On the other 
hand, a fundamental question at the core of our resource-rational anal-
ysis of working memory mechanism is: if memory capacity is limited, 
how to minimize the cost of memory error by strategically prioritizing 
more important linguistic units? However, what counts as important? 
Or, in other words, what is the objective function based on which the 
cost of memory error is defined? In the original lossy-context surprisal 
theory (Futrell, Gibson, & Levy, 2020), this objective function is not 
explicitly specified. In Hahn et al. (2022), the model takes one step 
further, and this objective function is to minimize the downstream next-
word prediction task. In our proposal, the cost is defined by how likely 
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a unit can be reconstructed later given the context. These two different 
objective functions of cost are not mutually exclusive, and the accuracy 
of next-word prediction may be compromised if a lost unit in memory 
is not reconstructable. Therefore, although our proposal of SRA has a 
different theoretical focus from the model of Hahn et al. (2022), our 
empirical predictions actually share some overlap, and we both predict 
on some level that the representation of more surprising units (or, less 
frequent units) should be enhanced and more robust.

Hierarchical encoding and compression

SRA, arising as an efficiency principle from the functional pressures 
of working memory, is situated more at the computational level in Marr 
(1982)’s three-level representation. A natural question to ask then is: 
what is the potential mechanism to implement this efficiency principle 
at the algorithmic level? In other words, when more resources are 
allocated, what makes the representation less uncertain and more 
robust?

One possible mechanism is hierarchical compression, which pos-
tulates that information can be stored in memory with a multi-level 
hierarchy of abstraction (Bates & Jacobs, 2020; Brady, Konkle, & 
Alvarez, 2009; Brady et al., 2024; Christiansen & Chater, 2016; Craik 
& Lockhart, 1972). In visual working memory, higher levels are more 
compressed, having a more categorical nature; lower levels, in contrast, 
are encoded with more quantitative perceptual detail. A similar hier-
archy also exists in sentence processing. Sequential linguistic input can 
be continuously encoded and recoded into compressed forms, which in 
turn are further compressed into more abstract forms when new input 
comes in Christiansen and Chater (2016). This incremental compression 
procedure gives rise to a multi-level hierarchical structure of memory 
representation, such that higher levels of abstraction are encoded as 
a gist of message without specifying elaborated syntactic and seman-
tic features (Bradshaw & Anderson, 1982). Intuitively, more memory 
resources should yield more detailed encoding. Indeed, this has been 
recently demonstrated by some memory encoding models grounded in 
the rate–distortion theory, where a quantitative-categorical spectrum 
naturally arises simply by manipulating the memory capacity during 
encoding (Bates & Jacobs, 2020; Jakob & Gershman, 2023).

Predictable information, if less prioritized, should be encoded in 
a more compressed and abstract fashion. In visual working memory, 
this is indeed evidenced by the fact that more memory objects can be 
stored in visual working memory tasks when their perceptual features 
are statistically correlated (Bates, Lerch, Sims, & Jacobs, 2019; Brady 
et al., 2009). Moreover, information with stronger prior knowledge is 
also more susceptible to the categorical bias in perception, where the 
perceived input is biased towards the categorical mean (Bates & Jacobs, 
2020). Similarly, in the domain of language, more frequent linguistic 
sequence is more likely to be holistically stored in memory (e.g., Bybee, 
2006; Goldberg, 2003; Hawkins, 2004; Traugott & Trousdale, 2013). 
Importantly, hierarchical compression based on statistical regularities 
provides a mechanism that strings together effects across different lin-
guistic representational levels, forming a spectrum of compression. At 
one end, there is the locality effect where words that are more mutually 
predictable tend to stay closer to each other in linear order (e.g., 
Futrell, 2019; Futrell, Qian, Gibson, Fedorenko, & Blank, 2019). At 
the other end, the same pressure of compression governs the fusion of 
morphemes (e.g., Hahn et al., 2021; Rathi, Hahn, & Futrell, 2021), and 
makes mutually predictable units more likely to go through processes 
such as affixation and phonological reduction (e.g., Bybee, 2006; Bybee 
et al., 1994; Gahl & Baayen, 2024).

Parallelism between production and comprehension

The effect of SRA holds both for production and for comprehen-
sion in the current study, pointing to a parallelism between these 
two modalities. For comprehension, a reasonable question is: to what 
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extent the observed effect of strategic resource allocation is experience-
based (MacDonald & Christiansen, 2002), given that the same effect 
is also seen in production data? In other words, it is possible that 
comprehenders prioritize unexpected linguistic units and encode them 
with enhanced representation because unexpected units are more likely 
to associate with stronger memory interference in the production data 
they receive.

A similar question can be asked for production as well: to what 
extent is the effect observed in production the result of audience 
design (Clark & Murphy, 1982; Ferreira, 2019; Lockridge & Brennan, 
2002), given that comprehenders can encode unexpected units with 
prioritized memory resources? One listener-oriented production theory 
compatible with our finding is the Uniform Information Density (UID) 
theory (Clark et al., 2023; Jaeger & Levy, 2006; Meister et al., 2021). 
According to UID, surprising antecedents may be followed by longer 
dependency length so that there is a smoother transition to the other 
side of the dependency, which is relatively predictable since it shares 
high mutual information with the antecedent (Futrell et al., 2019).

Here we do not attempt to adjudicate between the two questions 
above, nor do we view them in conflict with our proposal. In our 
opinion, SRA provides a potential explanation for the mechanistic 
underpinnings of these higher-level processes.

Despite the parallelism, comprehension and production still differ 
in some critical aspects, exerting modality-specific constraints on SRA 
due to their idiosyncratic processing nature. For example, produc-
tion is, in general, more cognitively demanding, in need of higher 
memory capacity, executive control, and action planning than com-
prehension (Hickok, 2012; Koranda, Bulgarelli, Weiss, & MacDonald, 
2020; MacDonald, 2013; Nozari & Novick, 2017). This additional cog-
nitive demand may exert more pressure to efficiently use the limited 
memory resources in production than in comprehension, possibly re-
sulting in a stronger effect of SRA. Future work is needed to investigate 
this possibility.

Implications for linguistic typology

Dependency length minimization as a functional universal has been 
argued to shape the syntactic structure of human language, due to 
the pressure to efficiently use the limited working memory resources. 
In the current study, we go beyond the general constraint of limited 
memory capacity, and further argue that memory resources should be 
strategically allocated to prioritize novel and unexpected information, a 
memory efficiency principle that naturally arises from two assumptions 
about working memory. Our results indicate that this strategic resource 
allocation indeed serves as a functional constraint to shape syntactic 
structures, in the sense that the pressure to minimize dependency 
length can actually be relaxed when the antecedent of a syntactic 
dependency is of higher surprisal. Our finding further substantiates 
the functionalist view as a promising approach to provide explanatory 
accounts for linguistic universals (Gibson et al., 2019). It also highlights 
the importance of having increasingly sophisticated characterization of 
functional constraints, in order to see how far we can go with this 
functionalist view on the structure of human language.

Despite this goal of having SRA as a universal efficiency principle 
to explain language structure, an important question is: how univer-
sal is SRA cross-linguistically, and how does it interact with other 
grammatical constraints and language-specific phrase structures?

First of all, one consistent pattern we have observed is the asymme-
try between subject and object relations. Specifically, the effect of SRA 
is generally less reliable for object relations than for subject relations. 
One possible explanation is that object relations are subject to stronger 
grammatical constraints, with greater pressure to position the head and 
its dependent closer to each other. In support of this possibility, Keenan 
and Comrie (1977) identify an Accessibility Hierarchy as a linguistic 
universal, where noun phrases in the subject position are more readily 
relativized into relative clauses than those in the object position. Such 
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constraints may bind object noun phrases and verbs more tightly, 
reducing the influence of SRA. Moreover, in many languages, grammat-
ical agreement is common in subject–verb dependencies but absent in 
object–verb dependencies. Therefore, establishing subject relations may 
require more active grammatical computation, resulting in increased 
memory demand in processing and a stronger need for more strategic 
and efficient use of working memory resources.

Another notable pattern in Study 1 is that, compared to head-
initial languages, most of the head-final languages in our analysis 
do not exhibit a reliable antecedent surprisal effect on dependency 
length. We speculate that this may be related to the tendency for 
argument dropping in head-final languages with SOV word order. From 
the perspective of dependency locality, SOV word order is associated 
with longer dependency lengths compared to SVO, which should the-
oretically impose higher memory costs and make it a less efficient 
structure. Despite this inefficiency, typologically, SOV is a word order 
commonly attested (Hammarström, 2016). As an explanation for this 
paradox, some studies find that arguments in SOV languages are often 
dropped, reducing the overall dependency length in actual language 
use (Levshina, 2025; Ueno & Polinsky, 2009). It is possible that by 
allowing speakers to drop arguments, the efficiency of SOV structure 
may already be significantly improved, obviating the need for SRA as 
another efficiency strategy.

It is also worth mentioning a few other relevant language-specific 
factors. For Mandarin Chinese, although it predominantly follows SVO 
word order, the relative clause goes before the nouns, increasing the 
flexibility of object relations in terms of their dependency length. For 
Korean and Japanese, the subject noun phrase may be delayed when it 
is surprising and unexpected, shifting the word order from SOV to OSV, 
and therefore decreasing the dependency length of subject relations for 
surprising antecedents.

Surprisal effect as efficient coding: An adaptionist view

One way to interpret our finding is that the enhanced robustness 
of memory representation arises as a by-product of the effort involved 
in processing surprising information. However, this raises an even 
more fundamental question: why does the surprisal effect occur in the 
first place? In other words, why is there a widely observed positive 
relationship between surprisal and processing effort?

Here is one way to think about the basic surprisal effect from 
an information-theoretic perspective. More surprising linguistic units 
correspond to longer code length. For example, consider a low-surprisal 
word encoded by a sequence of 3 bits 110, compared to a high-
surprisal word encoded by 11 bits 11100001101. An (over-)simplified 
mechanical interpretation of the basic surprisal effect, therefore, is that 
encoding longer sequence of code in memory requires more time and 
effort. This leads to the widely observed linear relationship between 
surprisal and behavioral measures, such as reading time (e.g., Hoover 
et al., 2023; Shain et al., 2024; Smith & Levy, 2013; Wilcox et al., 2023; 
Xu et al., 2023).

However, choosing a code length based on predictability is not 
the only possible strategy to encode a linguistic unit. An alternative 
approach is to assign each unit a code of equal length regardless of 
statistical regularities, a scheme analogous to the uniform distribution 
of resource allocation discussed in Introduction. For example, the ASCII 
(American Standard Code for Information Interchange) system uses 
such a coding strategy, where every character is represented as a 7-bit 
sequence. Under this hypothetical scenario, processing effort would be 
insensitive to statistical regularities and uniformly distributed across all 
linguistic units.

As demonstrated in previous work on information theory, a coding 
scheme that treats every input as equally likely is inherently ineffi-
cient. When the statistical structure of the input is known, a coding 
scheme that assigns shorter code lengths to more predictable inputs 
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can reduce the average code length, thus increasing efficiency (Shan-
non, 1948). The observed linear relationship between surprisal and 
processing effort suggests that the brain may adopt such an efficient 
coding strategy. Specifically, the brain appears to assign code lengths 
to input units in proportion to their likelihood of occurrence based 
on long-term statistical regularities. This strategy is supported by the 
evidence that the brain is very good at inferring and approximating 
the statistical structure of the external environment (Saffran, Aslin, & 
Newport, 1996), and there is good reason to believe that the brain 
uses these inferred statistical structures to encode information more 
efficiently.

The connection between the surprisal effect and efficient coding 
suggests that the basic surprisal effect itself may be construed in 
evolutionary terms. Under certain efficiency pressures, the cognitive 
system may have evolved to adopt a memory encoding strategy that 
optimizes an objective function within the constraint of limited re-
sources. The exact nature of this objective function remains an open 
question: it could be the minimization of distortion cost, or it could 
involve something else. The key point, however, is that the relationship 
between surprisal and strategic resource allocation can be understood 
at different timescales. On the one hand, at the level of processing 
individual sentences, strategic resource allocation may arise as a by-
product of the effort required to process surprising information. On 
the other hand, over a longer timescale, the tendency to invest more 
effort into encoding less predictable information may reflect an evolved 
strategy that is adapted to an efficiency problem.

Limitations

One major limitation of our analysis is that the results heavily 
depend on the quality of surprisal measures generated from LLMs. 
In the current study, we conducted our analysis using the surprisal 
from two language models, namely GPT-3 and mGPT. As presented 
above, the two models do yield consistent pattern, alleviating the 
concern that our main result may be the artifact of any model-specific 
behavior. However, it still does not entirely rule out the issue with the 
accuracy of LLM surprisals, especially for low-resource languages that 
are under-represented in the training data of the models we used. This 
limitation may compromise the extensibility of our analysis to under-
studied languages, which are of particular interest from a typological 
perspective, and is particularly relevant for the unreliable effect we 
observed for some non-Indo-European languages.

In the end, even though contemporary LLMs can provide state-of-
the-art probabilistic measures for linguistic data, it remains question-
able to what extent it reflects the predictive processing in humans. 
Despite the correlation between the model-generated surprisals and 
the behavioral or neural responses in humans, many studies actually 
find that there still remain some critical patterns in human empirical 
data that cannot be fully accounted for solely by surprisals (Huang 
et al., 2024; van Schijndel & Linzen, 2021). Moreover, compared to 
humans, modern LLMs are far less constrained in terms of their memory 
capacity. This makes LLMs less likely to resemble the memory archi-
tecture in humans, or to capture the memory processes stemmed from 
the efficiency pressure exerted by the limited memory capacity (Oh & 
Schuler, 2023; Timkey & Linzen, 2023). However, this is not necessarily
a limitation for the current study, since there are cases where a model 
with superhuman memory can provide probabilistic measures that 
more accurately reflect the statistical properties in the linguistic data 
without being confounded by the memory interference in the language 
model itself.

Conclusion

The current study proposes Strategic Resource Allocation (SRA) as 
an efficiency principle for memory encoding in sentence processing, 
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which holds that working memory resources are strategically and dy-
namically allocated to prioritize novel and unexpected information. 
Theoretically, we argue that SRA is an efficient solution to the com-
putational problem faced by working memory, that is, to maximize 
the retrieval accuracy of past inputs under the constraint of limited 
memory resources. Empirically, this principle predicts that the mem-
ory representation of more surprising linguistic units is more robust 
against interference and decay. We examined this prediction through 
naturalistic corpus data in the context of dependency locality from both 
the comprehension and the production side. In production, through the 
analysis of UD corpora in 10 languages, we indeed found that more 
surprising antecedents can tolerate longer dependency length, but the 
effect mostly exists within Indo-European and head-initial languages. 
This cross-linguistic variability therefore calls for a closer look into how 
SRA as a domain-general memory efficiency principle interacts with 
the language-specific phrase structure. In comprehension, through two 
English reading time corpora, we observed a similar reduced locality 
effect on retrieval difficulty for more surprising antecedents. Moreover, 
we found that the effect is more reliable for dependencies of subject 
relations than object relations. Taken together, there is converging 
evidence from naturalistic corpus data supporting that unpredictable 
antecedents are encoded with enhanced representation to be more 
resistant against memory decay and interference, a pattern that is 
predicted by our SRA.
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Appendix A. Mathematical derivation of strategic resource alloca-
tion

In this section, we demonstrate the mathematical derivation of 
strategic resource allocation. First, we will characterize the memory 
retrieval process as Bayesian inference for the encoded linguistic input 
(e.g., words). For the purpose of this derivation, we will assume that 
the linguistic prediction and the underlying memory representation 
follow Gaussian distributions; these may be interpreted as distributions 
over values of features. Needless to say, this is a highly simplified 
view of mental lexicon, and is not necessarily the reality for memory 
encoding, especially given that word inputs are discrete units rather 
than continuous variables. However, Gaussian distribution has some 
desirable mathematical properties with analytical solutions to help us 
validate the intuition behind our proposal.

A.1. Memory retrieval via Bayesian inference

Suppose one is trying to encode an input word 𝑤 in noisy memory. 
We model noise by assuming that the input representation 𝑤 is cor-
rupted by Gaussian noise with an adjustable precision 𝜏𝑤, yielding a 
noisy memory representation 𝑟: 

𝑟 ∼ 𝑤 +
(

0, 𝜏−1
)

. (A.1)
𝑤
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Retrieval from memory is then performed by forming a reconstructed 
representation 𝑤̂ = E𝑝(𝑤∣𝑟) [𝑤] as the posterior mean on input represen-
tations 𝑤 given noisy memory representations 𝑟 and a prior distribution 
on inputs 𝑝0, with posterior distribution 

𝑝(𝑤̂ ∣ 𝑟) ∝ 𝑝𝑀 (𝑟 ∣ 𝑤)𝑝0(𝑤). (A.2)

Now for ease of analysis, we set the prior distribution on input 
representations 𝑤 to be a Gaussian distribution parameterized with 
mean 𝑤0 and the precision 𝜏0: 

𝑝0(𝑤) = 
(

𝑤 ∣ 𝑤0, 𝜏
−1
0

)

. (A.3)

A useful property of Gaussian distribution is that it forms a conjugate 
prior, so the posterior distribution on inputs words 𝑤 given memory 
representations 𝑟 is also Gaussian distribution. We assume that, in 
memory retrieval, the decoder18

𝑤̂ ∣ 𝑟 ∼ 
(

𝜇post , 𝜏
−1
post

)

, (A.4)

where the posterior mean and precision are 
𝜇post =

(

1 − 𝛼𝑤
)

𝑤0 + 𝛼𝑤𝑟, 𝜏post = 𝜏0 + 𝜏𝑤, (A.5)

where 𝛼𝑤 = 𝜏𝑤
𝜏0+𝜏𝑤

. Then marginalizing out the memory representations, 
the distribution on reconstructed words is 

𝑤̂ ∣ 𝑤 ∼ 
(

𝛼𝑤𝑤 +
(

1 − 𝛼𝑤
)

𝑤0,
𝛼𝑤

𝜏0 + 𝜏𝑤

)

. (A.6)

We see that the retrieved word 𝑤̂ is pulled towards the prior mode 
𝑤0 with a weight that depends on the encoding precision 𝜏𝑤. As the 
encoding precision 𝜏𝑤 increases, this attraction to the prior is reduced.
Expected retrieval error under the memory model. We define the expected 
retrieval error 𝜀(𝑤) for input 𝑤 as the mean squared error between 
input 𝑤 and reconstruction 𝑤̂: 

𝜀(𝑤) = E
[

(𝑤̂ −𝑤)2 ∣ 𝑤
]

. (A.7)

We can express this mean squared error in terms of the bias–variance 
decomposition as 
𝜀(𝑤) = Var[𝑤̂ ∣ 𝑤] +

(

E
[

𝑤̂ ∣ 𝑤
]

−𝑤
)2 . (A.8)

Dropping in the mean and variance from Eq. (A.6), we can express the 
bias and variance as

Var
[

𝑤̂ ∣ 𝑤
]

=
𝛼𝑤

𝜏0 + 𝜏𝑤
(A.9)

E
[

𝑤̂ ∣ 𝑤
]

−𝑤 = 𝛼𝑤𝑤 +
(

1 − 𝛼𝑤
)

𝑤0 −𝑤 (A.10)

=
(

1 − 𝛼𝑤
) (

𝑤0 −𝑤
)

. (A.11)

This gives us a convenient expression for the expected retrieval error,

𝜀(𝑤) =
𝜏𝑤

(

𝜏𝑤 + 𝜏0
)2

+
(

𝜏0
𝜏0 + 𝜏𝑤

(

𝑤0 −𝑤
)

)2
(A.12)

=
𝜏𝑤 + 𝜏20

(

𝑤 −𝑤0
)2

(

𝜏0 + 𝜏𝑤
)2

. (A.13)

Furthermore, we will wish to express the expected retrieval error 
in terms of the surprisal ℎ𝑤 = − ln 𝑝0(𝑤) of input 𝑤 and the encoding 
precision 𝜏𝑤. From the assumed Gaussian form of the prior over input 
words, we have

𝑝0(𝑤) =
√

𝜏0
2𝜋

exp
(

−
𝜏0(𝑤 −𝑤0)2

2

)

(A.14)

ℎ𝑤 =
𝜏0(𝑤 −𝑤0)2

2
− ln

√

𝜏0
2𝜋

. (A.15)

18 This assumes that the decoder has access to the encoding precision 𝜏𝑤 for 
the input.
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Extracting 𝜏0(𝑤 −𝑤0)2 to the left-hand side yields: 

𝜏0(𝑤 −𝑤0)2 = 2ℎ𝑤 + ln
𝜏0
2𝜋

. (A.16)

Substituting this back into the expression for expected retrieval error, 
we get 

𝜀(ℎ𝑤, 𝜏𝑤) =
𝜏𝑤 + 2𝜏0ℎ𝑤 + 𝜏0 ln

𝜏0
2𝜋

(

𝜏0 + 𝜏𝑤
)2

. (A.17)

Below, we will consider how to choose encoding precisions in order 
to minimize the expected retrieval error under constraints.

A.2. minimizing expected error under memory constraint

In this section, we aim to show that strategic resource allocation 
arises as a solution to the problem of minimizing the expected retrieval 
error on average:

∙ Strategic Resource Allocation
Given two linguistic inputs, the minimization of their total ex-
pected error bounded by certain memory constraint requires that 
the more surprising input be encoded with higher precision.

Consider two input words 𝑤1 and 𝑤2 to be encoded and retrieved, 
whose surprisals are ℎ𝑤1

= − ln 𝑝0(𝑤1) and ℎ𝑤2
= − ln 𝑝0(𝑤2) respec-

tively. We assume that the encoding precision 𝜏𝑤 for each word is 
proportional to the memory resources allocated, and we assume that 
there is a constraint on total memory resources 𝑐 allocated for both 
words, which is to be distributed between 𝑤1 and 𝑤2. That is, we posit 
a constraint on the sum of encoding precisions 𝜏𝑤1

+ 𝜏𝑤2
= 𝑐.

We will show that this optimization problem bounded by memory 
constraint leads to strategic resource allocation in memory encoding, 
as stated in the Proposition below:

Proposition.  To minimize the total expected retrieval error for two 
linguistic inputs 𝜀𝑤1

+𝜀𝑤2
 subject to a resource constraint 𝜏𝑤1

+𝜏𝑤2
= 𝑐, 

the input that is more surprising under the prior distribution must be 
encoded with higher precision. Specifically, if 
ℎ𝑤1

> ℎ𝑤2
, (A.18)

then the optimal encoding satisfies 
𝜏𝑤1

> 𝜏𝑤2
. (A.19)

Proof.  First, in order to minimize expected error 𝜀, we take the 
derivative of 𝜀 with respect to encoding precision 𝜏𝑤 for each input19: 

𝜕𝜖(𝜏𝑤, ℎ𝑤)
𝜕𝜏𝑤

=
𝜏0 − 𝜏𝑤 − 2𝜏20

(

𝑤 −𝑤0
)2

(

𝜏0 + 𝜏𝑤
)3

, (A.20)

which reveals three possible situations with respect to the monotonicity 
of 𝜀 for both inputs:

1. The expected error monotonically decreases with increasing 𝜏𝑤
within its meaningful domain (i.e., 𝜏𝑤 > 0) for both inputs 𝑤1
and 𝑤2. As shown below, this is the situation for most cases 
where the input 𝑤 is not too close to the prior prediction 𝑤0
and the prior precision 𝜏0 is not too unreliable.

2. The expected error is a non-monotonic function of 𝜏𝑤 for both 
inputs 𝑤1 and 𝑤2.

3. The expected error monotonically decreases with 𝜏𝑤 within in 
meaningful domain for one input but is non-monotonic for the 
other.

19 For simplicity, we maintained (𝑤 −𝑤0)2 for now in Eq. (A.20) instead of 
having it transformed to the form that contains the surprisal ℎ  of the input.
𝑤
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In this proof, we will show that the proposition above holds in all these 
three situations.

Situation 1. In this first situation, the expected error 𝜀 monotoni-
cally decreases for both inputs, which means that 
𝜕𝜖(𝜏𝑤, ℎ𝑤)

𝜕𝜏𝑤
≤ 0. (A.21)

Thus, Situation 1 holds when 

𝜏0 − 𝜏𝑤 − 2𝜏20
(

𝑤 −𝑤0
)2 ≤ 0 (A.22)

𝜏𝑤 ≥ 𝜏0 − 2𝜏20
(

𝑤 −𝑤0
)2 . (A.23)

Since 𝜏𝑤 > 0, the inequality in Eq. (A.23) always hold within the 
meaningful domain of 𝜏𝑤 if 

𝜏0 − 2𝜏20
(

𝑤 −𝑤0
)2 ≤ 0 (A.24)

𝜏0 ≥
1

2
(

𝑤 −𝑤0
)2

. (A.25)

Intuitively, this means that the expected error 𝜀 monotonically de-
creases if the input 𝑤 is not too close to the prior prediction 𝑤0 and 
the prior precision 𝜏0 is not too unreliable.

Now that 𝜀 monotonically decreases within the meaningful domain 
of 𝜏𝑤 for both inputs 𝑤1 and 𝑤2 as defined in this first situation, using 
Eq. (A.17), we evaluate the derivative with respect to its relationship 
with input surprisal 

𝑓 (𝜏𝑤, ℎ𝑤) =
𝜕𝜖(𝜏𝑤, ℎ𝑤)

𝜕𝜏𝑤

=
𝜏0 − 𝜏𝑤 − 2𝜏0

(

2ℎ(𝑤) + ln
(

𝜏0
2𝜋

))

(𝜏0 + 𝜏𝑤)3

< 0 (by the definition of Situation 1),

(A.26)

which shows that 𝑓 (𝜏𝑤, ℎ𝑤) monotonically decreases in ℎ𝑤.
When ℎ𝑤1

= ℎ𝑤2
, 𝑓 (𝜏𝑤1

, ℎ𝑤1
) and 𝑓 (𝜏𝑤2

, ℎ𝑤2
) have the same quan-

titative form. As a result, the memory resources will be uniformly 
distributed across 𝑤1 and 𝑤2 with no impetus to redistribute more 
resources to any one of them: 

𝜏𝑤1
= 𝜏𝑤2

= 𝑐
2
. (A.27)

However, when ℎ𝑤1
> ℎ𝑤2

, since 𝑓 (𝜏𝑤, ℎ𝑤) monotonically decreases 
in ℎ𝑤, we have 𝑓 (𝜏𝑤1

, ℎ𝑤1
) < 𝑓 (𝜏𝑤2

, ℎ𝑤2
) at any given value of 𝜏𝑤. As 

a result, compared to the uniform distribution in Eq. (A.27), there is 
reason to redistribute more resources to the high surprisal 𝑤1, since 
the decrease of error on 𝑤1 will be higher than the increase of error 
on 𝑤2, yielding a lower total error across the two inputs. Therefore, in 
Situation 1, if ℎ𝑤1

> ℎ𝑤2
, the optimal encoding strategy should satisfy 

𝜏𝑤1
> 𝜏𝑤2

 (see Fig.  A.1).
Situation 2. As shown above, in order for 𝜀 to be a non-monotonic 

function of 𝜏𝑤: 

𝜏0 <
1

2
(

𝑤 −𝑤0
)2

, (A.28)

which corresponds to borderline cases where the input 𝑤 is too close 
to the prior prediction 𝑤0 or the prior precision 𝜏0 is too unreliable.

In this second situation, with increasing 𝜏𝑤, 𝜀 first increases and 
then decreases, as illustrated in Fig.  A.2. And the relationship between 
high surprisal and low surprisal inputs has three phases. We will show 
that the proposition still holds for all the three phases in Situation 2, 
such that the optimal encoding satisfies 𝜏𝑤1

> 𝜏𝑤2
 if ℎ𝑤1

> ℎ𝑤2
.

In Phase III, the situation is basically the same as the Situation 1 
discussed above, where 𝜀 decreases with increasing 𝜏𝑤 for both inputs. 
Therefore, according to the proof in Situation 1, the optimal encoding 
satisfies 𝜏 > 𝜏  if ℎ > ℎ .
𝑤1 𝑤2 𝑤1 𝑤2

21 
Fig. A.1. Situation 1 expected retrieval error 𝜖 for two input words as a 
function of encoding precision 𝜏𝑤 and their surprisal.

Fig. A.2. Situation 2 expected retrieval error 𝜖 for two input words as a 
function of encoding precision 𝜏𝑤 and their surprisal.

In Phase II, 𝜀 decreases in 𝜏𝑤 for one input and increases for the 
other. For each input, the turning point where the monotonicity is 
flipped is at 

𝜏𝑤 = 𝜏0 − 2𝜏0
(

2ℎ(𝑤) + ln
( 𝜏0
2𝜋

))

, (A.29)

where the derivative of 𝜀 in Eq. (A.26) is 0. Importantly, if ℎ𝑤1
> ℎ𝑤2

, 
then the turning points 𝜏𝑤1

< 𝜏𝑤2
. Therefore, the turning point for the 

high surprisal input 𝑤1 is to the left of the one for the low surprisal 
input 𝑤2. That means, in Phase II, it can only be the case that the 
expected error 𝜀 decreases in 𝜏𝑤 for the high surprisal 𝑤1, but increases 
for the low surprisal 𝑤2. As a result, in order to minimize 𝜀, more 
memory resources should be allocated to encode 𝑤1 than 𝑤2, leading 
to 𝜏𝑤1

> 𝜏𝑤2
.

In Phase I, 𝜀 increases in 𝜏𝑤 for both inputs 𝑤1 and 𝑤2. Recall that 
the derivative of 𝜀 (repeated below in Eq. (A.30)) decreases as the input 
surprisal ℎ𝑤 increases. 

𝑓 (𝜏𝑤, ℎ𝑤) =
𝜕𝜖(𝜏𝑤, ℎ𝑤)

𝜕𝜏𝑤

=
𝜏0 − 𝜏𝑤

(𝜏0 + 𝜏𝑤)3
−

2𝜏0
(

2ℎ(𝑤) + ln
(

𝜏0
2𝜋

))

(𝜏0 + 𝜏𝑤)3
(A.30)
> 0.
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Fig. A.3. Situation 3 expected retrieval error 𝜖 for two input words as a 
function of encoding precision 𝜏𝑤 and their surprisal.

Therefore, in Phase I, the expected error 𝜀 increases more slowly for 
high surprisal input. As a result, if ℎ𝑤1

> ℎ𝑤2
, then for a fixed amount of 

memory resources, more resources allocated to 𝑤1 yields lower smaller 
increase in 𝜀, leading to 𝜏𝑤1

> 𝜏𝑤2
.

Situation 3. In this third situation, the expected error 𝜀 monotoni-
cally decreases in 𝜏𝑤 for one input, but is a non-monotonic function for 
the other.

Recall that whether 𝜀 is monotonic depends on the inequality in 
Eq. (A.28). That is, in order for 𝜀 to be non-monotonic, Eq. (A.28) 
must hold. Moreover, as discussed in Situation 2 above, if ℎ𝑤1

> ℎ𝑤2
, 

the turning point of monotonicity for the high surprisal input 𝑤1 is to 
the left of the one for the low surprisal input 𝑤2. As a result, in this 
Situation 3, it must be the case that it is the high surprisal input 𝑤1
that monotonically decreases in 𝜏𝑤 whereas the low surprisal input 𝑤2
first increases and then decreases, as illustrated in Fig.  A.3.

Apparently, Situation 3 is basically equivalent to the Phase II and 
Phase III in Situation 2. Therefore, as proved above, if ℎ𝑤1

> ℎ𝑤2
, the 

optimal encoding should satisfy 𝜏𝑤1
> 𝜏𝑤2

. □

Remark. To sum up, if the surprisal of two input words ℎ𝑤1
> ℎ𝑤2

, 
given fixed amount of memory resources such that the encoding pre-
cisions for two inputs is constrained by 𝜏𝑤1

+ 𝜏𝑤2
= 𝑐, the optimal 

encoding with strategic resource allocation should satisfy 𝜏𝑤1
> 𝜏𝑤2

in order to achieve minimal total expected error 𝜀. We outlined three 
possible situations of how 𝜀 may change with increasing encoding 
precision 𝜏𝑤, and we proved that the strategic resource allocation 
should hold in all three situations. It is worth noting that, in most cases, 
𝜀 monotonically decreases with increasing encoding precision 𝜏𝑤, as 
in Situation 1. However, when the prior precision is too unreliable or 
when the input word is too close to the prior predicted word, there will 
be borderline cases where 𝜀 first increases with increasing 𝜏𝑤 before it 
starts to decrease, as in Situation 2 and 3.

Appendix B. Statistical models

B.1. Study 1

In Study 1, for each language, we ran regression models on de-
pendency length 𝐿. As mentioned in the main article, the regression 
models were run separately for 𝐿 measured as intervening word counts 
and as intervening surprisal, as shown below in (1) and (2). For 
the analysis on full dataset, we ran linear mixed-effect model with 
random intercept per dependency type. For analysis on subject relations 
and object relations, we ran the standard linear regression without 
22 
specifying random effects. Compare to the orthographic 𝐿, the analysis 
with information-theoretic 𝐿 includes baseline surprisal as an additional 
control variable.

(1) Regression formulas for orthographic 𝐿O

• Full dataset
𝐿 ∼ 1 + Sentence Position + Antecedent Position + Sen-
tence Length + Antecedent Frequency + Antecedent Sur-
prisal + (1 ∣ Dependency Type)

• Subject/object relations
𝐿 ∼ 1 + Sentence Position + Antecedent Position + Sen-
tence Length + Antecedent Frequency + Antecedent Sur-
prisal

(2) Regression formulas for information-theoretic 𝐿I

• Full dataset
𝐿 ∼ 1 + Sentence Position + Antecedent Position + Sen-
tence Length + Baseline Surprisal + Antecedent Frequency 
+ Antecedent Surprisal + (1 ∣ Dependency Type)

• Subject/object relations
𝐿 ∼ 1 + Sentence Position + Antecedent Position + Sen-
tence Length + Baseline Surprisal + Antecedent Frequency 
+ Antecedent Surprisal

B.2. Study 2a

In Study 2a, we ran linear mixed-effect models on log-transformed 
reading times for the critical region at the retrieval site (i.e., the right 
codependent for each syntactic dependency) and its spillover region.

(3) Regression formulas for the critical region

a. Fixed effects
logRT ∼ 1 + sent.pos + antec.pos + sent.len + word.len 
+ antec.freq + surp + surp.prev1 + surp.prev2 + freq + 
freq.prev1 + freq.prev2 + 𝐿 * antec.surp

b. Random effects
• Orthographic 𝐿O

– Full dataset : (1 ∣ dep.type) + (1 ∣ part)
– Subject relations: (𝐿 + antec.surp ∣ part)
– Object relations: (𝐿 + antec.surp ∣ part)

• Info-theoretic 𝐿I

– Full dataset : (1 ∣ dep.type) + (1 ∣ part)
– Subject relations: (antec.surp ∣ part)
– Object relations: (𝐿 + antec.surp ∣ part)

(4) Regression formulas for the spillover region

a. Fixed effects
logRT ∼ 1 + sent.pos + antec.pos + sent.len + word.len 
+ antec.freq + surp + surp.prev1 + surp.prev2 + freq + 
freq.prev1 + freq.prev2 + 𝐿 * antec.surp

b. Random effects
• Orthographic 𝐿O

– Full dataset : (1 ∣ dep.type) + (1 ∣ part)
– Subject relations: (𝐿 * antec.surp ∣ part)
– Object relations: (antec.surp ∣ part)

• Info-theoretic 𝐿I

– Full dataset : (1 ∣ dep.type) + (1 ∣ part)
– Subject relations: (antec.surp ∣ part)
– Object relations: (antec.surp ∣ part)
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B.3. Study 2b

In Study 2b, we ran linear mixed-effect models on first-pass dura-
tions and total reading times at the retrieval site, as shown below in 
(5) and (6).

(5) Regression formulas for first-pass durations (same maximal con-
verging random structure for both measures of 𝐿)

a. Fixed effects
logRT ∼ 1 + sent.pos + antec.pos + sent.len + word.len 
+ antec.freq + surp + surp.prev1 + surp.prev2 + freq + 
freq.prev1 + freq.prev2 + 𝐿 * antec.surp

b. Random effects

• Full dataset : (𝐿 * antec.surp ∣ dep.type) + (𝐿 * 
antec.surp ∣ part)

• Subject relations: (𝐿 * antec.surp ∣ part)
• Object relations: (𝐿 * antec.surp ∣ part)

(6) Regression formulas for total reading times (same maximal con-
verging random structure for both measures of 𝐿 in the analysis 
of full dataset and subject relations)

a. Fixed effects
logRT ∼ 1 + sent.pos + antec.pos + sent.len + word.len 
+ antec.freq + surp + surp.prev1 + surp.prev2 + freq + 
freq.prev1 + freq.prev2 + 𝐿 * antec.surp

b. Random effects

• Full dataset : (𝐿 * antec.surp ∣ dep.type) + (𝐿 * 
antec.surp ∣ part)

• Subject relations: (𝐿 * antec.surp ∣ part)
• Object relations:

– Orthographic 𝐿O: (𝐿 * antec.surp ∣ part)
– Info-theoretic 𝐿I: (𝐿 + antec.surp ∣ part)

Data availability

The analysis code is available at:
https://osf.io/yf4ca/.
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