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CHAPTER FIVE

On the Statistical Theory

of Communication

It is a very inconvenient habit of kittens
(Alice had once made the remark) that, whatever
you say to them, they always purr. “If they
would only purr for ‘yes,) and mew for ‘no® or
any rule of that sort,’ she had said, ‘“‘so that
one could keep up a conversation! But how can
you talk with a person if they always say the
same thing?”
. Lewis Carroll (1832-1898)
Through the Looking Glass

1. DOUBT, INFORMATION, AND DISCRIMINATION

In this, as in other chapters, we shall make no attempt to compress a
whole study within the compass of a few dozen pages, but rather try to
convey to the reader some notion of the nature of the subject of statistical
communication theory, which has aroused such widespread interest dur-
ing recent years. We hope, too, to guide him through the literature and
advise him on a preferred order of reading.

We shall be discussing the scientific concept of information. Now this is
a word in everyday use; we speak of information as being reliable, accurate,
precise, timely, valuable, et cetera. It is therefore not unnatural that the
purely scientific use of the word should often be extrapolated into fields
of discussion where it has doubtful place. Communication theory is a
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168 ON THE STATISTICAL THEORY OF COMMUNICATION

scientific theory; it is not a vague descriptive treatment of everyday ideas
of “information.” It rests upon a solid foundation of mathematics, and
cannot be understood by those who would avoid the mathematics; it
cannot truly be “popularized.” On the other hand, it is not at variance
with commonsense views.

Communication theory first arose in telegraphy, with the need to
specify precisely the capacity of various systems of telecommunication (to
communicate information). The first attempt to formulate a measure
mathematically was made by Hartley4 in 1928, and his ideas are basic
to the theory today. The newcomer to this subject can do no better than
read his short classic paper first; it is easy reading. Engineers are con-
cerned primarily with the correct transmission of signals, or (electric)
representations of messages; they are not commonly interested, profes-
sionally, with the purposes of messages—whether they be trivial gossip,
serious news, or racing tips. Provided the telegraph or telephone trans-
mits the signals faithfully, the messages will have “meaning,” value,
truth, reliability, timeliness, and all their other properties. The signals
must be correct; then all these human properties are inherent and con-
sequential. Mathematical communication theory concerns the signals
alone, and their information content, abstracted from all specific human
uses. It concerns not ‘the question “What sort of information?” but
rather “How much information?”

This aspect of the theory was once described by Weaver as ‘“‘bizarre,”
but now seems to be generally accepted as completely reasonable. The
newcomer is referred to his discussion.®* In this chapter we are con-
cerned solely with this aspect—the information content of signals. In the
following chapter we shall look more closely at the philosophical back-
ground, in an attempt to see relationships between the mathematical
concept of information and other common and more human aspects.

Information can be received only where there is doubt; and doubt
implies the existence of alternatives—where choice, selection, or dis-
crimination is called for. We are continually making selections among
alternatives, every moment of our lives, some consciously, but in the
majority of cases unconsciously. It is a basic animal attribute; in the
words of a psychologist: “discrimination is the simplest and most basic
operation performable.”}

But selection (or discrimination) can be carried out in non-human com-
munication links. Perhaps the reader has seen that modern wonder, one
teletype machine communicating with another. At the transmitting end,

* Read first Weaver’s discussion on p. 95.
t Reference 314, with kind permission of the American Psychological Association.
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the operator selects and presses keys one at a time; coded electric signals
are thereby sent to the receiving machine, causing it to select and depress
the correct keys automatically. We see the receiver keys going down,
as though pressed by invisible fingers.

When we ourselves communicate one with another, we transmit sig-
nals, electric, acoustic, visual—physical embodiments of messages. Now
it is customary to speak of signals as “conveying information,” as though
information were a kind of commodity. But signals do not convey in-
formation as railway trucks carry coal. Rather we should say: signals
have an information content by virtue of their potential for making selec-
tions. Signals operate upon the alternatives forming the recipient’s
doubt; they give the power to discriminate amongst, or select from,
these alternatives. And at present the “set of alternatives” with which
we are concerned is a set of distinct signs which will be termed an alphabet.

A A
B B
c Source selects signs Receiver operates / c
D from alphabet and SIGNALS upon his aiphat D
encodes them as with the signals,
H physical signals which select signs 1
¢ \\ / i
Externat
observer

;—> Communication theory

Fig. 5.1. *“Information” as the selective potential of signals.

They may be the letters of a written language, numbers, printed words,
the ordinates of wave forms (Chapter 4, Section 2.5, Fig. 4.7), semaphore
or Morse code signs, or any discrete sign-types. But the alphabet must
be specified, before the information content of messages can be discussed
numerically; further, it must be assumed that the same alphabet exists
at both the transmitting and receiving ends of the communication channel.
It is then the function of the source of information to select the signs suc-
cessively from this alphabet, thus constituting messages, and to transmit
them in physical form as signals, through a channel, to the receiver. At
the receiver, the signals operate upon an identical alphabet and select
corresponding signs. Messages are then sent and received.

Note the distinction drawn here between message and signal. A mes-
sage is regarded as the “selections from the alphabet,” which is then
put into physical form (signals) as sound, light, electricity, et cetera, for
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transmission.* (A message might, for instance, be a thought, selected
from an alphabet of thoughts.)

Perhaps such a naked description of this basic operation, illustrated by
Fig. 5.1, emphasizes the dehumanized nature of the theory. But we shall
breathe back the breath of life again in the next chapter.

Communication theory is written in the meta-language of an external
observer; it is not a description of the process of communication as it ap-
pears to one of the participants. Figure 5.1 may thus be compared to
Fig. 3.2(a) of Chapter 3.

2. HARTLEY’S THEORY: “INFORMATION” AS LOGICAL
“INSTRUCTIONS TO SELECT”

Figure 5.2 shows, as an example, a simple alphabet of only eight signs,
denoted by 4BC--H. A source selects a sign, and signals in some way
to the receiver; how much information must be signaled for the receiver
to identify the sign correctly? Let us assume that, from past observation,
any sign out of the eight is equally likely to be selected. Doubt is then
spread uniformly over the “alphabet™ or, as it is said, the a priori proba-
bilities of the signs are all equal (in this case, to 1/8).

The signals reaching the receiver represent instructions to select. Thus
the first instruction answers the question: Is it in the first half of the alpha-
bet, yes or no? (In Fig. 5.2, yes = 1, no = 0.) The range of doubt is
halved by this. Then a second instruction divides each half into half again,
and a third into half yet again. In this case then, three simple yes, no
instructions (1, 0) serve to identify uniquely any one sign out of eight.

Such yes, no instructions are the simplest possible; each one successively
halves the range of doubt. They are called binary digits, usually shortened
to bits (or by some people, binits), and are used as the elementary units of
information capacity. Notice that each sign in Fig. 5.2 is identified by a
different sequence of 1, 0 digits. Thus C by 101, G by 001, et cetera.
No two sequences differ by more than one digit; any single mistake
therefore will cause ambiguity.

As we have already seen, all communicable messages (i.e., expressible
by signs) may be coded into such binary 1, 0 sequences. The simplest
illustration is provided by Morse code (dot, dash), which can code any
written message in, at least, European languages.f We would remind

* The nomenclature of communication theory is still not universally established.
However, the system adopted in this chapter in the greater part has been widely adopted
in Britain and in the United States. A full list of definitions is given in the Appendix.

1 Ignoring the letter- and word-space intervals; these can also be coded by a dot-dash
sequence if required.

“INFORMATION”’ As ‘“‘INSTRUCTIONS TO SELECT’ 171

the reader too of the punched-card system of storaging information,

illustrated by Fig. 2.2 (p. 34). )
In our example, three bits of information are required for selection of

each sign from among eight equally likely signs—because 2* = 8 or

Sign | 1st 2nd 3rd  Selections
A 1 1 1
B

T O b oY a
-}
-
=}

Fig. 5.2. Binary coding of selections.

log: 8 = 3. A communication channel like this one, selecting signs at
the rate of 100 per second, would have an information rate of 300 bits
per second.

So much for the cases where the number of signs N in the alphabet is
an exact power of 2. But suppose it is not? We shall show later that the
information is still equal to log: NV bits per sign selected, though this will
involve an averaging process. But first, let us consider, as Hartley did,
messages comprising wave forms, such as speech, rather than printed
signs. Figure 5.3 shows (dotted) part of a continuous wave form s(t),
band-limited to F cycles per second, together with its representation by
independent sample ordinates, spaced 1/2F second apart (see Section
2.5 of Chapter 4). These samples then define the wave form completely.
Hartley appreciated that the amplitudes of such samples cannot be speci-
fied with absolute accuracy, in reality, although this is frequently done
for the convenience of theoretical analysis. The amplitudes, being phys-
ical observations, must be quantized; in the figure, here, a comparatively
coarse quantizing As of only eight levels has been assumed. (Such quan-
tizing is in fact used practically in certain telecommunication systems,
and the successive sample pulses are restricted to their nearest quantal



172 ON THE STATISTICAL THEORY OF COMMUNICATION

levels. The wave form then assumes a step-like character, which intro-
duces a so-called quantization distortion.?62*) But such steps As may,
in theory, be made as small as desired. The smaller As, the greater the
number of levels, and the greater the precision of transmission; as we shall
see, this implies also the greater the rate of transmission of information.
If we now label these ordinates arbitrarily, ABC- - - H, then the succes-
sive selection of the sample ordinates may be regarded also as selection of
these letter signs; such selections closely resemble our previous case,

¥
‘; = As 4 \
w C i RY -r":. _r ¥ ,4( A\
— \, N, T >
ED T:‘_ﬂji‘ rTl‘l‘] ||l“|||"/! b ll‘l_"_mff =
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p = 1 =+ o
H
=gl ez L
2F

Fig. 5.3. Hartley’s theory; band-limited wave-form source.

Fig. 5.2, with a source of discrete signs. However, it is advisable to dis-
tinguish between such (quantized) wave-form sources and sources of
printed signs. For one thing, wave forms usually represent acoustic,
electric, or other physical sources possessing energy, whereas we cannot
readily associate energy with printed letters or other signs (excluding
consideration of limiting physical light-quanta effects). The different
levels, ABC- - +H represent possible states of this wave-form source; the
successive sample ordinates select from these states. In general, if there
are N such levels, or states, each sample ordinate contributes logs NV bits
of information (about the wave-form source) analogous to our previous
case.

Consider a time interval of T seconds. This interval contains 2FT
independent sample ordinates, each of which can have one of N levels.
Thus in this interval there could be N?*T different, distinct, wave forms.
This set comprises all the different possible signals which such a quan-
tized source is capable of transmitting each T seconds; it is called a band-
limited ensemble, of duration T seconds. Hartley defined the information
rate of such a source by the logarithm of this number of different signals
(number of members of the ensemble), as H where, expressed to the base 2:

H = 2FTlog; N bits per T seconds 5.1)
= 2Flogs N Dbits per second ’

* Sce Chapter 2, Section 2.
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which is simply log; NV (the information content per ordinate) times 2F,
the number of ordinates per second. This logarithmic measure is then one
which permits addition of the information contents of successive inde-
pendent ordinates.

And so, too, with any source of independent discrete signs, ABC---N
(assuming for the moment they are equally likely). Ifa source selects from
these at the rate of n per second, its information rate will be n logs N bits
per second; and again there are N" distinct alternative sequences of
signs in an ensemble of one-second duration from such a source. When
the term independent is applied to the successive signs selected by a discrete
source, we mean, at present, that no one sign carries with it any informa-
tion concerning its neighbors. We shall later refer to statistical independence
in a more exact way.

This introduction to the information measure follows historical lines.
Communication theory first arose in telegraphy? and we have used tech-
nical telegraphic terms, like coding. But the reader should appreciate
the basic nature of the ideas. We are concerned not only with coding in
the technical sense, but more broadly, with the making of representations
(of messages). The information received enables the recipient to add to
his representations at his end, and the binary-digit measure tells by how
much. The idea of “correspondence” is inherent in the concept of “com-
munication”—the reproduction, or replication, of a representation.

2.1. REVERSIBLE AND IRREVERSIBLE OPERATIONS UPON SIGNALS

Each of the sample ordinates of a band-limited wave form (Fig. 5.3)
selects a level (defines a state) of the source, ABC---H. Each may be
reduced to binary selections, as illustrated by Fig. 5.2. In Fig. 5.4, (a) a
portion of 2 wave form is shown, together with (b) its binary-code repre-
sentation, according to this coding scheme of Fig. 5.2. (A system of
telecommunication coding, called pulse-code modulation, uses such repre-
sentations practically, for transmitting speech and music;®2% for this
purpose, yes (or 1) is coded as a sharp electrical impulse, whereas no
(or 0) is coded by leaving a blank—no impulse. Figure 5.4(c) illustrates
such impulse signals.)

Such codings, or representations, are clearly reversible; from (c) we
may reconstruct the wave form (a) by setting up the ordinates and using
the correct interpolation function (see Chapter 4, Section 2.5). Another,
very familiar, reversible coding is the Morse code; with this, printed
letters may be represented by dot-dash signals, but converted back into
print without any loss or error.

The coded chain of impulses (c) may itself be regarded as sample
ordinates of a wave form. Notice then that they are now three times as
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closely spaced as in (a) (log2 8 = 3). In general, with quantization into
N levels, the binary-coded signal will have samples with spacings reduced
log: N times, requiring a bandwidth F’ correspondingly increased. At
the same time, the binary signal has only two levels (V' = 2). Thus,
from Eq. 5.1, the information content of these signals has been unchanged
by such coding.

Such a reversible coding represents a change of dimensionality; that is, a
“trading” of bandwidth for numbers of levels, or alternative states.
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Fig. 5.4. Binary-pulse (reversible) code. Horizontal dotted lines represent
thresholds of the quantization process.

The initial quantization itself represents an irreversible process—infor-
mation content thrown away; each wave-form sample, assumed to be
known at first with an unlimited precision, when quantized is repro-
duced with less precision. The original wave form then cannot be
reconstructed with its original accuracy, since the necessary information
has been destroyed; only the quantized wave form is recoverable.

But a more important cause of information loss (and so leading to an
irreversible process) is noise. Noise is the destroyer of information and
sets the ultimate upper limit to the information capacity of a channel, as
we shall discuss later, in Section 6.1.

Hartley did not consider what it is that limits the fineness of quantiza-
tion, in practical channels of the type so far considered; he did not refer
to noise, nor did he consider the probabilities of the various states of a mes-
sage source. It is these two aspects which have received so much atten-

tion recently. The statistical theory of communication is built up upon
Hartley’s foundations, but the idea of a determinate source of signals has
become replaced by the concept of a statistical ensemble. Such a statistical
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approach to telecommunication may be said to have originated with
studies of the phenomenon of random electrical noise, in the 1920’s. We
shall return to such statistical aspects of our subject later, in Section 6.

2.2. WHEN THE NUMBER OF ALTERNATIVE STATES IS NOT A
POWER OF TWO

Selection of any one sign out of an alphabet of N signs can only be
specified in whole numbers. We cannot speak of “fractions of a selec-
tion”; a choice is either made or not made—yes or no. If then W is not
a power of 2, the selective information content of any one sign out of this
alphabet cannot be specified as log: &, since this will be fractional. But
it is easily shown that this measure is still relevant if averaged over long
sequences of selections.©

We are still assuming that all selections out of the N are equally likely.
Consider an interval of time T, during which a wave-form source gives
out a sequence of 2FT independent ordinates (or, analogously, nT selec-
tions from a discrete alphabet). During this interval one of § = N**7
possible different wave forms could be transmitted; then, as before:

log: § = 2FT loge N but now this is fractional
=r+6 where r is whole number and & a fraction

To select this one wave form out of the § equally likely possibilities
must require a whole number of elementary selections. The nearest
whole number is r where

(logz §) — & = r bits (5.2)

B.ut if we speak of average number of selections, per sample ordinate (or
sign) of the sequence, then as the interval T becomes large, this number
of bits per sample becomes:

HN=.lim ’-l—

2P 2FT [(log2 §) — 8] = logs N bits per sample  (5.3)

Alternatively, the information per second from this source is H:
H = 2Flog, N bits per second (5.4)

exactly as for the case, Eq. 5.1, where N is a power of 2.

Notice that H is an information rate; so many binary selections (yes, no)
per second. H may be fractional, but only by virtue of being taken on the
average. This logarithmic measure of information rate can only be applied
in this average sense. We can speak of a source possessing a certain
“average rate of information.” There are, however, certain cases in
which it is convenient to regard the incremental contribution of single
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3.1. STATIONARY AND NON-STATIONARY SOURCES

The relative frequencies p; of the various signs may be estimated by an
observer, if he watches the source for a long time; however, in practical
cases, the possibility of making such an assessment with any pretence to
accuracy depends upon the source being statistically stationary. This means
that if the observer watches for a very long time T, the relative-frequency
estimates he makes will not depend upon the actual moment of starting—
the statistical parameters of a stationary source are invariant under a
shift of the time origin. This assumption of stationariness is normally
required in statistical communication theory, and is one of its present
limitations. Many practical communication sources are, in fact, far from
being stationary; thus spoken and written languages change their statis-
tical (micro) structure continually (Chapter 3, Section 5); again, if the
source possesses learning ability, it will change its behavior with the pas-
sage of time. In most fields of real human communication, the assump-
tion of stationary sign behavior cannot be made, and this is one principal

obstacle to the application of the mathematical theory to individual
human communicative behavior.

3.2. INFORMATION RATE OF A STATIONARY SOURCE OF INDEPENDENT SIGNS

Let papuper pit - pu be the relative frequencies of the N signs of an
alphabet, a, b, ¢, - -, N, where E pi = 1. Further, assume that the succes-

L]
sive signs emitted by the source are independent, meaning that there are
no rules (no “syntax™), determinate or statistical, by which any one sign
is known to relate to another. Each selected sign is considered a separate
event. In this case, the information rate of the source can be a function
only of these relative frequencies p;, and does not depend upon the order
in which the signs are selected at the source.

This alphabet of signs, having certain relative frequencies, forms a
statistical ensemble, upon which the source operates selectively. Figure
5.5(a) shows one way of illustrating such an ensemble; in this example
there are eight signs, abc- - - h, having the relative frequencies:

b= %’%:118'3118':’9!2',3%:'312"‘512‘:
respectively. A thick line of unit length (100 per cent) beneath this
ensemble is shown divided up into segments of length proportional to
these frequencies. This line, with the segments, represents a ‘“‘range of
doubt.”

The source information rate is determined as before, in terms of equally
likely, yes, no decisions, by successively halving the range of doubt. The
“range of doubt” scale has been redrawn in Fig. 5.5(b), which may be
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compared and contrasted with the equally likely case of Fig. 5.2. Thus,
a first selection is made such that the ensemble is divided into two groups,
of equal probability p = . The transmitted sign is equally likely to come

aacaaaaaacaaaaaacabbbbbbbbccdde fgh
| | ] I I O |

| —
t \ 1 T

Lengths proportional to relative frequencies

Fig. 5.5(a). An ensemble of eight signs, representing a “range of doubt.”
Relative
Sign Frequency Selection | 1st |2nd|3rd | 4th | 5th
(Pi) T
« 12 1
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¢ e | ofo|1]1
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« e T ofo 1]
A =< {HH:E
H }/32 o olo <
Zp,=10 \ Lengths proportional to relative frequencies
3 ——
Fig. 5.5(b). Binary coding of selections of unequal probabilities.

from either group—on a long-term basis. Now the reader may object
that such equal subdivision is only possible because we have chosen a most
convenient set of probabilities in this example! True; this may not be
possible in general, but let us assume for a moment it is, and return to
this point later. A second subdivision, as shown, divides the ensemble
into subgroups of equal probability p = %; a third, into sub-subgroups of
£ = % and so on, until all signs are uniquely identified. The yes, no codes
(1, 0) are shown in this figure, which illustrates also that the lower the
probability of a sign in the ensemble, the more yes, no elementary selec-
tions are required; that is, the rarer the signs, the higher their informa-
mation content.®* Information content is then measured in terms of

* See Huffman under reference 166 for further treatment of such type of coding.
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the statistical rarity of the signs (likened, by some people, to their “surprise
value”).

Each such division, into groups of equal probability, halves the range
of average doubt; it therefore represents one 4t of information. Let a
particular sign be i, requiring say K; successive binary subdivisions to
identify it. Its probability is p;; consequently, the final subdivision, which
identifies it, divided a range 2p; into equal parts; the subdivision before
that divided the range 2%;; the one before that 2%;; and so on until we
arrive at the initial division of the whole alphabet, having a probability
> p: = 1. Hence: .

“INFORMATION” AS ‘‘INSTRUCTIONS TO SELECT’’

28ip; = 1

or K; = — logzp.- (55)

The average, or expected value of K, taken over the whole alphabet
a, b, ¢,”++, N (in the general case) is then:*

H() = —logpi = — 2. pilog p; bits per sign (3.6)
A

We shall return to this important formula, which represents the average
number of yes, no digits required, per sign transmitted—the information
rate of this source of independent discrete signs.

3.2.1. WHEN THE ALPHABET DOES NOT DIVIDE INTO EQUALLY LIKELY
suBGROUPS. The argument above, due to Fano, is very descriptive, but
the following method is an alternative. Consider now those cases in
which the alphabet does not divide consecutively, so conveniently, into
equally likely subgroups. The argument is rather similar to that of
Section 2.2; we cannot deal with single signs, but only with averages, over
very long sequences given out by the source.

If we observe extremely long sequences, then the various signs
a, b, ¢,” -+, N will in fact occur with almost their estimated probabilities
Dapy " ~pa (the source being statistically stationary); consider an ensemble
of all the » possible different message sequences, each of § signs in length,
distinguished only by different orders of occurrence. Then all such long
sequences will have nearly equal probabilities p(S) of occurring in the
source, and the number of different messages in the ensemble will be

* Expected value: the expression 5.6 is a way of writing average values, as used par-
ticularly by statisticians. Supposc we have a chain of the numbers a; as a3 (perhaps
a; = log p;) from a source, of which the following is a sample of 12 successions: a3 a;
ay a1 a3 a3 &y @) az as a; ay (twelve numbers).

Average of this =

4Xa)+(2Xa 6 X a
¢ ekt 12 2+ ) =W Xa)+ (g2 Xa) + (s X a3) =Y poa..
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n = 1/p(S) where:
p(S) = pus.pa..pbs-ph.pcSoy‘. . .pNS-pN (5.7)

We see this, as follows: the probability of a sequence is the product of
the probabilities of all the signs forming it. Then a occurs about S p.
times in each long sequence; hence, since p. is the probability of any
one a occurring, the joint probability of the number Sp, occurring is po%%e.
Similarly for b, ¢, d, et cetera.

Now all these n messages being so nearly equally likely, the informa-
tion content of any one is obtained as for our first elementary case (Fig.

. . 1
5.2). It is simply logs n bits per sequence S, or _ logz n bits per sign.
That is, from 5.6 S

L1 1
H(i) = 3 logp—(-s—) = — X p:log p; bits per sign (5.8)

which is identical with Eq. 5.6.

4. THE USE OF PRIOR INFORMATION: REDUNDANCY

1t is one of the merits of statistical communication theory that it takes
into account the effect, upon communication, of prier information. Though
a receiver may not know exactly what messages are coming to him next, he
is not necessarily in a state of complete ignorance. We have already
assumed that he knows the alphabet of signs and has had experience of
their relative frequencies of occurrence. In Chapter 4 we considered his
knowledge of the channel itself: of bandwidth, signal power, types of
coding; of the structure of the signals, as dependent upon the channel
properties. All this has been brought into consideration in measuring
information rates. But other prior information may exist, by virtue of
known constraints between the signs; that is, from syntactical rules. If
such rules are known, determinate or statistical, then the signals reaching
the receiver bear less information than they would if the successive signs
were independent. The information conveyed by signals is always rela-
tive; it depends upon the difference in the receiver’s doubt before and
after their receipt.

4.1. SYNTACTICAL REDUNDANCY: ITS MEASUREMENT

The rules of syntax of human languages are complicated and varied;
such rules introduce redundancy into the messages, thereby making their
correct reception more certain. We have already discussed this question,
in a purely descriptive way, in Section 6.3 of Chapter 3. In communica-
tion theory, redundancy is treated mathematically, the syntax being
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described, not necessarily as a linguist would commonly view it, but as
a set of conditional probabilities.”

A source of information which selects signs according to probabilities
is called a stochastic source, and the message sequences stochastic series.
We may consider also transition probabilities, or the relative frequencies
with which different signs, say, follow a given sign or, alternatively, pre-
cede it. In printed English, for instance, the rule of spelling, “I before
E except after C,” with a very few exceptions, suggests that

£6(EL) > £o(IE)

We read a transition probability p,(y) as “the probability of y given x.”
An alternative notation is p(y}x).

Other conditional probabilities may be known, referring not only to
adjacent signs of a sequence, but to any specified spacings or groupings
such as “letter bridges” or “word bridges.”?7

The existence of constraints, in terms of transition or other conditional
probabilities will, if known a priori, introduce redundancy into the mes-
sages received from a source—being something known statistically about
the messages beforehand (prior statistical information).

In English texts, or those of other human languages, the various transi-
tion probabilities governing the appearance of the successive letters are
very unequal. As an illustration, suppose a teletype machine gives out
the following sequence:

-------------- with the arrival of |

where the bar represents the instant “now.” The next letter is governed
by a whole set of conditional probabilities, and depends, in the limit, upon
all that has gone before. However, the influence of the letters and words
several lines, paragraphs, or pages removed in the past will be very slight.
It is the few letters immediately preceding “now” which have the greatest
control, with certain exceptions owing to rigid grammatical rules. But,
as regards numerical measurement of redundancy, we have available only
those conditional probabilities which have to be gathered by the patient
labor of cryptographers and language students,D+86.96.273.204,387  The task
of assessing monogram, digram, and trigram frequencies is formidable,
let alone going beyond this. The fact that we ourselves can guess succes-
sive letters of a text, with fair accuracy, implies that we possess immense
mental stores of the rank orderings of letters and words; but we do not know
the various transitions as numerical relative frequencies.?**

With the help of statistical tables of letter or word frequencies, together
with digrams, trigrams, or other grouping frequencies, it is possible to
construct texts which resemble, say, English passages (though they may
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continually “wander off the point!”). But this experiment need cause
no surprise, and has no philosophical interest whatever; it merely shows
the correctness of the tables used. Jonathan Swift made biting comment
upon this experiment (Chapter 2, Section 1).

Rather than an English message, such as that cited above, let us con-
sider a Teletype machine operating in code* and, for simplicity, using
only the letters 4, B, C, D. A typical sequence might be:

4
-------------- BAACDBADCDABA|B
c
D

where the bar represents “now,” to be followed by one of 4, B, C, D,
according to a whole set of conditional probabilities. To assess any one,
say the frequency with which B follows 4, p4(B), we pick out all the 4’,
in a very long sequence, and observe what fraction are followed by B.
Since some letter must follow any given one

(D) =2p(G) =1 (5.9)

That is to say, the summation is obviously independent of the preceding
sign, 7.

There is a simple, yet very important, theorem concerning statistical
constraints and redundancy; it should be clear from the illustration above:

If all the various transition probabilities p;(;) are equal, then the individual
signs, or letters, become statistically independent and equally probable. In
such a case there are absolutely no preferred guesses as to what letters will be
given out by the source; redundancy is provided by the existence of unequal
transition probabilities.

Such a source of equi-probable, statistically independent letters or
other signs has a maximum information rate (other factors being fixed).
Equation 5.8 gives the information rate for a source of independent signs,
and this expression is maximized when all p; are equal.”

But notice that the converse argument does not hold; it is easy to
arrange that all letters should be equi-probable, yet have unequal transi-
tion probabilities. An example will suffice; suppose this is a typical
sequence:

- BBBBAAAACCCCAAAADDDDCCCCBBBB ---

* It can be helpful, to the beginner, to consider examples in code, rather than in
plain language, because the mind is so easily side-tracked by the “meaningfulness” of
the latter. Meaning is quite irrelevant to our present context, but we shall consider its
place in relation to communication theory later, in Chapter 6.

PRIOR INFORMATION: REDUNDANCY 183

Then although p(4) = p(B) = p(C) = p(D), it is possible that, say,
$4(C) < pe(C). Given any one letter of the sequence, our best guess
here, for the next, would be the same letter.

Sequences for which only pairs of adjacent signs are considered, as we
have done so far, are called Markoff chains,?” though the term is fre-
quently used for series with known trigram or higher-order (finite) struc-
ture. Quantitatively speaking, the redundancy of a source is assessable
only relative to the known set of probabilities. Thus we can quote the
redundancy of a source on a monogram basis [knowing only the various
5(1)], or a digram basis [knowing also p (i, j)], or a trigram basis, et cetera.
But we cannot simply give “its redundancy,” on an unspecified basis.

Suppose that we have assessed the relative frequencies with which a
source emits different alternative sequences of § letters; let us write such
S-gram joint probabilities as p(a b¢---S). For example, in our four-
letter source used above, we may know the values of 4(4 B C), p(A C B),
p(B AC), p(B C A), et cetera—all the trigrams. - Then these may readily
be interpreted in terms of successive transitions since:

Plabec---S) = P(a)-Pu(bc-+S)
= P(a)-Po(b)-Paslc - -S)
= eeeeen etc. (5.10)

Probability constraints between successive letters may then be specified
either in terms of joint probabilities p(a b ¢ - -S) or as different transition
probabilities P, (b), Pas(c- - *S), et cetera.

Knowing such conditional probabilities, we may then assess the corre-
sponding redundancy—which is still to be defined.

The redundancy of a source may be quoted as a percentage:

Hyppe — H

max

Redundancy? = X 100 per cent (5.11)

where  H = information rate (bits per sign, or second) of the source

H oy = maximum information rate which it could possess if re-
coded into the same alphabet of signs by equalizing all
transition probabilities, and hence equalizing all sign
probabilities, thus rendering them independent.

For illustration, Fig. 5.5 shows the encoding of a redundant source; the
signs of the alphabet, g, 4,- - *, &, having unequal probabilities are shown
encoded into 1, O signs (digits). But there are clearly many alternative
ways of doing this. The alphabet might have been divided successively
into two parts, represented by a 1 and a 0, in different ways. One way,
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however, will give H., and will render the frequencies of the 1 and 0
signs equal, on an average, from the source.

We have defined the rate of information of a source of signs, as H(Z) in
Eq. 5.8; this was given as minus the expected value (average, over
alphabet) of the log probability of the various signs. Its maximum value
H e (7) would be reached if all p(i) were made equal by recoding. But
we have not yet defined the information rate of a source of signs having
known transition probabilities. This may be done on the same basis as
before: as minus the expected value of the log probabilities of the various
signs of the alphabet. Suppose, for example, that we know not only all
the sign probabilities 4(¢) but also all the transition probabilities with
which any sign j may follow a given sign ¢; that is, we know all p(i) and
all p;(j). Then at any given instant the last sign 7, emitted by the trans-
mitter, is known at the receiver (the channel being noiseless); conse-
quently doubt about the next sign j depends upon the probability p:(J),
not upon 4(j). Consequently the relevant “doubt measure” is —log ps( I3
which must be averaged over all the digrams (if). Thus the information
rate of such a redundant source H;(j) is

Hy(j) = — ;)j:p(i,j) log p:(5)
= - );JZM:»«U) log pi(;) bits per sign (5.12)

Similarly the information rate H;;(k) may be calculated for a source
having a known trigram structure; and so on.

Shannon has estimated the redundancy of English,2* on a letter basis,
from the published data®? on letter frequencies, and digram and trigram
transitions p;(j), ps;(k) [tables of higher n-grams are not available]. He
gives the following figures: H(i) = 4.14, H;(j) = 3.56, and H,;(£) = 3.3
bits per letter. A 26-letter alphabet is used, with the word space ignored.
He gives figures also for a 27-letter alphabet and for the information
rate on a word basis,® together with an interesting experimental method
of estimating rates with higher-order transition constraints (see Chapter 3,
Section 6.3), showing that the information rate tends toward a limit of
roughly 1.5 bits per letter.

On the other hand, suppose we know not the transition but the Joint
probabilities of adjacent pairs of signs p(7, j), ranging over all signs of the
source alphabet. Then the receiver’s doubt about each arriving digram
(i) depends upon log p(i,j). It is as though the alphabet was con-
sidered to be rewritten as a digram alphabet, from which the source
selects digrams. The information rate, relative to a prior knowledge of
this kind, is:

HGj) = — );}’:.P(i,j) log p(i, ;) bits per sign (5.13)
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4.2. REDUNDANCY: ITS FUNCTION IN CORRECTING ERRORS

“Redundancy” may be said to be due to an additional set of rules,
whereby it becomes increasingly difficult to make an undetectable mis-
take. The term therefore is rather a misnomer, for it may be a valuable
property of a source of information. If a source has zero redundancy,
then any errors in transmission and reception, owing to disturbances or
noise, will cause the receiver to make an uncorrectable and unidentifi-
able mistake.

Redundancy may be contributed in many ways; different kinds of
determinate or statistical rules may be used. In human languages, such
rules constitute syntax, where “rules” may better be called “habits,” for
none are inviolate (see Chapter 3, Section 6). But with codes or invented
sign systems, regular rules may be introduced. All redundancy is, in
cffect, a form of addition; a larger number of instructions are sent than
are barely necessary. The simplest form of addition is plain repetition of
each sign n times, as with the sequence given above, though this is not very
efficient. From a non-redundant source of, say, independent and equi-
probable letters, any specified sequence of letters must be capable of
occurring; none are “forbidden.” But in the English language, for
example, with its 26 letters, there are many sequences which virtually
never occur. If you were to receive the following telegram, you would
have no difficulty in correcting the “obvious” mistakes:

BEST WISHES FOR VERY HAPPP BIRTFDAY

because sequences such as HAPPP do not occur in the language. By
virtue of redundancy, messages may become changed by errors into some-
thing more improbable. Similarly with speech; speech sounds appear
only in certain sequences, in language, so that extraneous noises super-
pose and convert the sequences into something the listener knows to be
most improbable. He detects a mistake and asks the speaker to repeat;
if the extraneous noise, by chance, converts a sequence into something
resembling a true speech sequence, the listener may mishear. But speech
perception raises other problems far beyond such simple illustrations,
which we shall discuss in Chapter 7.

It will suffice here to give one elementary method of adding redundancy
to coded signals, and to refer the reader to more advanced treatments of
the subject of noise-combating codes. Depending upon the type of noise,
and the type of channel, redundancy is best added in different ways; but
the whole subject is very difficult.D:13..142.%  Shannon has indicated a
general technique of coding messages in advantageous ways, for combating

* See also Laemmel, under reference 166.
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noise, that is more subtle than mere repetition of every transmitted
sign.D

When messages, originally expressed by some form of signs (such as
the letters of printed texts), are transformed into another set of signs, in
a way agreed upon between the transmitter and the receiver, and such
that they may be unambiguously transformed back again, they are said
to be coded. When transformed into code groups containing only two dis-
tinct signs, they are said to be in binary code. This code, which we have
seen is of basic interest, is illustrated by a simple example in Fig. 5.2.
Here, the alphabet of eight letters ABC- - -H can be expressed alterna-
tively by yes, no or 1, 0 digits before being signaled to a receiver, who
may recover the letters unambiguously. In this example, the various
1, 0 groups, corresponding to each letter, differ from one another by only
one digit; thus, any error, resulting in the conversion of a 1 into a 0, or
vice versa, causes an undetectable mistake in decoding of the received
letter. But suppose we add one redundant digit to each group, as follows:

Letters Code Groups Letters Code Groups

4 = 1111 E = 0110
B = 1100 F = 0l0l
(5.14)
c = 1010 G = 0011
D = 1001 H = 0000

On inspection, it will be seen that such code groups enable one single mis-
take, in any 1, O digit, to be detected (but not corrected). For instance,
the group 1111, for 4, might be converted to any of the following, by
noise: 1110, 1101, 1011, 0111, none of which appears in the code. With
this redundancy, one digit error per letter is detectable, but not correct-
able; thus, the group 1110 could be produced either by a single error in
the code for 4, for B, for C, or for E.

To give greater safeguard against error, further redundant digits
could be added, making the set of code groups differ, one from another,
by as many 1, 0 digits as possible. We may regard this as seeking to place
the code groups as “far apart” from one another as can be, where “far
apart” means a distance in a code hyperspace. To visualize this, we
must reduce the space to two or three dimensions, so that we can draw it.
Taking an alphabet of four letters only, we can code this as follows:

4 =11 ¢ =01
B =10 D =00

(5.15)
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Each code group here has only two degrees of freedom and so may be
represented by a diagram in two dimensions. Figure 5.6(a) shows two
axes, representing the first and second digit, so that the four code groups
may be placed at the four corners of a square. Moving parallel to the
vertical axis changes the first digit, or parallel to the horizontal axis, the
second digit. Only four distinct code groups are possible, given by
Eq. 5.15, and, of these, those at the ends of either diagonal of the square
are “farthest apart.” Figure 5.6(b) shows the similar case with three
degrees of freedom; here eight code groups exist (corresponding to Fig

1st digit

1st sign

2nd sign

(a)

3rd digit

()
Fig. 5.6. Binary coding: (a) with two and (6) with three degrees of freedom.

5.2), and four which are mutually “farthest” apart are shown with
asterisks, lying at the corners of a tetrahedron. Alternatively, the four
without asterisks have the identical property.

This process may be carried into spaces of m dimensions, in which the
code groups each have m binary (1, 0) digits. The complete set of dis-
tinct code groups would then possess 2™ members, which might be used to
encode an alphabet of 2™ signs (e.g., letters), but with no chance of
detecting errors. Out of this set, a number V could be selected so as to
differ from one another by at least d digits. The problem is then to
choose these in such a way as to maximize the number N for use as

code groups.}342.*
(Postseript: The question is often asked during student lectures on
communication theory: If a million copies of a newspaper are printed,
is the information content increased a millionfold? The answer is
that, should any one person (a “receiver”) read them all, a millionfold
redundancy would exist !)
* Sec also Laemmel under reference 166.



188 ON THE STATISTICAL THEORY OF COMMUNICATION

5. MESSAGES REPRESENTED AS WAVE FORMS:
“CONTINUOUS” INFORMATION

Let us now glance at a few aspects of signal wave forms, such as those
of speech, rather than sequences of discrete signs, such as letters. Notice
there are two ways of regarding a source of speech; we could imagine,
say, speech reduced to phonetic symbols and these treated as a finite
alphabet of signs or, rather more naturally, we could treat the raw speech
wave forms as the communication medium. Then, in such cases, what
are the “signs”? It is here that the Sampling Theorem comes to our aid
(as discussed in Section 2.5 of Chapter 4). If the bandwidth
of the wave-form source is restricted to any value, F cycles per second,
chosen arbitrarily or by practical considerations, then the wave forms
are specified completely by the values of their ordinates spaced apart
along the time scale by intervals of 1/2F seconds (the time origin may be
chosen arbitrarily). Figure 5.3 illustrates a sampled wave form. Strictly
speaking, there is no need to consider “‘continuous” wave forms at all in signal
analysis.’** ““Continuous” functions are the creation of mathematicians, 266
and enable methods of analysis of great elegance to be used. But such
analysis may well be done algebraically.* Against this, it may be argued
that algebraic methods must necessarily introduce approximations;f
this may be true, but it should be remembered that signal analysis con-
cerns the use of mathematical methods for describing physical signals and
their properties. Mathematicians deal with mental constructs, not with
description of physical situations. Approximations can be reduced as
much as we wish, at the price of increased algebraic labor. A “continu-
ous” function is not a physical idea but a mathematical one; when solving
problems in physics (or applied mathematics), such an idea need not be
regarded as holy, as sometimes seems to be the case.

Communication sources, emitting wave forms, are sometimes referred
to as continuous sources. ‘This, however, is not because wave forms are
“‘continuous functions of time,” s(¢), but rather because the successive
independent sample ordinates s(71), s(rs), et cetera, may have a con-
tinuous range of amplitudes; an ensemble of such wave forms (or their
sample ordinate sequences) may have a continuous amplitude distribution.{

* For example, see reference 333. Tustin denotes a sequence of wave-form ordinates
by a sequence of numbers, representing their amplitudes; he then determines the rules
for addition and multiplication of such time series.

t All applied mathematics is necessarily approximate, of course, because we cannot
describe a physical situation in its entirety. But whether it is the mathematics or the
physics which is approximate is not a real question. Rather, we should say that the
two can never fit one another perfectly.

1 However, in practice, such distributions can only be estimated from a finite set
of observations.
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Against this, it could be objected that amplitude quantization is a neces-
sity, since the wave forms represent physical observations of signals;
but to take refuge in this idea, and so make wave-form sources similar to
sources of discrete signs (Fig. 5.3) is, although quite justifiable, rather
distasteful to people whose interest is primarily mathematical. For the
smaller we make the amplitude quantum As, the greater the number of
alternatives in the “alphabet” of ordinate amplitudes, and so the greater
the information content contributed by the selection of any one of them;
then, as As — 0, in this limit does the information rate of such a source
become infinite? This is an interesting theoretical point, which we
shall discuss shortly (Section 6).

5.1. THE IDEA OF ‘‘STATISTICAL MATCHING”

Wave-form analysis concerns signal wave forms, their properties, and
relations between them. It is really, then, a ‘“syntactic” study.* But
there are certain distinctions between sources of wave forms and sources
of, say, printed signs, apart from the question of “continuity.” One dis-
tinction is this: an alphabet of printed signs may be listed in arbitrary
order; but the ordinates of wave forms are rank-ordered along a scale of
amplitude,; or energy. An ordinate having an amplitude s(t) == As/2
specifies a wave-form sample having an energy proportional to the
square of this amplitude, and so the selection of this ordinate, by the
source, requires that this energy be supplied. Sources of information
emitting wave forms require supplies of power, and any limitation set to
the value of this power imposes a constraint upon the source. Such limi-
tation may be set in several ways; frequently it is set as a fixed mean
value (Chapter 4, Section 2) and sometimes as a peak value or as a
maximum wave-form ordinate magnitude. Different types of telecom-
munication channel use different systems of modulation, and these, in
turn, impose different types of power constraint. The power of wave-
form transmitters must always be limited to a finite value.

‘We have now mentioned a few constraints which practical telecom-
munication channels impose upon the signals they transmit. In partic-
ular, they restrict the bandwidth (and hence the number of independent
ordinates per second) and the power; again, the source itself, prior to
encoding, possesses a certain statistical structure. Such constraints de-
mand that, for efficient transmission, a source of information should be
statistically matched to the physical channel, for transmission.”

This concept of statistical matching is extremely important because,
in communication theory, it gives an exact mathematical formulation of
a universal principle of human behavior. When carrying out any goal-

* We shall enlarge upon this notion in the next chapter.
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seeking task, the way in which this task is organized will depend upon the
constraints imposed—that is, upon the individual’s freedom of action.
The achieving of some optimum result depends upon organization of the
task, whilst keeping within the limits imposed. The key word here is
organize. The encoding of messages is a process of organization, convert-
ing or transforming messages from one sign representation into another,
possibly more suited to the type of communication channel employed;
and the channel may impose limitations of bandwidth, or of power,
(and, as we see later, noise) which determine how this encoding should
best be done.

To give a simple human illustration, when I send a telegram in Britain,
I am charged so many pence per word; therefore I express (“represent”)
my messages in certain preferred ways, omitting prepositions, et cetera,
and choosing subtle words. The statistics of my language become
changed. On the other hand, when I talk to young children I am con-
strained to use words of one syllable, though perhaps many more of them
than I would use for an adult. So the statistics are again altered. All
such constraints of the channel, then, determine a preferred statistical
structure for the transmitted signals. But such examples are very vague.
In communication theory, this idea is given exact mathematical expres-
sion, in terms of the encoding of messages so as to maich the physical con-
straints of the channel of transmission. For example, suppose a source
selects messages which are represented by an alphabet of printed letters;
then, as we saw before, the greatest rate of transmission (in this medium
of print) is achieved when the letters are statistically independent and
equally probable. But suppose we wish to transmit these printed mes-
sages over a telegraph channel; then the letters should be encoded into
electrical signals, such that they use the limited available electric power
of the telegraph channel in a most efficient manner. “Most efficient”
here means that, with the given power, the electric signals shall be able
to convey information at the greatest possible rate, or at least possess
a capacity greater than that required by the message source itself. Now
the coded messages may be represented as electric wave forms in many
ways; two in particular we have already illustrated, namely (a) simple
amplitude variation (Fig. 5.3), in which the amplitude of any ordinate
represents a sign, and (b) pulse-code modulation (Fig. 5.4), in which
all the electric pulses are identical in amplitude. And it may be shown
that in the former case, with the assumption that the mean signal power is
fixed, the greatest information rate is achieved if the messages be so coded
that the transmitted wave-form ordinates are statistically independent
and approximate to a Gaussian amplitude probability distribution.P
Briefly, in the case of a source of printed letters (no power consideration),
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the information rate is greatest when the letters are equi-probable and
independent; but in the case of messages represented as bandwidtl}-
limited wave forms, with the mean power limited to Py, then the maxi-
mum rate is reached with a Gaussian* amplitude distribution:

s 1
a~P(—> = — (5.16)
g Vor
where ¢? = P, the mean power. This equation gives the prok'>ability
densities of s, the wave-form ordinate amplitudes, relative to their root-
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Fig. 5.7. The Gaussian, or Normal Density Function P (;)

(area lying under this curve is unity).

mean-square value o. Here ¢ is also called the variance of this bell-
shaped distribution (Fig. 5.7), and itisa normalizing factor of the curve.

But this way of discussing sources of messages represented as wave
forms is not wholly satisfactory. We have imagined the wave-form ordi-
nates to be quantized into a finite number of states, possibly quite large.
But we have so far avoided this question of a continuous range of ampli-
tudes, which would seem to result in the possibility of an infinite rate of
communication of information. There are certain essential distinctions
between such continuous sources and discrete-sign sources. In particular,
information rate can only be considered to be relative, not absolute;
again, continuous sources cannot readily be discussed in a practical way

* Sometimes called Normal Density Function (see reference E for tables), as illus-
trated by Fig. 5.7.



the problem ol continuous sources 1n a slightly different way.

5.2, SOURCES OF WAVE FORMS: TIME AVERAGES AND ENSEMBLE AVERAGES

We shall now consider “continuous” sources of signals as wave forms
having a bandwidth F cycles per second. Such wave forms may be repre-
sented completely by a series of ordinates spaced apart by 1/2F seconds
(as in Fig. 5.3). It should be appreciated that only this spacing is of
consequence, and the time origin of the samples is empirical. True, if
a different set of points be chosen, also spaced by 1/2F seconds, then a
different set of ordinates will result; but these will be related to the first
set by transformation equations. However, if any sequence of ordinates
be chosen, equally spaced by 1/2F seconds, they will specify the wave
form completely.

Given the arbitrarily chosen time origin, ¢ = 0 at the position of any
one ordinate, the nth ordinate from this in the positive time direction will
mark the instant ¢ = n/2F or, in the negative direction ¢ = —n/2F.
The wave form s(¢) is then represented by the summation of the sequence
of interpolation functions of sin x/x form (Eq. 4.16), having amplitudes
given by these sample ordinates, as illustrated by Fig. 4.7. That is:

s@) = E.r(")SiHQTF(‘—;.F)

n
27 F (t - Eﬁ)

o \2F
Here we are imagining the wave form of the source output to have
unlimited duration. If this duration is limited to a time T, then n will
range over the values 1, 2,- - -, 2FT. This equation, 5.17, represents the
set of all the possible wave forms which can be emitted by this band-
limited sourcz.

Since a set of discrete ordinates completely defines the signal wave form
s(¢), we should expect to be able to express all the various statistical
properties of the signal in terms only of these ordinates. “Statistics” are
“averages”; and there are two distinct ways whereby such statistical
parameters may be specified. The two ways, which, in certain impor-
tant cases, become equivalent, are illustrated by Fig. 5.8; let us take them
in turn.

5.2.1. “TIME-AVERAGE” SOURCE STATIsTICS. Figure 5.8 illustrates typ-
ical wave-form segments (each of duration T seconds) from a number of
different sources—source 1, source 2, et cetera. We shall be regarding

(5.17)

so that each of these signals will have a 1arge NUINUCL UL UTELCED W1 avhuui
2FT. Any one wave form is uniquely specified by the values of the 2FT
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Fig. 5.8. Time-average and (source) ensemble-average statistics. For simplicity,
we show relatively short durations T here, representing few degrees of freedom 2FT
for the wave forms.

equally spaced ordinates, so that, starting with the first orc'iinatc o.f each
or any of these wave forms, we may label the successive qrdmatcs,
as before, 0, 1, 2,°*+, n,-+*, 2FT and refer to their amplitudes as
s152° - “Sa- * “Sapr (rather than the s(n/2F) notation used in Eq. 5.17).

This set of band-limited wave forms, all of duration T, may be con-
sidered to represent alternative messages which the source may select,
just as we earlier spoke of a source as selecting from alternative long
sequences of printed signs (Section 3.2.1). Again, analogous to 'the
discrete case, we may speak of this set of wave forms as a band-limited
ensemble, defined by a probability distribution p(s.) where

D(sn) = p(s152° * *50* * ~S2pT) (5.18)

As distinct from the discrete case, this is here assumed a continuous
distribution since the various 5, may have any values. The source of
information may now be said to exert its selective action upon this con-
tinuous ensemble of wave forms. The total probability must be unity;
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hence the constraint, or normalizing condition:

ff . -fﬁ(.rm- oSpc e Sepp)dsidset  cdsapr = 1 (5.19)

In the case of discrete letters, a definite numerical value may be esti-
mated for the probability (relative frequency) of any letter in the alphabet
or set. But now we are speaking of continuous distributions and so we
can consider only probability densities. As an everyday illustration of a
density, we cannot speak of the probability of “a man’s being exactly
h feet tall in Britain”—we must consider a small interval of height, Ak,
and speak of the probability of height lying between & and (& + Ak).
Figure 5.7 shows the very important type of density function—the Gaus-
sian, or Normal (having here only a single variate 5) and a typical interval
(1/0)As is marked. The area of this thin slice, p(s/s)-As has a definite
probability value, inasmuch as it is a definite fraction of the fotal area
lying under the distribution curve, which is unity. But the mean ordinate
of this slice o-p(s/o) is not a probability, being a probability density.
Similarly p(s,) in Eq. 5.18 is a probability density, whilst the

ﬁ(.\'[.\'z' M 'Szpr)dhd.\'z' ' 'd.s‘zpy-

in Eq. 5.19 is a probability.

Statistics relating to such ensembles are time averages; we have taken
the set of all possible wave forms, having duration T and hence 2FT
degrees of freedom, emitted from one particular source at different times.

Consequently, such a method of averaging is suited only to stationary
sources; for only if the statistics remain unchanging with time can we
assess them usefully from wave forms emitted at different times.

As we saw to be true of the case of a source of discrete signs (Section 2.2),
the information rate of a continuous source should also be regarded as
an average rate—averaged over long sequences of ordinates. On such a
basis, the information rate may be expressed as the minimum number of
Jyes, no instructions required to select the wave forms from the ensemble.
In this case of a continuous source, the wave forms constituting the
ensemble must have a large number of degrees of freedom 2FT; that is,
their duration 7" must be long. The root reason for the requirement
arises from the Law of Large Numbers,® which concerns a deceptive
point about our intuitive notions of a probability as a relative frequency.
Briefly, it is this. Imagine a source of wave forms, quantized in amplitude
into intervals As which may be made very small (Fig. 5.3, for example,
though As is a coarse quantizing there). Then, over a very long time T,
the fractions of the total number of ordinates 2FT which fall into these
various quantum levels constitute an estimate of the amplitude probability
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distribution. The “true probabilities” are never attainable by real-life

experiments, however small the quantum intervals As, but represent

tendencies, or mathematical limits.* For consider what wave forms

might occur from a sequence of 2FT ordinates, on the assumption that
there is no mutual influence between successive ordinates (that is, if they
are independent events). From a sequence of 2F7 ordinates, quantized
into N levels, we can generate N?FT different possible wave forms, as
was emphasized in Hartley’s theory (Section 2). Any sequence of ordi-
nate amplitudes might occur, to constitute a wave form. It is conceivable,
for instance, that a wave form might occur for which the whole sequence
of 2FT ordinates had equal amplitudes, or even zero amplitudes; then
we should say that these are not ‘“typical wave forms™ of the source.
(Again, when playing cards, you have no reason to be surprised if, one
day, you draw a complete hand of spades! Such a hand is just as possible
as any other stated hand; but it is “not typical”; a “typical” hand would
contain some hearts, clubs, diamonds, and spades.) In the case of our
source of wave forms, suppose we actually observe it for a long time T
and make an estimate of the amplitude distribution; if a second sample,
also of duration T, be observed, another estimate may be made, and a
third, fourth, and so on. These different estimates, made from successive
wave forms of duration T, will fluctuate about a mean distribution. The
Law of Large Numbers states the mathematical fact that the longer the
sample duration T (i.e., the greater 2FT), the greater will be the fraction
of these wave forms having amplitude distributions lying very close to the
“true” probability values. That is to say, non-typical wave forms will
become relatively rarer. But it is important to appreciate that non-
typical ones can occur; they merely have, by chance, fluctuations very
wide of the statistical mark.®

5.2.2. “EnseMBLE AVERAGES.”” The classical theory of communica-
tion, as developed mainly by Shannon, was concerned with stationary
sources.? It was intended for application to problems arising in the tele-
communication engineer’s field—to telephone systems, telegraphs, tele-
vision, and other systems—together with certain analogous problems in
cryptography.2® In such systems the assumption of stationariness is not
a severe limitation.

But there are certain problems (some of which arise in the engineering
field too) in which the changes of the signal statistics, as time passes,
are of particular interest. The communication theory of learning sources
would be one case, for example, but so far as your author knows, little
such theory has yet been presented.!?? Various social studies, too, such

* It is legitimate to question whether in fact these limits exist, or whether they are
merely assumed to, as a postulate. See reference 206 for a popular discussion.
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in the social field, the distribution of wealth may suddenly be changed
by a war, a revolution, or a new system of taxation; in physics, the
velocity distribution of the particles of a body of gas will be changed by
application of a source of heat. But always, when dealing with the
question of the relative stationariness of statistics, the time scale should be
borne in mind, for all fluctuations may be smoothed out if a sufficiently
long averaging time be taken. The longer this time, the more detail
will be lost concerning shifts and changes taking place as the controlling
factors vary.

In cases of non-stationary sources of information, time averaging can-
not be used, because the estimates of the source statistics, made from
successive sequences of 2FT wave-form ordinates, would show a steady
change, the origins of these successive sequences being at different in-
stants 0, T, 27,---, et cetera, on the time axis. However, it can be
appropriate and often very useful to replace this concept by that of an
ensemble average.®-7° For this purpose we regard Fig. 5.8 vertically, and
imagine a large number of similar sources, all operating under identical
macroscopic physical controlling conditions. The sources are not micro-
scopically identical, but each emits its own wave forms or time sequences
of ordinates. These sources all experience the same changes in the
physical controlling conditions as time passes if, in fact, such changes
occur to cause non-stationariness. If we label the successive sample
ordinates as the Ist, 2nd, - - -, nth, - - -, et cetera, then an ensemble average
may be taken over each of these; for example, taking the nth ordinates
of the (simultaneous) wave forms of all these sources, various statis-
tical parameters may be estimated from that collection of data. The
sources being non-stationary in time, the statistics relating to the
lst, 2nd, - - -, nth, - - -, ordinates will in general change. Ensemble aver-
aging is extremely useful in non-stationary system study.

It should be clear that, in stationary examples, time averaging and
ensemble averaging give like results; for the successive sequences of dura-
tion 7, emitted by a particular source, might well have been emitted by
a succession of sources, if operating under identical macroscopic control-
ling conditions. But in non-stationary cases the results will, in general,
differ. These ideas are equally relevant to sources possessing redundancy,
which show definite probability constraints between successive ordinates,
provided that such interordinate influences extend over relatively short
sequences only.

The remainder of this chapter will be devoted to a barest sketch ot the
main concepts of the statistical theory of communication when noise is
present. This condition more closely approaches reality than the ideal
“noiseless” conditions assumed hitherto. We shall discuss in particular
the concepts of “information rate,” “channel capacity,” and “equivoca-
tion.” These concepts are not easy to acquire, or simple to apply cor-
rectly. They are essentially mathematical and, what is most important,
they are primarily of application to certain technical problems (mainly
in telecommunication) under clearly defined conditions. It is only too
easy and tempting to use these terms vaguely and descriptively, especially
in relation to human communication— by analogy.” The concepts and
the methods of communication theory demand strict discipline in their use.

6.1. NOISE, DISTURBANCES, CROSS-TALK: THE ULTIMATE
LIMITATIONS TO COMMUNICATION

In real life, all communication signals are subject to disturbances,
usually beyond the control of the transmitter or of the receiver. The
theory as treated so far has assumed that no disturbances are present;
the source selects messages, and transmits signals, which are received
without error, enabling the receiver to make an identical set of selections
from his ensemble. No question of mistakes in reception arises, for no
causes have yet been cited.

Disturbances may take on many forms, in practical channels, In
radio reception there may be the sporadic impulsive noise of *“‘atmos-
pherics”; on the telephone, there may be similar crackling and hissing
noises, owing to electric disturbances; a television picture may occasion-
ally be spoiled by a splash of white dots, caused by motor-car ignition
systems. There is another kind of noise of a somewhat different nature,
often called “cross-talk,” which can arise on faulty telephone lines,
resulting in a third voice’s breaking in upon the conversation. In a sense,
conversation with a friend at a noisy party provides an example of a
speech channel subjected to disturbance by the cross-talk of other people’s
speech.  Cross-talk is one type of noise of particular importance; it may
be specified statistically by a set of parameters in a manner similar to
that for a wanted speech source.

But there is one other class of noise of outstanding interest, which has
received great attention from mathematicians and physicists, often called
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Gaussian notse; it is produced by the random superposition of a great
number of independent causes. Historically, the first random source of
this kind to be studied was the so-called “Brownian motion.” In 1827
Robert Brown,” an English botanist, saw through his microscope the
rapid and apparently random motions of minute colloidal particles sus-
pended in a liquid—haphazard movements due to chance collisions with
the liquid molecules. Figure 5.9 illustrates a part of a typical path
taken by one particle, a path such as Brown himself and others since
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Fig. 5.9. “Brownian” (random) motion.

have tried to trace. If such a path be observed for a long time (i.c., many
collisions), it is found that a/l directions are equally probable. We
cannot predict and control such movements in detail, mainly because
we can never know the exact positions, directions, and speeds of all the
molecules at any instant of time—for there are far too many. But, fortu-
nately, it is possible to describe and predict the motions statistically—
that is, on a long-term average.!33:3% The appropriate mathematical
method to be applied to such problems, involving enormous numbers of
variables which can never be known in detail (microscopically) but only
statistically (macroscopically), is not simple mechanics but statistical
mechanics.?

Similar random motions arise among the electrons in all electrical
conductors, in telephones, in radio receivers, and in all telecommunica-
tion apparatus, and give rise to the phenomenon of random Gaussian
noise. Such random disturbing signals always exist, in varying degrees
of magnitude, and are microscopically unpredictable and so cannot be
allowed for or annulled. Such noise is the ultimate limiter of the fineness
with which wave-form ordinates may be effectively quantized, As, and
is the ultimate limiter of the information capacity of a telecommunica-
tion channel—the ultimate limit set by Nature.

A source of such Gaussian noise may be observed and its statistical
parameters specified, like any other source of noise, or source of informa-
tion. The noise disturbing a_wanted source of information may either
depend upon this source itself or not. Thus, statistical dependency
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might be the consequence of some physical control exerted by the signal
transmitter upon the source of noise. The theory of communication has
so far been applied, almost entirely, to cases in which the information
source and the noise source are completely independent, and the source
signals and noise are simply added; any knowledge of the information
source, or signals received from it, can give no information about the
moment-by-moment noise values. However, communication theory

Source
of
noise
Encoder Signals
Source and - R
transmitter
Signals x - Noisy signals y received
transmitted,
with probabilities

Fig. 5.10. Communication of information, when noise is present.

Theory

demonstrates the surprising fact that, solely from knowledge of the
statistical parameters of the noise source, the average rate of loss of informa-
tion may be determined.?

Figure 5.10 illustrates a source of information selecting messages,
which are encoded and transmitted as physical signals, perhaps as wave
forms. To these signals noise disturbances are directly added, before
they reach the receiver. The receiver has no means of knowing by how
much the true signals are perturbed, moment by moment, by this noise.
The received noisy signals will consist then of two parts: first, that part
representing the (wanted) yes, no instructions from the selective actions
of the message source; and, second, that part embodying bogus instruc-
tions from the noise source which is making its own selections from its
ensemble of random functions. These bogus instructions interfere with
those from the message source and destroy information at a definite rate.
The noise source thus increases the receiver’s doubt, and we may regard it
as possessing a certain rate of destruction of information (“negative
information”).

But we have not, as yet, considered how to specify the information rate
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of a continuous source; let us do this now and show that, if noise be
included, this rate cannot be infinite as seemed to be the case from our
earlier arguments (Section 5).

6.2. THE WEIGHING OF EVIDENCE AND FORMATION OF VERDICTS

When noise disturbs the signals, the instructions which they embody
to the receiver, to select messages from his ensemble, are not complete,
perfect, or definite. The situation is then not one of precise cause and
effect, but rather one of effect and probable cause. The received noisy
signals do not completely represent the messages from the source but con-
stitute only evidence of those messages. The receiver can, at best, weigh
this evidence in the light of all the past (a priori) knowledge he possesses
and make a verdict—his verdict or decision being the *““best guess” about
the transmitted message. And, as with all verdicts based upon limited
evidence, this “guess” may be wrong.

That is the logic of the situation, and it may be described mathemati-
cally. The process of communication in the presence of noise is essen-
tially one of inductive inference and the appropriate description of the
situation is given by Bayes’s theorem, which we briefly discussed earlier.*

Call the transmitted signal x and the corresponding received signal y.
Then y differs from x, for it has noise in addition, or in combination in
some way. The receiver’s problem is to extract, from his received signal y,
all the possible information about the transmitted signal x (and hence
about the message represented by x), and to reject the inherent “bogus
information” about the noise source.

Imagine y to be a noisy signal, received on some one specific occasion;
before that moment the receiver’s doubt about what signal might be sent
depends upon the transmitter ensemble probabilities p(x) (so-called a
priori probabilities). On receiving y he possesses this as evidence concern-
ing the actual transmitted x; his doubt is now represented by a new dis-
tribution p(x|y), being the probability that any x was sent, when the
particular y is received{ (so called a posteriori probabilities). Then if
#(x|y) can be determined by the receiver, the whole of the information
about x, contained in the noisy signal y, will be extracted.{

* The suggestion that this approach might be appropriate and useful seems to have
been made independently by Woodward and Davies, 1950 (reference 361), and by
Cherry (scc under reference 167).

t We use a different notation now for conditional probability because p,(x), etc.,
was used before for the special case of transition probabilities.

1 See reference 136, Chapter 6, on rational decisions, for general mathematical
treatment of Bayes’s theorem and of its use for the weighing of evidence. Dr. Good
discusses the general problem in a way immediately interpretable in terms of our mes-
sage extraction problem here.
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This process represents the “weighing of the evidence,” but does not
touch upon the verdict. That is, the process of finding the a posteriori
distribution p(x|y) does not extract the actual message. The verdict,
or “best judgment” as to the actual message, is arrived at after consider-
ation of p(x|y), but, as we shall see later, the receiver does not neces-
sarily choose the maximum value of this function (the most likely
message x).

If the logarithmic measure be used, as before, then the gain in infor-
mation, on receiving y, may be expressed:

)
Ll

The following calculation is carried out in the meta-language of our
external observer (Fig. 5.10) and not in that of a human transmitter. or
receiver (participant). Let p(x, y) be the probability (or density if x and y
are continuous) of the joint event: x transmitted, y received. From the
product law:

Information content } (5.20)

of a received signal y

b(x) = p(pOlx) = p(p(xly) (5.21)
so that the required distribution:
oely) =22 p(y1e) (5:22)
§46))

However, since y is some one definite received signal, p(y) is known
numerically, as a constant 1/K, which is given by the condition that
2_p(xly) = 1 as we shall see by example. Then

p(xly) = K-p(x)-p(ylx) (5.23)

As a simple illustration, there is no better example than that given by
Woodward.* Suppose it rains four days out of seven, and that when it
rains the barometer is low three times out of four, whilst when it is fine,
the barometer is high two times in three. One day the barometer is
high; what will the weather be?

Here the barometer is giving evidence of the weather, not an absolute
indication. If F = Fine, R = Rain, whilst H = High, L = Low, we

The reader may ask: “How does the receiver assess the transmitter ensemble proba-
bilities p(x) if he never has (noisc-free) access to the tranimitter? Surely, his prior
doubt can depend only upon the probabilities of his own, received message ensemble as
gathered from his own past experience and decisions concerning the messages?” The
answer is that the theory is expressed in the meta-language of an external observer
[Fig. 3.2(a)], and it assumes the transmitted ensemble to be known at both ends.

* By kind permission. Sec under reference 167, p. 167.



202 ON THE STATISTICAL THEORY OF COMMUNICATION

may represent the problem as a set of equally likely possibilities, thus:
RRRRFFF [(R) = 4; p(F) = 7]

5.24
LLURHHL BB -tp@n) =8
[ ——

From inspection we see that p(F|H) = §, p(R|H) = % is the required
answer—the chances of fine or rainy weather when the barometer is high.
This method of enumeration is a much more self-evident demonstra-
tion of inverse probability than is direct appeal to the Eq. 5.23. How-

ever, we might instead have substituted there, giving:

p(R|H) = K-p(R) p(H|R) = K'*‘r'*‘;}

(5.25)
p(F|H) = K-p(F)-p(H|F) = K-3-§

where K = 1/p(H) and is given by the condition p(R|H) + p(F|H) = 1,
so that K = §, which is obvious also from inspection of Eq. 5.24.

This simple example illustrates one further important point, namely
that p(y|x) is not really a probability density (or relative frequency) at
all, because the y is one received signal (or evidence) on this one particular
occasion. It has a definite value. In our example the barometer was
reading high (H) on some occasion. Then p(H|F) and p(H|R) are really
likelihoods of fine or rain on that specific occasion. Then, in general,
p(yx) is a likelihood function of x, written L(x):

p(lx) = L(x) a likelihood function (5.26)

The method of enumeration, represented by Eq. 5.24, clearly shows
the relations between the a priori probabilities p(x), the a posteriori prob-
abilities p (x]y), and the likelihood function L(x), asin Eq. 5.23. In words,
we may describe these functions thus:

p(x) is the probability of message x being sent, assessed from past observations

of the transmitter. .

p(x]y) is the probability of an x being sent, on those occasions when y is received.

L(x) is the likelihood that, if any particular » kad been sent, the specific y

would be received.

Then Eq. 5.23 expresses the fact that the probability that a message x
has been sent, in the face of some received signal evidence y, is propor-
tional to the likelihood of x, weighted by its prior probability.

6.3. THE AVERAGE INFORMATION RATE OF A CONTINUOUS
SOURCE, WHEN NOISE IS PRESENT

So much for the “information content” of a particular received signal
9. Let us now consider the regular flow of signals between a transmitter

e
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and receiver and, furthermore, go straight to the case of continuous signals,
having any of a continuous but bounded range of values.

For example, the signals might be transmitted and received wave forms,
having a continuous range of amplitudes between zero and some peak
value. The reader will recall that such continuous cases previously led
us into difficulties (Section 5), for we saw that if the Y. expression for
the rate of information of a discrete source be interpreted as an integral,
for a continuous source, the answer was infinity. But we have now
included noise, and two statistical sources are at work, one supplying
information to the receiver, one destroying it, at different rates,

Rather than write p(y) = 1/K, we shall now retain it as p(y) because
all possible received signal y values must now be considered; it will also be
appropriate to retain the form p(y|x) rather than L(x). Putting Equation
5.22 in logarithmic form:1%

—log p(x) + log p(x|y) = —log p(y) + logp(ylx)  (5.27)

Equation 5.22 has expressed the information content of one particular
received noisy signal y; to determine the mean rate of information, we
must average over all possible x and y. To do this, multiply by the joint-

probability density (x, y) dx dy and integrate* over the ranges of x and
y values.

— [ [ o 108061 dx dy + [ [o5,3) 10m pely) ey
= — [[ren i+ [[omniogsilaey (629)

Using the product rules, Eq. 5.21, this equation simplifies; thus we may
rewrite the different terms in Eq. 5.28 as follows:

(a) —ffﬁ(x,y) log p(x) dx dy -—fp(ylx)‘/‘p(x) log p(x) dx dy
_ f p(x) log p(x) dx = H(x)

the information rate of the ideal, noiseless source. This information rate
can never be realized through our practical noisy channel; for notice the
second term in Eq. 5.28:

) + [ [ 3) 108 p(a1) ds &y = —H(xby)

which represents the average ambiguity, produced by the noise source, in
the received signals y; that is, the average rate of production of doubt

* For note on this averaging process, see footnote on p. 179.
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(“negative information’) about what actual x values are transmitted,
even when the received signals y are known.
We may write the left-hand side of Equation 5.28 now:

H(x) — H(x|y) = R (5.29)

the true rate of transmission of information over the noisy channel. It is
the difference of two rates: H(x) is the rate of production of information
at the source itself, all of which is not accessible to the receiver because
of the inherent effects of noise; it represents the receiver’s a priori (average)
doubt. Even after receiving the signals y, the a posterior doubt H(x|y)
remains, because the noise renders the signals ambiguous. Thus H(xy)
represents a rate of loss of information, caused by the noise, and it has
been termed the channel equivocation by Shannon.P Notice that it is
distinct from H(ylx), which represents the rate of production of “bogus
information” by the noise source.

All these rates have the units of bits per degree of freedom (as was the
case for discrete sources), for we may regard the continuous signals as
being defined by the values of 2F sample ordinates per second. Thus
2FR represents the channel rate, in bits per second. Once again, this
measure of information rate is equivalent to a specification of the mini-
mum number of yes, no instructions about the source messages conveyed
by the noisy signals.

Take now the right-hand side of Equation 5.28.

© _ff;,(x,y) log p(y) dx dy = —fp(x|y)f1’(}') log p(y) dx dy
= — [0 1080) & = HO)

which, by analogy with H(x), represents the “information rate” of the
received signals y. But some of this is bogus (information about the noise
source itself). The rate of bogus information is:

@ + [ [ o) 10g sl s dy = —H 1)

representing, on an average, the doubt about what y will be received,
even when the transmitted signals are known. It should be remembered
that it is the external observer who assesses these quantities, notthe
receiver himself.

Now we have another, and alternative, expression for the true rate of

information:
H(y) — H(y|x) = R (5.30)

which is similar to Equation 5.29, but with x and y reversed. Again this is
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the difference of two rates; the rate corresponding to the received signals
y, less the “negative” or bogus information rate of the noise source.

The true information rate R is thus, in both forms, given by the difference
of two integral expressions. It is this fact which renders R finite, although
each of the integrals might become infinite. We have not in fact proved
here that this difference is finite, but would refer the reader to the original
work,P+* because our purpose is not to present a condensed version of
the theory, but rather to survey and discuss its basis, its objects, and its
restrictions.

7. THE ULTIMATE CAPACITY OF A NOISY CHANNEL

Shannon’s most important contribution to statistical communication
theory is undoubtedly his Capacity Theorem;P-¥® this gives a result
which would certainly not be suspected intuitively. It is this: ¢ is possible
to encode a source of messages, having an information rate H, so that information
can be transmitted through a noisy channel with an arbitrarily small frequency of
errors, up to a certain limiting rate C, called the limiting capacity, which depends
upon the channel constraints (e.g., bandwidth, power restrictions, noise
statistics, etc.), provided that H < C.

It might at first be thought that, since noise is present, errors are inevi-
table; or that perhaps redundancy could be added so as to combat the
noise to some extent, but never to remove errors entirely, for this implies
that information would be sent with absolute cerfainty, in spite of the
unpredictable noise! In fact, any attempt to transmit at a higher rate
than C will cause errors; but at any rate below C the errors can be made,
in theory, vanishingly few. It is emphasized: in theory. For the practical
accomplishment of such ideal codes has proved to be of extraordinary
difficulty,P131142328. and is somewhat discouraged by the fact that the
types of modulation and coding which have been invented already by tele-
communication engineers have proved to be remarkably efficient.2:2:296:%
But the fact that the engineer has “got there first” does not detract one
iota from the value of this theorem. Practical accomplishment so fre-
quently precedes theory. The value here lies in the establishment of
a limit to the capacity; anyone who tries to beat this limit is wasting his
time! In this light, the Capacity Theorem is similar to the concept of
Conservation of Energy.

* See also reference 133 for a very full discussion of this question. The basic reason
why R is finite is that, although both H(x) and H(x|y) have magnitudes which depend
upon the co-ordinates of x and y, their difference R is invariant under a transformation
of these co-ordinates.

t See also Laemmel under reference 166 and Shannon under reference 167.
1 See also Jelonek under reference 166.
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7.1. RECEIVED INFORMATION AND THE EXTRACTION OF MESSAGES

One most significant point about the formulae for the rate of trans-
mission of true information through noisy channels (Eqs. 5.29 and 5.30)
is that they are expressed entirely in terms of probability distributions,
log p(x), log p(y|x), et cetera, or their ensemble averages. The informa-
tion content of a received signal y has been regarded as the logarithm of
the ratio of the posterior to the prior probabilities (Eq. 5.20) of the
different possible transmitted signals xyx2°° X, * . But, in practice,
communication cannot be said to be established, between a transmitter
and a receiver, if the receiver gets nothing but probabilities! A Teletype
machine prints definite letters, not probability functions. Nevertheless
the production of the posterior function p(x|y) represents the extraction
of the information content of the noisy signal y; but, at some stage, one
definite value of x must be selected, based on the p(x]y) evidence, as the
“hest choice” determining the received message.

Curiously enough, the “best choice” need not be the most probable
value of x, although in fact it usually is. As I. J. Good has emphasized, *
this choice may depend upon the future consequences or upon the purposes
of the message; more generally, to borrow a term from the economists,
the choice depends upon the utilities involved.f Good quotes a most
convincing example, drawn from radar (a form of telecommunication
very thoroughly treated, from the present point of view, by Wood-
ward?®:3¢2 and by Davies?), illustrated by Fig. 5.11. Suppose a radar
station is given advance information whenever an enemy aircraft is
approaching at a range lying between 100 and 400 miles. The radar
receiver problem is to determine the correct range as accurately as
possible. The various “possible ranges’” now represent messages, X.
Before a radar signal is received, the prior range probability p(x) is
assumed uniform between the 100 and 400 mile limits. Now suppose a
noisy radar signal y is received and the complete posterior probability
£(x|y) determined, having the form shown in the figure, with a maximum
value at range x = 270 miles but with a smaller peak at x = 150 miles.
The radar operator might nevertheless decide to take action on the basis
of the smaller peak at 150 miles, because this represents a more immedi-
ate danger.

The whole of the posterior distribution p(x|y) represents information;
it represents the receiver’s “degree of belief”” that any particular range x

* See discussion by Good under reference 166, p. 180.

t Utility is defined as “reasonable measure of value” (e.g., of money). The concept
goes back to Bernoulli, in the early history of probability theory and its application to
gambling. See reference 136, p. 52.
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is the true one. If one point be chosen as the assumed “true signal x”
and the remainder of the curve rejected, then information is thrown
away.* This may be illustrated by the following argument. Suppose
the choice be deferred and a second signal received, for example in this
radar case. Then p(x]y) now becomes the prior probability of x, for this

8 Probability of enemy
2 range after receiving
e signal, p(x/y)
s Prior probability
z of enemy range
] b(x)
E-1
e R \
[-%
| i|pisAAN e / | 4
0 100 200 300 400 Miles

Range x —>

Fig. 5.11. Measurcment of a target range by radar.

second observation. Suppose the process is continued and a series of
consecutive signals are received, yiyz**¥." ", SO rapidly that the true x
(enemy range) remains substantially constant. Then, from Eqgs. 5.23
and 5.26:

After 1st observation p(xly1) = Kup(x)La(x)
After 2nd observation  p(x]|yyz) = Kap(x)Li(x)La2(x) (5.31)
After 3rd observation  p(x|yys) = Kip (%) L1 (x) La(x) La(x)

and so on.

It will normally happen that the probability curve will become sharper
and sharper, centered upon the true x, though this is not inevitable,®
because the successive true signals will be related whilst the successive
noise contributions will be random.

This is similar to adding redundancy at the source by simple repetition
of x. However, a radar target is an example of a particularly unco-operative
source; the enemy does not obligingly code his radar echoes, adding
redundancy as required, so as to overcome the noise disturbing the
receiver!

* This whole question of the determination of the *‘best” signal x, when noisy signals
are received, may be regarded as the testing of statistical hypotheses. The alternative
«hypotheses” arc the possible signals x; %2 - - - x, - - - and the choice of any one carries
with it some probability of error. For discussion of the various types of test, in relation
to this problem of signal detection, see Middleton under reference 166. Sec also
reference 78.
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In more usual, friendly telecommunication systems, the transmitter
and receiver co-operate. Coding may be designed to include redundancy
in the best possible way (as limited in practice by ingenuity and economy)
50 as to overcome the noise and make the receiver’s final selection of the
“assumed correct signals x” from the posterior distribution p(xly) easier,
and his chances of error fewer. Clearly, then, if ideal coding could be
found, it should be such as to reduce p(x|y) to an infinitely sharp, single
peak. The selection of the “assumed correct x”” would then throw away
no information; the signal would be received correctly, with certainty
and with no chance of error, in spite of the noise. More specifically,
it is the ensemble average of log p(x|y), namely H(x| ) or the equivoca-
tion, given by Eq. 5.29, which would be reduced to an arbitrarily small
value by ideal coding.P

Such ideal coding methods have not been designed and, in practice,
they would be unusable, because they would require an indefinitely long
postponement of the final identification of the “correct signal.” Coding
which involves indefinitely long delay is impracticable, and some com.
promise must be sought.

7.2. STATISTICAL MATCHING OF A SOURCE TO A NOISY CHANNEL

We have already made some preliminary discussion of statistical matching
of a source to a channel of transmission, in Section 5.1. A channel, such
as a telephone or telegraph channel, for example, exerts certain con-
straints upon the signals it transmits; in particular it restricts the electrical
power available, and the bandwidth. In Section 5.1 we referred to the
problem of coding the messages from the source in the best way, for trans-
mission, subject to these constraints, where “best way” implied trans-
mission of information at the maximum possible rate. However, we
abandoned our discussion there, when it became clear that factors other
than available bandwidth and power determine this maximum rate. We
now see that this new factor is the noise. The noise also exerts a con-
straint upon the channel, and the manner of adding redundancy to the
source messages, so as to change their statistical structure in the “best
way,” depends upon the structure of the noise.

The problem of statistical matching is to find a suitable code for the
source such that the ensemble of transmitted signals is given a statistical
structure which maximizes R, the rate of transmission of information
through the noisy channel. From Eq. 5.29 and the integral expressions
given there for H(x) and H(x|y), this ultimate capacity of a noisy channel,
artained by such statistical matching, may be expressed thus:P

— 1 26) ] ;
C= ;Lnl [r::)x Tf p(x, %) logp(x)/z(y) dx dy | bits per sec  (5.32)
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When we speak of transmitted signals x, these may be taken to be wave
forms of duration 7" and bandwidth F; consequently, such signals are
specified by the values xix2° - x2pr at 2FT equi-spaced in.stant_s, S0 ?hat
the transmitted ensemble probability distribution has a finite dlm_en:&n?n-
ality 2FT. That is p(x) = p(xixa- - ‘x2pr). This problem of maximizing
the rate of information, as the integral expression, Eq. 5'323 over all
possible ensembles p(x) and subject to fixed power, ban'dwtxdth, ani
possibly other constraints, is an exercise in the calculus of vanatl.ons“?'"'-

Repetitive redundancy, to which we referred in the la.st scct‘lon, is the
simplest way of combating noise and reducing the equivocation at t'he
receiver. It involves prior agreement between the communicating parties
that each transmitted sign (letter; binary-code 1, 0; wave-form ordinate,
etc.) shall be repeated n times. The receiver tth has a bc.ttcr chance of
assessing the signs correctly, but the price he pays is a delay in tl.'\e process;
he must wait until the end of each sequence before making his decmor_n.
The same price is always paid; statistical coding ir}volvcs delay, and this
delay becomes longer and longer as better coding is cmPloycd, for t.rans-
mission and errorless reception, at a rate approaching .the ultimate
capacity C of the channel. This rate can then in practice never bc
attained, but only approached asymptotically. We may infer that this
is so from our earlier argument in Section 4. All forms of rcdunf]ancy
operate by calling upon past experience; perhaps .by th(? inclusion 'of
known digram, or trigram, constraints; perhaps by including the statis-
tical influence of signs extending even farther back into the past. l.3ut to
extract the ultimate information out of any sign, we should require to
know all the statistical constraints upon it, involving knowledge of the
preceding signs extending indefinitely far back into t'hc pas.t. Ideal
coding involves taking into account, in the transmitter, indefinitely long

blocks, or run-lengths of messages.

8. MANDELBROT’S EXPLICATION OF ZIPF’'S LAW
—CONTINUED

We are now able to take up again the threads of an earlier discussion
(Chapter 3, Section 5.2) concerning Zipf’s experimental “law,"’ illus-
trated by Fig. 3.5 and Mandelbrot’s theoretical treatment of t‘hu.z.f In
this earlier chapter we were discussing within the field of linguistics; let
us now treat messages strictly as sequences of words, each a sequence of

* Sce also Jelonek under reference 166. These authors have calculated a number of
channel capacitics for different signaling systems and noise conditions.
{ See Chapter 3, Section 5.2 for references.
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letters,* and regard written language as a “code.” Difficulties concern-
ing “the word™ as a linguistic concept will not be raised again here.

In our earlier section, we referred to Mandelbrot’s concept of the “cost”
of letters and words (signs). Let ¢, represent the cost of a word (assumed
to be given) of rank ordert n in the language, and let p,, be its frequency
of occurrence (Fig. 3.5). Then the average cost, per word, of messages
will be:

Average cost per word = Y pacy (5.33)

Mandelbrot proceeds first to minimize this average cost, by carrying
out a variation of the distribution of g, over the different words; that is,
he finds the optimum, “cheapest” word ensemble. This minimization
process is carried out with the information rate (per word, average) held
invariant; but the term “information rate” as used here needs a little
clarification.

Shannon has shown that messages may be coded most efficiently if the
process is carried out over long blocks of words, although such coding
inevitably requires correspondingly long time delays.® But Mandelbrot
points out that his own problem is different, since human language is
uttered or written under conditions which cannot permit such very long
time delays. Shannon’s ideal coding would be very ¢fficient (in informa-
tion per sign) but not very practical. Mandelbrot makes the assumption
of a constraint upon the tolerable delay, equal to the word length; that is
words are considered to be coded one at a time. Again, every word is
considered to end with a certain sign, “space,” which never occurs
inside a word. If the maximum message information rate be taken as
Shannon’s H,, we have

H, = —% pn log pn bits per word [(5.6)](5.34)
n
with coding carried out using very long blocks. With this rate held
invariant, the “cheapest” ensemble of words is shown to have the dis-
tribution:
bn = Qe Fen (5.35)
where Q and K are constants.

This result accords more or less with intuition, since it requires the
most frequent words to be the cheapest. (We have already observed
that Morse’s code was based upon a similar assumption, applied to letters
whilst Fano’s code represents a more formalized version,®P-} if in both

* Or similarly with phonemes and transcribed texts.

f See footnote, p. 102.

1 See also Huffman under reference 166. See our Fig. 5.5(b)

)
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cases we take the length of the code sequences as a measure of their “c-:)st.; )

Notice that Eq. 5.35 implies that the. rank ?rdcr of the words. :s t n:
same, whether quoted with respect to increasing cost ¢y or decreasing
probability pa, since the exponential functlc{n is monotonic. el

Another step in the theory leads to a relation bctw?en the cost 0 .n \\ m'
and its rank order. Mandelbrot considers words, in a first ;\p.pf T;l‘l“..\‘-
tion, as random sequence of letters and spaces, and.all c‘:‘onc?\\’a” LTT-‘
quences of letters of the alphabet are amettcd as possible \\'mda.- . \.g‘
question, how to assign costs to the various letters of the ;\lplf..\ X lll\
answered by assuming, initially, that all letters arc.equally costl.} : Sl‘l \:c.-
quently it is shown that any distribution_ of costs will suﬂic.c, for, j\n. ‘pn.s.-
ingly, the choice makes no appreciable difference to the main thl,k .umo‘x'\t
(From Eq. 5.35 we sce that assignment of equal costs to lctturs‘unv 1ln
also that all the letters, but not spaces, are cquz'illy probable.) 1 hus l“ﬁ
cost of a word is equal to the sum of the costs of its lt.ttcrs, so tl'mt if letto \i
be assumed to be equally costly, the cost of a word is proportional to 1lu
number of letters contained. Further, the longe.r any scquence xrf‘lclu s,
the more the words that may be constructed having this length. Then, in
an alphabet of M letters: l )

i lly probable, equally costly l-lctter words.
}‘:::(e: :rr: %zp::)ss;?éié,cg::d¥ypprobablé,e:lquaﬁly costly 2-lcttm: \\:m:cls.
There are M3 possible, equally probable, equally costly 3-Ictter words.

......... , etc. ,
There are M! possible, equally probable, equally costly /-letter words.

In this table the word groups are ranked from top to. bottom, as
{+++]+++M-letter sequences. They are therefore rankcsl in groupslof
increasing cost, on a linear scale, bsob.tlk.\at from Eq. 5.35 they are also

in groups of decreasing probability.
rar’;{(:: var%(r)uspl-lcttcr words, within any one group, may be l‘(':gl.ll'dt‘d
as ranked in arbitrary order. But by rank order, in lef’s‘law‘, it xs‘thc
order of every word, not word group, in the language which is mcaml:.
Thus we can say that, approximately, the rank order of any word of length
[ letters is n;, being equal to the sum of all words of length equal to, or

less than, /: .
n;zl + Z M"‘
A=l
M 1

M—1 M-1
If now we write M/(M — 1) as M™%, then:
1
M—1

(5.36)
= M

Mi-h=n +
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1
I=1+1 —_— 5.37
or o + Dgu(nz-l—M_l) (5.37)
This shows that, to a first approximation, the length of any word is pro-
portional to the logarithm of its rank order, with a correction which is
serious only when n; < 1/ (M —1). But, cost being proportional to
word length, we may rewrite Eq. 5.37, dropping the subscript /, as:

tn ™ ¢q + logy n (5.38)
and substituting this in Eq. 5.35 eliminates the costs Cnt
pn = PnB

where Pand B are constants that depend upon the X and the Q in Eq. 5.35,
and through X and Q, upon the information which we wish to transmit
per word, or upon the average cost of transmission per word.

This, of course, is Zipf’s law. But in this form, we see the role played
by the index B as a measure of the wariety of our available vocabulary.
The smaller B is, the greater the variety.

As illustrated here, Mandelbrot’s arguments have been reduced to their
simplest terms. He has shown, however, by slightly more involved reason-
ing, that the relationship in Eq. 5.37 still holds, if any costs be assigned to
the various letters of the alphabet—or even if the cost of any letter in a
word depends upon the preceding letter*—so that this work may bear
more relation to real-life printed language (and perhaps other human
social constructs) than at first appears to be the case, with this simplest
model discussed here.

Mandelbrot proceeds to develop analogous relations between his whole
theory and certain results of thermodynamics, and we should refer the
reader to his original texts. This question of the relationship between
statistical communication theory and statistical thermodynamics has
been deliberately avoided in this chapter, until now, for it is the writer’s
opinion that there is little necessity to make such comparisons, for the
newer theory may well stand upon its own rights. However, this has
frequently been done, especially invoking the concept of entropy; a few
words on the subject may not be out of place at this point.

9. COMMENTS UPON INFORMATION INTERPRETED
AS ENTROPY

Communication provides an example of a process which we regard as
proceeding from the past into the future; time, we say, “has a direction.”
Phonograph records played backward sound as senseless gibberish.

* See Mandelbrot under references 26, 41.
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A movie, in reverse, produces comic results—a diver rising from the
water, landing on tiptoe; torn scrap paper coming together into folded
news sheets; a drinker regurgitating a pint of beer into a glass. The
world, run backward, looks ludicrous.

Yet Newton’s laws of motion—the backbone of physical science—are
reversible; time can have a positive or negative sign. We appear then to
regard time in two distinct ways, reversibly and irrcver.sibly. On one
hand, if we study, say, the properties of some simple frictionless maclu.ne
containing relatively few moving parts, we can calculate its precise
motions, in detail; we may learn all about it and predict its future behavior
with accuracy. In the equations of such mechanical motions, the sign of
time may everywhere be reversed, with complete consistency. On the
other hand there are whole realms wherein the “direction” of time is of
major importance—in studies of life processes, of meteorology, o.f thcr‘mo-
dynamics, or again in philosophical questions concerning “creative think-
ing,” “intelligent beings,” and many others. 38289 ) )

This concept of the apparent irreversibility of time has received its
most elaborate mathematical formulation in thermodynamics, and is
expressed in terms of the so-called Second Law, which holds t:hat a cert.ai.n
quantity called entropy can never decrease. Thermodynamics was origi-
nally concerned with the properties of gases—that is, enormous assemblies
of particles in violent motion. Of such assemblies we can pav‘e‘only
partial knowledge; although Newton’s laws apply to every individual
particle, we cannot observe them all, or distinguish one from an?ther.
Their properties cannot be calculated precisely, like those of a sxmpl.e
machine, but may be discussed only in terms of probabilities, stoc}}astl-
cally. We may measure and so learn about their macroscopic properties—
their number of degrees of freedom, or dimensionality; their pressures,
volumes, temperatures, energies. We may represent certain properties
by statistical distributions, such as the particle velocities for 'example.
We may, with great difficulty, observe some microscopic motions, but
we can never have complete knowledge of every particle of the system.

Likewise with other systems, of which communication is an important
example; it is not surprising that the same mathematical methods should
be considered as applicable. We can have only partial knowledge of a
communication source. We may know the ensemble properties, the
coding system, and various constraints upon the messages or the fﬁgnals;
but we (as recipient or participant-observer) cannot know, a priori, the
moment-by-moment states of the source, the exact messages it will give
out next, in microscopic detail, or we should have foreknowledge and
receive no information from the signals.

But it was the later formulation of the laws of thermodynamics in
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terms of probabilities, in the classic work of Boltzmann and Gibbs in
particular,? as a statistical-mechanical interpretation of the properties of
gases which showed the great generality of the laws and concepts. The
existence of a relationship between “entropy” and “information” is, in
fact, inherently shown in their work, though the explicit relation was
first shown, it appears, by Szilard, in a discussion upon the old problem
of “Maxwell’s demon.”?8* This problem, and the entropy-informa-
tion relation, has subsequently been discussed by Wiener,’*® and by
Brillouin in particular,35-%

Entropy, in statistical thermodynamics, is a function of the probabilities
of the states of the particles comprising a gas; information rate, in statis-
tical communication theory, is a similar function of the probabilities of
the states of a source. In both cases we have an ensemble—in the case
of the gas, an enormous collection of particles, the states of which (i.e.,
the energies) are distributed according to some probability function; in
the communication problem, a collection of messages, or states of a
source, again described by a probability function.

The relationship between information and entropy is brought out most
objectively by the Wiener-Shannon formula, Eq. 5.8:

H() = —ZXpilog p [(5.8)]

which (with a positive sign) bears resemblance to Boltzmann’s formula
for the entropy of a perfect gas. Now, when such an important relation-
ship between two branches of science has been exhibited, there are two
ways in which it may become exploited; precisely and mathematically,
taking due care about the validity of applying the methods; or vaguely
and descriptively. Since this relationship has been pointed out, we have
heard of “entropies” of languages, social systems, and economic systems
and of its use in various method-starved studies. It is the kind of sweeping
generality which people will clutch like a straw. Some part of these
interpretations has indeed been valid and useful, but the concept of
entropy is one of considerable difficulty and of a deceptively apparent
simplicity. It is essentially a mathematical concept and the rules of its
application are clearly laid down.

In a descriptive sense, entropy is often referred to as a “measure of
disorder” and the Second Law of thermodynamics as stating that “sys-
tems can only proceed to a state of increased disorder”; as time passes,
“entropy can never decrease.” The properties of a gas can change only
in such' a way that our knowledge of the positions and energies of the
particles lessens; randomness always increases. In a similar descriptive

* The paper by the same author quoted by Weaver (see reference B, p. 95) appears
to be a wrong reference.

INFORMATION INTERPRETED AS ENTROPY 215

way, information is contrasted, as bringing increasing order out of ChZ.IOS.
Information, then, is said to be “like” negative entropy. But any like-
ness that exists, exists between the mathematical descriptions which have
been set up; between formulae and method. )

Shannon refers to H(:), as given by Eq. 5.8 above, as the “entropy .of
a discrete source of information, having a finite number of states W.lth
known probabilities p1p2* - pa. Wiener, earlier, has. refe'rred to “ncgatfvc
entropy” in a similar context, and there is a certain difference of point
of view. Both physical entropy and information can be only relative,
never absolute; we can only have changes. The reader 'wi]l remember
this point was brought out earlier, since the corresponding H(x) for a
continuous noiseless source appeared to be infinity (Section 6.3). In this
case H(x) becomes:

HG) = = [5() tog p(x) e (5.39)

This represents the receiver’s prior average doubt, or unccnaifxty; thzft
is, it represents the “entropy” of the source ensemble. .If a sxgna]' yis
received from this source, perturbed by noise (the noise source itself
having a certain “entropy”), the receiver’s uncertainty concerning the
message state of the source becomes changec.i—usually lessencd—.by the
quantity I, given by Eq. 5.20, the information content o.f that signal j.
If now signals are steadily received, the receiver’s uncertainty reduce.s at
an average rate R, given by the averaged contents of all the received
signals, which was expressed by Eq. 5.29. This rate R.IS then the rate of
received information, or the negative “entropy” (per sign, per degree of
freedom, or per second, as required). . _
This aspect of communication is one special view ?f a general situation
in physics—that of an observer “receiving informat.lon” from a physical,
system under observation. Physical (thermodynamic) cntropy is defined
for a closed system, a system which is cons.idex:ed utterly ‘1solated af1d
incapable of exchanging energy in any way with its surroundings. Again,
the term is usually applied to systems which are in a state of near-random-
ness, and which consist of truly enormous systems or assemblies of elements.
In Szilard’s discussion of the Maxwell demon problem, the demon was
regarded as ‘“‘receiving information” about the particlc'motlons of a gas,
this information enabling him to operate a heaf: engine and set.up a
perpetuum mobile; the demon was making use o.f his mformatlf)n, r}ot simply
receiving it and passing it into storage. This sugge.sté a violation of the
Second Law. But the demon is essentially a partu:lpant-observt:f and
must receive energy, in order to make his observations, and so he hlmsclf
must be regarded as part of the system.®*® As Szilard had shown, in his
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1929 paper, the selective action represented by the demon’s observations
must give rise to an increase of entropy at least equal to the reduction he
can effect by virtue of this information. The system and the demon
exchange entropy, but no overall reduction is necessitated.

But these more general questions take us off our track. Questions of
extracting information from Nature and of using this information to
change our models or representations lie outside communication theory—
for an observer looking down a microscope, or reading instruments, is
not to be equated with a listener on a telephone receiving spoken messages.
Mother Nature does not communicate to us with signs or language.
A communication channel should be distinguished from a channel of observation
and, without wishing to seem too assertive, the writer would suggest that
in true communication problems the concept of entropy need not be
evoked at all. And again, physical entropy is capable of a number of
interpretations, albeit related, and its similarity with (selective, syntactic)
information is not as straightforward as the simplicity and apparent
similarity of the formulae suggests. This wider field, which has been
studied in particular by MacKay,?® Gabor,!?® and Brillouin,®® as an
aspect of scientific method, is referred to, at least in Britain, as informa-
tion theory, a term which is unfortunately used elsewhere synonymously
with communication theory. Again, the French sometimes refer to
communication theory as cybernetics.®® It is all very confusing!
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CHAPTER S I X

On the Logic of Communication
(Syntactics, Semantics,

and Pragmatics)

He was . . . 40 years old before he looked upon
geometry; which happened accidentally. Being in
a gentleman’s library . . . Euclid’s Elements lay
open and *twas the 47 El, libri I. He read the
Proposition. “By g* * say’d he ““this is
tmpossible!” So he reads the demonstration of it,
which referred him back to such a proposition; which
proposition he read. That referred him back to
another, which he also read. Et sic deinceps,
that at last he was demonstratively convinced of
that trueth. This made him in love with geometry.

* (He would now and then sweare, by way of emphasis.)

John Aubrey (1626-1697), concerning
Thomas Hobbes
Brief Lives, Volume I, 1680

1. “SIGNIFICS”—OR MENTAL HYGIENE

The Honorable Lady Welby, who was Lady-in-Waiting to Quccn

Victoria, pioneered a movement, at the turn of the century, to tlghtt?n

discipline of thought and expression in many fields of human interest, in
217



