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Abstract

We quantify the linguistic complexity of
different languages’ morphological systems.
We verify that there is a statistically signif-
icant empirical trade-off between paradigm
size and irregularity: a language’s inflec-
tional paradigms may be either large in size
or highly irregular, but never both. We de-
fine a new measure of paradigm irregularity
based on the conditional entropy of the sur-
face realization of a paradigm—how hard
it is to jointly predict all the word forms in
a paradigm from the lemma. We estimate
irregularity by training a predictive model.
Our measurements are taken on large mor-
phological paradigms from 36 typologically
diverse languages.

1 Introduction

What makes an inflectional system “complex”?
Linguists have sometimes considered measuring
this by the size of the inflectional paradigms
(McWhorter, 2001). The number of distinct in-
flected forms of each word indicates the number
of morphosyntactic distinctions that the language
makes on the surface. However, this gives only a
partial picture of complexity (Sagot, 2013). Some
inflectional systems are more irregular: it is harder
to guess how the inflected forms of a word will be
spelled or pronounced, given the base form. Ack-
erman and Malouf (2013) hypothesize that there is
a limit to the irregularity of an inflectional system.
We refine this hypothesis to propose that systems
with many forms per paradigm have an even stricter
limit on irregularity per distinct form. That is, the
two dimensions interact: a system cannot be com-
plex along both axes at once. In short, if a language
demands that its speakers use a lot of distinct forms,
those forms must be relatively predictable.

In this work, we develop information-theoretic
tools to operationalize this hypothesis about the
complexity of inflectional systems. We model
each inflectional system using a tree-shaped

directed graphical model whose factors are neural
networks and whose structure (topology) must
be learned along with the factors. We explain our
approach to quantifying two aspects of inflectional
complexity and, in one case, approximate our
metric using a simple variational bound. This
allows a data-driven approach by which we
can measure the morphological complexity of a
given language in a clean manner that is more
theory-agnostic than previous approaches.

Our study evaluates 36 diverse languages, using
collections of paradigms represented orthograph-
ically. Thus, we are measuring the complexity
of each written language. The corresponding
spoken language would have different complexity,
based on the corresponding phonological forms.
Importantly, our method does not depend upon
a linguistic analysis of words into constituent
morphemes, e.g., hoping 7→ hope+ing. We find
support for the complexity trade-off hypothesis.
Concretely, we show that the more unique forms
an inflectional paradigm has, the more predictable
the forms must be from one another—for example,
forms in a predictable paradigm might all be
related by a simple change of suffix. This intuition
has a long history in the linguistics community, as
field linguists have often noted that languages with
extreme morphological richness, e.g., agglutinative
and polysynthetic languages, have virtually no
exceptions or irregular forms. Our contribution
lies in mathematically formulating this notion
of regularity and providing a means to estimate
it by fitting a probability model. Using these
tools, we provide a quantitative verification of this
conjecture on a large set of typologically diverse
languages, which is significant with p < 0.037.

2 Morphological Complexity

2.1 Word-Based Morphology

We adopt the framework of word-based morphol-
ogy (Aronoff, 1976; Spencer, 1991). An inflected
lexicon in this framework is represented as a set of



word types. Each word type is a triple of

• a lexeme ` (an arbitrary integer or string that
indexes the word’s core meaning and part of
speech)

• a slot σ (an arbitrary integer or object that
indicates how the word is inflected)

• a surface form w (a string over a fixed phono-
logical or orthographic alphabet Σ)

A paradigm m is a map from slots to surface
forms.1 We use dot notation to access elements
of this map. For example, m.past denotes the
past-tense surface form in paradigmm.

An inflected lexicon for a language can be re-
garded as defining a mapM from lexemes to their
paradigms. Specifically,M(`).σ = w iff the lexi-
con contains the triple (`, σ, w).2 For example, in
the case of the English lexicon, if ` is the English
lexeme walkVerb, then M(`).past = walked. In
linguistic terms, we say that in `’s paradigmM(`),
the past-tense slot is filled (or realized) by walked.

Nothing in our method requires a Bloomfieldian
structuralist analysis that decomposes each word
into underlying morphs: rather, this paper is a-
morphous in the sense of Anderson (1992).

More specifically, we will work within the
UniMorph annotation scheme (Sylak-Glassman,
2016). In the simplest case, each slot σ speci-
fies a morphosyntactic bundle of inflectional fea-
tures such as tense, mood, person, number, and
gender. For example, the Spanish surface form
pongas (from the lexeme poner ‘to put’) fills
a slot that indicates that this word has the fea-
tures [ TENSE=PRESENT, MOOD=SUBJUNCTIVE,
PERSON=2, NUMBER=SG ]. We postpone a dis-
cussion of the details of UniMorph until §7.1, but it
is mostly compatible with other, similar schemes.

2.2 Defining Complexity

Ackerman and Malouf (2013) distinguish two types
of morphological complexity, which we elaborate
on below. For a more general overview of morpho-
logical complexity, see Baerman et al. (2015).

1See Baerman (2015, Part II) for a tour of alternative views
of inflectional paradigms.

2We assume that the lexicon never contains distinct triples
of the form (`, σ, w) and (`, σ, w′), so that M(`).σ has a
unique value if it is defined at all.

2.2.1 Enumerative Complexity
The first type, enumerative complexity (e-
complexity), measures the number of surface mor-
phosyntactic distinctions that a language makes
within a part of speech.

Given a lexicon, we will measure the e-
complexity of the verb system as the average of
the verb paradigm size |M(`)|, where ` ranges
over all verb lexemes in domain(M). Impor-
tantly, we define the size |m| of a paradigm m
to be the number of distinct surface forms in the
paradigm, rather than the number of slots. That is,
|m| def

= |range(m)| rather than |domain(m)|.
Under our definition, nearly all English verb

paradigms have size 4 or 5, giving the English
verb system an e-complexity between 4 and 5.
If m = M(walkVerb), then |m| = 4, since
range(m) = {walk,walks,walked,walking}. The
manually constructed lexicon may define sepa-
rate slots σ1 = [ TENSE=PRESENT, PERSON=1,
NUMBER=SG ] and σ2 = [ TENSE=PRESENT,
PERSON=2, NUMBER=SG ], but in this paradigm,
those slots are not distinguished by any morpholog-
ical marking: m.σ1 = m.σ2 = walk. Nor is the
past tense walked distinguished from the past par-
ticiple. This phenomenon is known as syncretism.

Why might the creator of a lexicon bother to
define separate slots σ1 and σ2 for English, rather
than a single merged slot? A very good reason is
the existence of a single English verb, be, that does
distinguish these slots.3 Still, the lexicon creator
might use a merged slot in general and handle be
by adding some special slots that are used only
with be. A second reason is that merged slots may
be inelegant to describe using the feature bundle
notation: for all English verbs other than be, there
is a single form shared by the bare infinitive and
all present tense forms except 3rd-person singular,
but a single slot for this form could not be easily
characterized by a single feature bundle, and so
the lexicon creator might reasonably split it for
convenience. A third reason might be an attempt
at consistency across languages: in principle, an
English lexicon is free to use the same slots as San-
skrit and thus list dual and plural forms for every
English noun, which just happen to be identical in
every case (complete syncretism).

The point is that our e-complexity metric is in-
sensitive to these annotation choices. It focuses

3This verb has a paradigm of size 8:
{be,am,are,is,was,were,been,being}.



on observable surface distinctions., and so does
not care whether syncretic slots are merged or kept
separate. Later, we will construct our i-complexity
metric to have the same property.

The notion of e-complexity has a long history
in linguistics. The idea was explicitly discussed as
early as Sapir (1921). More recently, Sagot (2013)
has referred to this concept as counting complex-
ity, referencing comparison of the complexity of
creoles and non-creoles by McWhorter (2001).

For a given part of speech, e-complexity ap-
pears to vary dramatically over the languages of the
world. While the regular English verb paradigm
has 4–5 slots in our annotation, the Archi verb will
have thousands (Kibrik, 1998). However, does this
make the Archi system more complex, in the sense
of being more difficult to describe or learn? De-
spite the plethora of forms, it is often the case that
one can regularly predict one form from another,
indicating that few forms actually have to be mem-
orized for each lexeme.

2.2.2 Integrative Complexity
The second notion of complexity is integrative
complexity (i-complexity), which measures how
regular an inflectional system is on the surface. Stu-
dents of a foreign language will most certainly have
encountered the concept of an irregular verb. Pin-
ning down a formal and workable cross-linguistic
definition is non-trivial, but the intuition that some
inflected forms are regular and others irregular
dates back at least to Bloomfield (1933, pp. 273–
274), who famously argued that what makes a sur-
face form regular is that it is the output of a deter-
ministic function. For an in-depth dissection of the
subject, see Stolz et al. (2012).

Ackerman and Malouf (2013) build their defini-
tion of i-complexity on the information-theoretic
notion of entropy (Shannon, 1948). Their intuition
is that a morphological system should be consid-
ered irregular to the extent that its forms are unpre-
dictable. They say, for example, that the nomina-
tive singular form is unpredictable in a language
if many verbs express it with suffix -o while many
others use -∅. In §5, we will propose an improve-
ment to their entropy-based measure.

2.3 The Low-Entropy Conjecture

The low-entropy conjecture, as formulated by Ack-
erman and Malouf (2013, p. 436), “is the hypoth-
esis that enumerative morphological complexity
is effectively unrestricted, as long as the average

conditional entropy, a measure of integrative com-
plexity, is low.” Indeed, Ackerman and Malouf
go so far as to say that there need be no upper
bound on e-complexity, but the i-complexity must
remain sufficiently low (as is the case for Archi,
for example). Our hypothesis is subtly different in
that we postulate that morphological systems face
a trade-off between e-complexity and i-complexity:
a system may be complex under either metric, but
not under both. The amount of e-complexity per-
mitted is higher when i-complexity is low.

This line of thinking harks back to the equal
complexity conjecture of Hockett, who stated: “ob-
jective measurement is difficult, but impression-
istically it would seem that the total grammatical
complexity of any language, counting both the mor-
phology and syntax, is about the same as any other”
(Hockett, 1958, pp. 180-181). Similar trade-offs
have been found in other branches of linguistics
(see Oh (2015) for a review). For example, there
is a trade-off between rate of speech and syllable
complexity (Pellegrino et al., 2011): this means
that even though Spanish speakers utter many more
syllables per second than Chinese, the overall in-
formation rate is quite similar as Chinese syllables
carry more information (they contain tone informa-
tion).

Hockett’s equal complexity conjecture is contro-
versial: some languages (such as Riau Indonesian)
do seem low in complexity across morphology and
syntax (Gil, 1994). This is why Ackerman and
Malouf instead posit that a linguistic system has
bounded integrative complexity—it must not be
too high, though it can be low, as indeed it is in
isolating languages like Chinese and Thai.

3 Paradigm Entropy

3.1 Morphology as a Distribution

Following Dreyer and Eisner (2009) and Cotterell
et al. (2015), we identify a language’s inflectional
system with a probability distribution p(M = m)
over possible paradigms.4 Our measure of i-
complexity will be related to the entropy of this
distribution.

4Formally speaking, we assume a discrete sample space
in which each outcome is a possible lexeme ` equipped with
a paradigm M(`). Recall that a random variable is tech-
nically defined as a function of the outcome. Thus, M is
a paradigm-valued random variable that returns the whole
paradigm. M .past is a string-valued random expression that
returns the past slot, so π(M .past = ran) is a marginal
probability that marginalizes over the rest of the paradigm.



For instance, knowing the behavior of the En-
glish verb system essentially means knowing a joint
distribution over 5-tuples of surface forms such
as (run, runs, ran, run, running). More precisely,
one knows probabilities such as p(M .pres =
run,M .3s = runs,M .past = ran,M .pastp =
run,M .presp = running).

We do not observe p directly, but each observed
paradigm (5-tuple) can help us estimate it. We as-
sume that the paradigmsm in the inflected lexicon
were drawn IID from p. Any novel verb paradigm
in the future would be drawn from p as well. The
distribution p represents the inflectional system be-
cause it describes what regular paradigms and plau-
sible irregular paradigms tend to look like.

The fact that some paradigms are used more
frequently than others (more tokens in a corpus)
does not mean that they have higher probability un-
der the morphological system p(m). Rather, their
higher usage reflects the higher probability of their
lexemes. That is due to unrelated factors—the prob-
ability of a lexeme may be modeled separately by
a stick-breaking process (Dreyer and Eisner, 2011),
or may reflect the semantic meaning associated to
that lexeme. The role of p(m) in the model is only
to serve as the base distribution from which a lex-
eme type ` selects the tuple of stringsm = M(`)
that will be used thereafter to express `.

We expect the system to place low prob-
ability on implausible paradigms: e.g.,
p(run, snur, nar, run, running) is close to
zero. Moreover, we expect it to assign high
conditional probability to the result of ap-
plying highly regular processes: e.g., for
p(M .presp | M .3s) in English, we have
p(wugging | wugs) ≈ p(running | runs) ≈ 1,
where wug is a novel verb. Nonetheless, our
estimate of p(M .presp = w | M .3s = wugs
will have support over w ∈ Σ∗ × · · · × Σ∗, due
to smoothing. The model is thus capable of
evaluating arbitrary wug-formations (Berko, 1958),
including irregular ones.

3.2 Paradigm Entropy

The distribution p gives rise to the paradigm en-
tropy H(M), also written as H(p). This is the
expected number of bits needed to represent a
paradigm drawn from p, under a code that is opti-
mized for this purpose. Thus, it may be related to
the cost of learning paradigms or the cost of storing
them in memory, and thus relevant to functional

pressures that prevent languages from growing too
complex. (There is no guarantee, of course, that
human learners actually estimate the distribution p,
or that its entropy actually represents the cognitive
cost of learning or storing paradigms.)

Our definition of i-complexity in §5 will
(roughly speaking) divide H(M) by the e-
complexity, so that the i-complexity is measured
in bits per distinct surface form. This approach
is inspired by Ackerman and Malouf (2013); we
discuss the differences in §6.

3.3 A Variational Upper Bound on Entropy
We now review how to estimate H(M) by estimat-
ing p by a model q. We do not actually know the
true distribution p. Furthermore, even if we knew
p, the definition of H(M) involves a sum over the
infinite set of n-tuples (Σ∗)n, which is intractable
for most distributions p. Thus, following Brown
et al. (1992), we will use a probability model to
define a good upper bound forH(M) and held-out
data to estimate that bound.

For any distribution p, the entropyH(p) is upper-
bounded by the cross-entropy H(p, q), where q is
any other distribution over the same space:5
∑

m

p(m)[− log p(m)] ≤
∑

m

p(m)[− log q(m)]

(1)

(Throughout this paper, log denotes log2.) The
gap between the two sides is the Kullback-Leibler
divergence D(p || q), which is 0 iff p = q.

Maximum-likelihood training of a probability
model q ∈ Q is an attempt to minimize this gap
by minimizing the right-hand side. More pre-
cisely, it minimizes the sampling-based estimate∑
m p̂train(m)[− log q(m)], where p̂train is the uni-

form distribution over a set of training examples
that are assumed to be drawn IID from p.

Because the trained q may be overfit to the train-
ing examples, we must make our final estimate of
H(p, q) using a separate set of held-out test ex-
amples, as

∑
m p̂test(m)[− log q(m)]. We then

use this as our (upwardly-biased) estimate of the
paradigm entropy H(p). In our setting, both the
training and the test examples are paradigms from
a given inflected lexicon.

4 A Generative Model of the Paradigm

To fit q given the training set, we need a tractable
familyQ of joint distributions over paradigms, with

5The same applies for conditional entropies as used in §5.
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Figure 1: Two potential directed graphical models for the paradigm completion task. The topology in
(a) encodes the the network where all forms are predicted from the lemma. The topology in (b), on the
other hand, makes it easier to predict forms given the others: pongas is predicted from ponga, with which
it shares a stem. Qualitatively, the structure learning algorithm discussed in § 4.2 finds trees structured
similarly to (b).

For example, in German, consider the mapping
from the nominative singular form Hand to the
nominative plural form Hände. This is encoded
with the source string

H a n d IN=NOM IN=SG OUT=NOM OUT=PL

and target string:

H ä n d e

If the slot realizes multiple feature bundles, we
append each of them to the input source string. This
encoding may be suboptimal, as it throws away
information about which features belong to which
bundles. This is similar to the encoding in Kann
and Schütze (2016), and allows the same LSTM
with parameters ✓ to be reused at each factor of (7).
Different factors q✓(mi | mj) are distinguished
only by the fact that the morphological tags for
slots i and j are appended to the input string before
the LSTM is applied to it.

4.2 Structure Learning

Which tree over the n slots is optimal? It is not clear
a-priori how to arrange the slots in a paradigm such
that their predictability is maximized. For instance,
consider the irregular Spanish verb poner, we may
want to predict its present subjunctive forms, e.g.,
ponga, pongas and ponga, from another form that

shares the same stem, e.g., ponga—this maximizes
predictability in that we no longer have to account
for the irregular present subjective stem change.
Our goal, however, is to select the optimal tree
for the data, rather than pre-specified linguistic
knowledge of the language.

In graph-theoretic terms, we choose the highest-
weighted directed spanning tree over n vertices, as
found by the algorithm of Edmonds (1967). The
weight of a candidate tree is the sum of all its edge
weights and the weight of its root vertex, where
we define the weight of a candidate edge to mi

from mj as 1
d

P
~m2Ddev

log q(mi | mj), and define
the weight of vertex mi as 1

d

P
~m2Ddev

log q(mi |
empty string)—the empty string representing the
root—and where Ddev is a set of development
paradigms. In each case, q is a sequence-to-
sequence model trained on Dtrain, so computing
these n2 weights requires us to train n2 sequence-
to-sequence models. Under this scheme, the
weight of a candidate tree is the log-likelihood
1
d

P
~m2Ddev

log q(m1, . . . , mn) of a model whose
structure is given by the tree and whose conditional
distributions are given by these trained q distribu-
tions. Recall that our estimate of H(p, q) is the
same, but evaluated on Dtest (equation (6)).

In fact, as in § 4.1, we train only a single shared
LSTM-based sequence-to-sequence model to per-
form all n2 transductions. Once we have selected
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(b) Principal parts paradigm tree

Figure 1: A specific Spanish verb paradigm as it would be generated by two different tree-structured
Bayesian networks. The nodes in each network represent the slots of the paradigm class (not labeled).
The topology in (a) predicts all forms from the lemma. The topology in (b), on the other hand, makes
it easier to predict forms given the others: pongas is predicted from pongo, with which it shares a stem.
Qualitatively, the structure selection algorithm in §4.4 finds trees like (b).

parameters θ. The structure of the model and the
number of parameters θ will be determined auto-
matically from the training set: a language with
more slots or more paradigm classes will require
more parameters. This means that Q is technically
a semi-parametric family.

4.1 Paradigm Classes

We say that two paradigms m,m′ have the
same class if they define the same slots (that is,
domain(m) = domain(m′)) and the same pairs
of slots are syncretic in both paradigms (that is,
m.σ = m.σ′ iff m′.σ = m′.σ′). Notice that
paradigms of the same class must have the same
size (but not conversely). Most English verbs fall
into 2 classes: 4-form verbs such as regular sprint
and irregular stand where the past participle is syn-
cretic with the past tense, and irregular 5-form
verbs such as eat where that is not so. There are
also a few other English verb classes: for example,
run has only 4 distinct forms, but in its class, the
past participle is syncretic with the present tense.
The verb be is in a class by itself, with 8 distinct
forms. The extra slots needed for be might be either
missing in other classes, or present but syncretic.

Our model qθ says that the first step in gener-
ating a paradigm is to pick its class c. This uses
a distribution qθ(C = c), which we estimate by
maximum likelihood from the training set. Thus, c
ranges over the set C of classes that appear in the
training set.

4.2 A Tree-Structured Distribution

Next, conditioned on the class c, we follow Cot-
terell et al. (2017b) and generate all the forms
of the paradigm using a tree-structured Bayesian
network—a directed graphical model in which the
form at each slot is generated conditionally on the
form at a single parent slot. Figure 1 illustrates two
possible tree structures for Spanish verbs.

Each class c has its own tree structure. If slot σ
exists in class c, we denote its parent in class c by
pac(σ). Then our model is6

qθ(m | c) =
∏

σ∈c
qθ(m.σ |m.pac(σ), C=c)

(2)
For the slot σ at root of the tree, pac(σ) is defined
to be a special slot empty with an empty feature
bundle, whose form is fixed to be the empty string.
In the product above, σ does not range over empty.

4.3 Neural Sequence-to-Sequence Model

We model all of the conditional probability fac-
tors in (2) using a neural sequence-to-sequence
model with parameters θ. Specifically, we follow
Kann and Schütze (2016) and use an LSTM-based
sequence-to-sequence model (Sutskever et al.,

6Below, we will define the factors so that the generated m
does–usually—fall in class c. We will ensure that if two slots
are syncretic in class c, then their forms are in fact equal in
m. But non-syncretic slots will also have a (tiny) probability
of equal forms, so the model qθ(m | c) is deficient—it sums
to slightly < 1 over the paradigms m in class c.



2014) with attention (Bahdanau et al., 2015).This
is the state of the art in morphological reinflection,
i.e., the conversion of one inflected form to another
(Cotterell et al., 2016).

For example, in German, qθ(M .nompl =
Hände | M .nomsg = Hand, C = 3) is given by
the probability that the seq2seq model assigns to
the output sequence H ä n d e when given the
input sequence

H a n d C=3 IN=NOM IN=SG OUT=NOM OUT=PL

The input sequence indicates the parent slot (nomi-
native singular) and the child slot (nominative plu-
ral), by using special characters to specify their
feature bundles. This tells the seq2seq model what
kind of inflection to do. The input sequence also
indicates the paradigm class c. Thus, we are able to
use only a single seq2seq model, with parameters
θ, to handle all of the conditional distributions in
the entire model. Sharing parameters across condi-
tional distributions is a form of multi-task learning
and may improve generalization to held-out data.

As a special case, if σ and σ′ are syncretic within
class c, then we define qθ(M .σ = w | M .σ′ =
w′, C = c) to be 1 if w = w′ and 0 otherwise.
The seq2seq model is skipped in such cases: it is
only used on non-syncretic parent-child pairs. As
a result, if class c has 5 slots that are all syncretic
with one another, 4 of these slots can be derived
by deterministic copying. As they are completely
predictable, they contribute log 1 = 0 bits to the
paradigm entropy. The method in the next section
will always favor a tree structure that exploits copy-
ing. As a result, the extra 4 slots will not increase
the i-complexity, just as they do not increase the
e-complexity.

We train the parameters θ on all non-syncretic
slot pairs in the training set. Thus, a paradigm with
n distinct forms contributes n2 training examples:
each form in the paradigm is predicted from each
of the n− 1 other forms, and from the empty form.
We use maximum-likelihood training (see §7.2).

4.4 Structure Selection
Given a model qθ, we can decompose its entropy
H(qθ) into a weighted sum of conditional entropies

H(M) = H(C) +
∑

c∈C
p(C=c)H(M | C=c)

(3)where

H(M | C=c) =
∑

σ∈c
H(M .σ |M .pac(σ), C=c)

(4)

The cross-entropy H(p, qθ) has a similar decom-
position. The only difference is that all of the (con-
ditional) entropies are replaced by (conditional)
cross-entropies, meaning that they are estimated
using a held-out sample from p rather than qθ. The
log-probabilities are still taken from qθ.

It follows that given a fixed θ (as trained in the
previous section), we can minimize H(p, qθ) by
choosing the tree for each class c that minimizes
the cross-entropy version of (4).

How? For each class c, we select the minimum-
weight directed spanning tree over the nc slots
used by that class, as computed by the Chu-Liu-
Edmonds algorithm (Edmonds, 1967).7 The weight
of each potential directed edge σ′ → σ is the con-
ditional cross-entropy H(M .σ | M .σ′, C = c)
under the seq2seq model trained in the previous
section, so equation (4) implies that the weight of a
tree is the cross-entropy we would get by selecting
that tree.8 In practice, we estimate the conditional
cross-entropy for the non-syncretic slot pairs using
a held-out development set (not the test set). For
syncretic slot pairs, which are handled by copying,
the conditional cross-entropy is always 0, so edges
between syncretic slots can be selected free of cost.

After selecting the tree, we could retrain the
seq2seq parameters θ to focus on the conditional
distributions we actually use, training on only the
slot pairs in each training paradigm that correspond
to an edge in the paradigm’s class. However, our
present experiments do not do this. In fact, training
on all n2 pairs can be seen as a form of multi-task
regularization that may improve the model.

7Similarly, Chow and Liu (1968) find the best tree-
shaped undirected graphical model by computing the highest-
weighted undirected spanning tree. We require a directed
model instead because §4.3 provides conditional distributions.

8Where the weight of the tree is taken to include the weight
of the special edge empty→ σ to the root node σ. Thus, for
each slot σ, the weight of empty→ σ is the cost of selecting
σ as the root. It is an estimate of H(M .σ | C = c), the
difficulty of predicting the σ form without any parent.

In the implementation, we actually decrement the weight
of every edge σ′ → σ (including when σ′ = empty) by the
weight of empty → σ. This does not change the optimal
tree, because it does not change the relative weights of the
possible parents of σ. However, it ensures that every σ now
has root cost 0, as required by the Chu-Liu-Edmonds algo-
rithm (which does not consider root costs). Notice that since
H(X)−H(X | Y ) = I(X;Y ), the decremented weight is
actually an estimate of −I(M .σ;M .σ′). Thus, finding the
min-weight tree is equivalent to finding the tree that maxi-
mizes the total mutual information on the edges, just like the
Chow-Liu algorithm (Chow and Liu, 1968).



5 From Paradigm Entropy to
i-Complexity

Having defined a way to approximate paradigm
entropy, H(M), we finally operationalize our mea-
sure of i-complexity for a language.

One Paradigm Class. We start with the simple
case where the language has a single paradigm
class: C = {c}. Our initial idea was to define i-
complexity as bits per form, H(M) / |c|, where
|c| is the enumerative complexity—the number of
distinct forms in the paradigm.

However, H(M) reflects not only the lan-
guage’s morphological complexity, but also its “lex-
ical complexity.” Some of the bits needed to specify
a lexeme’s paradigm m are necessary merely to
specify the stem. A language whose stems are nu-
merous or highly varied will tend to have higher
H(M), but we do not wish to regard it as morpho-
logically complex simply on that basis. We can
decompose H(M) into

H(M) = H(M .σ̌)︸ ︷︷ ︸
lexical entropy

+ H(M |M .σ̌)︸ ︷︷ ︸
morphological entropy

(5)

where σ̌ here denotes the most predictable slot,

σ̌
def
= argmin

σ
H(M .σ) (6)

and we estimate H(M .σ) for any σ using the
seq2seq distribution qθ(M .σ = w | M.empty =
ε), which can be regarded as a model for generating
forms of slot σ from scratch.

We will refer to σ̌ as the lemma since it gives
in some sense the simplest form of the lexeme,
although it is not necessarily the slot that lexicog-
raphers use as the citation form for the lexeme.

We now define i-complexity as the entropy per
form when predicting the remaining forms of M
from the lemma:

H(M |M .σ̌)

|c| − 1
(7)

where the numerator can be obtained by subtraction
via equation (5). This is a fairer representation of
the morphological irregularity, e.g., the average
difficulty in predicting the inflectional ending that
is added to a given stem. Notice that if |c| = 1 (an
isolating language), the morphological complexity
is appropriately undefined, since no inflectional
endings are ever added to the stem.

If we had allowed the lexical entropy H(M .σ̌)
to remain in the numerator, then a language with
larger e-complexity |c| would have amortized that
term over more forms—meaning that larger e-
complexity would have tended to lead to lower
i-complexity, other things equal. By removing that
term from the numerator, our definition (7) elim-
inates this as a possible reason for the observed
tradeoff between e-complexity and i-complexity.

Multiple Paradigm Classes. Now, we consider
the more general case where multiple paradigm
classes are allowed: |C| ≥ 1. Again we are in-
terested in the entropy per non-lemma form. The
i-complexity is

H(C) +
∑

c p(C=c)H(M |M .σ̌(c), C=c)∑
c p(C=c)(|c| − 1)

(8)
where

σ̌(c)
def
= argmin

σ
H(M .σ | C=c) (9)

In the case where |c| and σ̌(c) are constant over all
C, this reduces to equation (7). This is because the
numerator is esssentially an expanded formula for
the conditional entropy in (7)—the only wrinkle is
that different parts of it condition on different slots.

To estimate equation (8) using a trained model
q and a held-out test set, we follow §3.3 by esti-
mating all − log p(· · · ) terms in the entropies with
our model surprisals − log q(· · · ), but using the
empirical probabilities on the test set for all other
p(· · · ) terms including p(C = c). Suppose the
test set paradigms are m1, . . . ,mN with classes
c1, . . . , cN respectively. Then taking q = qθ, our
final estimate of the i-complexity (8) works out to

∑N
i=1−




log q(C=ci)
+ log q(M = mi | C=ci)
− log q(M .σ̌(ci) = mi.σ̌(ci) | C=ci)




∑N
i=1 |ci| − 1

(10)
where we have multiplied both the numerator and
denominator by N . In short, the denominator is the
total number of non-lemma forms in the test set,
and the numerator is the total number of bits that
our model needs to predict these forms (including
the paradigm shapes ci) given the lemmas. The
numerator of equation (10) is an upper bound on the
numerator of equation (8) since it uses (conditional)
cross-entropies rather than (conditional) entropies.



SINGULAR PLURAL

CLASS NOM GEN ACC VOC NOM GEN ACC VOC

1 -os -u -on -e -i -on -us -i
2 -s -∅ -∅ -∅ -es -on -es -es
3 -∅ -s -∅ -∅ -es -on -es -es
4 -∅ -s -∅ -∅ -is -on -is -is
5 -o -u -o -o -a -on -a -a
6 -∅ -u -∅ -∅ -a -on -a -a
7 -os -us -os -os -i -on -i -i
8 -∅ -os -∅ -∅ -a -on -a -a

Table 1: Structuralist analysis of Modern Greek
nominal inflection classes. (Ralli, 1994, 2002).

6 A Methodological Comparison to
Ackerman and Malouf (2013)

Our formulation of the low-entropy principle dif-
fers somewhat from Ackerman and Malouf (2013);
the differences are highlighted below.

Heuristic Approximation to p. Ackerman and
Malouf (2013) first construct what we regard as
a heuristic approximation to the joint distribution
p over forms in a paradigm. They first provide
a structuralist decomposition of words into their
constituent morphemes. Then, they consider a dis-
tribution r(m.σ |m.σ′) that builds new forms by
stochastically replacing morphemes. In contrast
to our neural sequence-to-sequence approach, this
distribution unfortunately does not have support
over Σ∗ and, thus, cannot consider changes other
than substitution of morphological exponents.

As a concrete example of r, consider Table 1’s
(Simplified) Modern Greek example from Acker-
man and Malouf (2013). The conditional distribu-
tion r(m.gen;sg | m.acc;pl = . . . -i) over geni-
tive singular forms is peaked since there is exactly
one possible transformation: substituting -us for -i.
Other conditional distributions for Modern Greek
are less peaked: Ackerman and Malouf (2013) es-
timated that r(m.nom;sg | m.acc;pl = . . . -a)
swaps -a for ∅ with probability 2/3 and for -o with
probability 1/3. We reiterate that no other output
has positive probability under their model, e.g.,
swapping -a for -es or ablaut of a stem vowel.

Average Conditional Entropy. The second dif-
ference is their use of the pairwise conditional en-
tropies between cells. They measure the complex-
ity of the entire paradigm by the average condi-
tional entropy:

1

n2 − n
∑

σ

∑

σ′ 6=σ
H(M .σ |M .σ′). (11)

This differs from our tree-based measure, in which
an irregular form only needs to be derived from
its parent—possibly a similar or even syncretic
irregular form—rather than from all other forms in
the paradigm. So it “only needs to pay once” and
it even “shops around for the cheapest deal. Also,
in our measure, the lemma does not “pay” at all.

They measure conditional entropies, which are
simple to compute because their model q is simple.
(Again, it only permits a small number of possible
outputs for each input, based on the finite set of al-
lowed morpheme substitutions that they annotated
by hand.) In contrast, our estimate uses conditional
cross-entropies, asking whether our q can predict
real held-out forms distributed according to p.

6.1 Critique of Ackerman and Malouf (2013)

Now, we offer a critique of Ackerman and Mal-
ouf (2013) on three points: (i) different linguistic
theories dictating how words are subdivided into
morphemes may offer different results, (ii) certain
types of morphological irregularity, particularly
suppletion, aren’t handled, and (iii) average con-
ditional entropy overestimates the i-complexity in
comparison to joint entropy.

Theory-Dependent Complexity. We consider a
classic example from English morphophonology
that demonstrates the effect of the specific analysis
chosen. In regular English plural formation, the
speaker has three choices: [z], [s] and [1z]. Here
are two potential analyses. One could treat this
as a case of pure allomorphy with three potential,
unrelated suffixes. Under such an analysis, the en-
tropy will reflect the empirical frequency of the
three possibilities found in some data set: roughly,
1/4 log 1/4+ 3/8 log 3/8+ 3/8 log 3/8 ≈ 1.56127. On
the other hand, if we assume a different model with
a unique underlying affix /z/, which is attached and
then converted to either [z], [s] or [1z] by an appli-
cation of perfectly regular phonology, this part of
the morphological system of English has entropy
of 0—one choice. See Kenstowicz (1994, p.72)
for a discussion of these alternatives from a the-
oretical standpoint. Note that our goal is not to
advocate for one of these analyses, but merely to
suggest that Ackerman and Malouf (2013)’s quan-
tity is analysis-dependent.9 In contrast, our ap-
proach is theory-agnostic in that we jointly learn
surface-to-surface transformations, reminiscent of

9Other suggested quantifications of morphological com-
plexity have relied on a similar assumption (e.g. Bane, 2008).



a-morphorous morphology (Anderson, 1992), and
thus our estimate of paradigm entropy does not
suffer this drawback. Indeed, our assumptions are
limited—recurrent neural networks are universal
approximators. It has been shown that any com-
putable function can be computed by some finite
RNN (Siegelmann and Sontag, 1991, 1995). Thus,
the only true assumption we make of morphology
is mild: we assume it is Turing-computable. That
behavior is Turing-computable is a rather funda-
mental tenet of cognitive science (McCulloch and
Pitts, 1943; Sobel and Li, 2013).

In our approach, theory dependence is primar-
ily introduced through the selection of slots in our
paradigms, which is a form of bias that would be
present in any human-derived set of morphological
annotations. A key example of this is the way in
which different annotators or annotation standards
may choose to limit or expand syncretism — sit-
uations where the same string-identical form may
fill multiple different paradigm slots. For example,
Finnish has two accusative inflections for nouns
and adjectives, one always coinciding in form with
the nominative and the other coinciding with the
genitive. Many grammars therefore omit these two
slots in the paradigm entirely, while some include
them. Depending on which linguistic choice an-
notators make, the language could appear to have
more or fewer paradigm slots. We have carefully
defined our e-complexity and i-complexity metrics
so that they are not sensitive to these choices.

As a second example of annotation dependence,
different linguistic theories might disagree about
which distinctions constitute productive inflec-
tional morphology, and which are derivational or
even fixed lexical properties. For example, our
dataset for Turkish treats causative verb forms as
derivationally related lexical items. The number of
apparent slots in the Turkish inflectional paradigms
is reduced because these forms were excluded.

Morphological Irregularity. A second problem
with the model in Ackerman and Malouf (2013) is
its inability to treat certain kinds of irregularity, par-
ticularly cases of suppletion. As far as we can tell,
the model is incapable of evaluating cases of mor-
phological suppletion unless they are explicitly en-
coded in the model. Consider, again, the case of the
English suppletive past tense form went— if one’s
analysis of the English base is effectively a distribu-
tion of the choices add [d], add [t] and [1d], one will
assign probability 0 to went as the past tense of go.

We highlight the importance of this point because
suppletive forms are certainly very common in aca-
demic English: the plural of binyan is binyanim
and the plural of lemma is lemmata. It is unlikely
that native English speakers possess even a partial
model of Hebrew and Greek nominal morphology—
a more plausible scenario is simply that these forms
are learned by rote. As speakers and hearers are ca-
pable of producing and understanding these forms,
we should demand the same capacity of our mod-
els. Not doing so also ties into the point in the
previous section about theory-dependence since
it is ultimately the linguist—supported by some
theoretical notion—who decides which forms are
deemed irregular and hence left out of the analy-
sis. We note that these restrictive assumptions are
relatively common in the literature, e.g., Allen and
Becker (2015)’s sublexical learner is likewise inca-
pable of placing probability mass on irregulars.10

Average Conditional Entropy versus Joint En-
tropy. Finally, we take issue with the formula-
tion of paradigm entropy as average conditional
entropy, as exhibited in equation (11). For one,
it does not correspond to the entropy of any ac-
tual joint distribution p(M), and has no obvious
mathematical interpretation. Second, it is Priscian
(Robins, 2013) in its analysis in that any form can
be generated from any other, which, in practice,
will cause it to overestimate the i-complexity of a
morphological system. Consider the German dative
plural Händen (from the German Hand “hand”).
Predicting this form from the nominative singular
Hand is difficult, but predicting it from the nom-
inative plural Hände is trivial: just add the suffix
-n. In Ackerman and Malouf (2013)’s formulation,
r(Händen | Hand) and r(Händen | Hände) both
contribute to the paradigm’s entropy with the for-
mer substantially raising the quantity. Our method
in §4.4 is able to select the second term and regard
Händen as predictable once Hände is in hand.

7 Experiments

Our experimental design is now fairly straightfor-
ward: plot e-complexity versus i-complexity over
as many languages as possible, We then devise a
numerical test of whether the complexity trade-off
conjecture (§1) appears to hold.

10In the computer science literature, it is far more common
to construct distributions with support over Σ∗ (Paz, 2003;
Bouchard-Côté et al., 2007; Dreyer et al., 2008; Cotterell et al.,
2014), which do not have this problem.



7.1 Data and UniMorph Annotation

At the moment, the largest source of annotated
full paradigms is the UniMorph dataset (Sylak-
Glassman et al., 2015; Kirov et al., 2018), which
contains data that have been extracted from Wik-
tionary, as well as other morphological lexica and
analyzers, and then converted into a universal for-
mat. A partial subset of UniMorph has been used in
the running of the SIGMORPHON-CoNLL 2017
and 2018 shared tasks on morphological inflection
generation (Cotterell et al., 2017a, 2018b).

We use verbal paradigms from 33 typologically
diverse languages, and nominal paradigms from 18
typologically diverse languages. We only consid-
ered languages that had at least 700 fully annotated
verbal or nominal paradigms, as the neural methods
we deploy required a large amount of training ex-
ample to achieve high performance.11As the neural
methods require a large set of annotated training ex-
amples to achieve high performance, it is difficult
to use them in a lower-resource scenario.

To estimate a language’s e-complexity (§2.2.1),
we average over all paradigms in the UniMorph
inflected lexicon.

To estimate i-complexity, we first partition those
paradigms into training, development and test sets.
We identify the paradigm classes from the train-
ing set (§4.1). We also use the training set to train
the parameters θ of our conditional distribution
(§4.3), then estimate conditional entropies on the
development set and use Edmonds’s algorithm to
select a global model structure for each class (§4.4).
Now we evaluate i-complexity on the test set (equa-
tion (10)). Using held-out test data gives an unbi-
ased estimate of a model’s predictive ability, which
is why it is standard practice in statistical NLP,
though less common in quantitative linguistics.

7.2 Experimental Details

We experiment separately on nominal and verbal
lexicons. For i-complexity, we hold out at random
50 full paradigms for the development set, and 50
other full paradigms for the test set.

For comparability across languages, we tried to

11Focusing on data-rich languages should also help miti-
gate sample bias caused by variable-sized dictionaries in our
database. In many languages, irregular words are also very
frequent and may be more likely to be included in a dictio-
nary first. If that’s the case, smaller dictionaries might have
lexical statistics skewed toward irregulars more so than larger
dictionaries. In general, larger dictionaries should be more
representative samples of a language’s broader lexicon.

ensure a “standard size” for the training set Dtrain.
We sampled it from the remaining data using two
different designs, to address the fact that different
languages have different-size paradigms.

Equal Number of Paradigms (“purple
scheme”). In the first regime, Dtrain (for
each language) is derived from 600 randomly
chosen non-held-out paradigms m. We trained
the reinflection model in §4.4 on all non-syncretic
pairs within these paradigms, as described in
§4.3. This disadvantages languages with small
paradigms, as they train on fewer pairs.

Equal Number of Pairs (“green scheme”). In
the second regime, we trained the reinflection
model in §4.4 on 60,000 non-syncretic pairs
(m.σ′,m.σ) (where σ′ may be empty) sam-
pled without replacement from the non-held-out
paradigms.12 This matches the amount of training
data, but may disadvantage languages with large
paradigms, since the reinflection model will see
fewer examples of any individual mapping between
paradigm slots. We call this the “green scheme.”

Model and Training Details. We train the
seq2seq-with-attention model using the OpenNMT
toolkit (Klein et al., 2017). We largely follow
the recipe given in Kann and Schütze (2016), the
winning submission on the 2016 SIGMORPHON
shared task for inflectional morphology. Accord-
ingly, we use a character embedding size of 300,
and 100 hidden units in both the encoder and de-
coder. Our gradient-based optimization method
was AdaDelta (Zeiler, 2012) with a minibatch
size of 80. We trained for 20 epochs, which
yielded 20 models via early stopping. We se-
lected the model that achieved the highest aver-
age log p(m.σ | m.σ′) on (σ′, σ) pairs from the
development set.

8 Results and Analysis

Our results are plotted in Figure 2, where each dot
represents a language. We see little difference be-
tween the green and the purple training sets, though
it was not clear a priori that this would be so.

The plots appear to show a clear trade-off be-
tween i-complexity and the e-complexity. We now
provide quantitative support for this impression, by
constructing a statistical significance test. Visually,

12For a few languages, fewer than 60,000 pairs were avail-
able, in which case we used all pairs.



0 20 40 60 80 100

E-Complexity (Paradigm Size)

0.0

0.5

1.0

1.5

2.0

2.5
I-

C
o
m

p
le

x
it

y
(C

ro
ss

-E
n
tr

o
p
y

in
b

it
s)

Nominal Inflectional Paradigms

0 20 40 60 80 100 120

E-Complexity (Paradigm Size)

0.0

0.5

1.0

1.5

2.0

2.5

I-
C

o
m

p
le

x
it

y
(C

ro
ss

-E
n
tr

o
p
y

in
b

it
s)

Verbal Inflectional Paradigms

Figure 2: The x-axis is our measure of e-complexity, the average number of distinct forms in a paradigm.
The y-axis is our estimate of i-complexity, the average bits per distinct non-lemma form. We overlay
purple and green graphs (§7.2): all the purple points are trained on the same number of paradigms, and all
the green points are trained on about the same number of slot pairs. The purple curve is the Pareto curve
for the purple points, and the area under it is shaded in purple; similarly for green.

our low-entropy trade-off conjecture boils down to
the claim that languages cannot exist in the upper
right-hand corner of the graph, i.e., they cannot
have both high e-complexity and high i-complexity.
In other words, the upper-right hand corner of the
graph is “emptier” than it would be by chance.

How can we quantify this? The Pareto curve
for a multi-objective optimization problem shows,
for each x, the maximum value y of the second
objective that can be achieved while keeping the
first objective ≥ x (and vice-versa). This is shown
in Figure 2 as a step curve, showing the maximum
i-complexity y that was actually achieved for each
level x of e-complexity. This curve is the tightest
non-increasing function that upper-bounds all of
the observed points: we have no evidence from our
sample of languages that any language can appear
above the curve.

We say that the upper right-hand corner is
“empty” to the extent that the area under the
Pareto curve is small. To ask whether it is in-
deed emptier than would be expected by chance,
we perform a nonparametric permutation test
that destroys the claimed correlation between
the e-complexity and i-complexity values. From
our observed points {(x1, y1), . . . , (xm, ym)}, we
can stochastically construct a new set of points
{(x1, yσ(1)), . . . , (xm, yσ(m))} where σ is a per-

mutation of 1, 2, . . . ,m selected uniformly at ran-
dom. The resulting scatterplot is what we would
expect under the null hypothesis of no correlation.
Our p-value is the probability that the new scatter-
plot has an even emptier upper right-hand corner—
that is, the probability that the area under the null-
hypothesis Pareto curve is ≤ the area under the ac-
tually observed Pareto curve. We estimate this prob-
ability by constructing 10,000 random scatterplots.

In the purple training scheme, we find that the
upper right-hand corner is significantly empty, with
p < 0.021 and p < 0.037 for the verbal and nomi-
nal paradigms, respectively. In the green training
scheme, we find that the upper right-hand corner is
significantly empty with p < 0.032 and p < 0.024
in the verbal and nominal paradigms, respectively.

9 Future Directions

Frequency. Ackerman and Malouf hypothesized
that i-complexity is bounded, and we have demon-
strated that the bounds are stronger when e-
complexity is high. This suggests further inves-
tigation as to where in the language these bounds
apply. Such bounds are motivated by the notion that
naturally occurring languages must be learnable.
Presumably, languages with large paradigms need
to be regular overall, because in such a language,



the average word type is observed too rarely for a
learner to memorize an irregular surface form for it.
Yet even in such a language, some word types are
frequent, because some lexemes and some slots are
especially useful. Thus, if learnability of the lexi-
con is indeed the driving force,13 then we should
make the finer-grained prediction that irregularity
may survive in the more frequently observed word
types, regardless of paradigm size. Rarer forms
are more likely to be predictable—meaning that
they are either regular, or else irregular in a way
that is predictable from a related frequent irregular
(Cotterell et al., 2018a).

Dynamical models. We could even investigate
directly whether patterns of morphological irregu-
larity can be explained by the evolution of language
through time. Languages may be shaped by natural
selection or, more plausibly, by noisy transmission
from each generation to the next (Hare and Elman,
1995; Smith et al., 2008), in a natural communi-
cation setting where each learner observes some
forms more frequently than others. Are naturally
occurring inflectional systems more learnable (at
least by machine learning algorithms) than would
be expected by chance? Do artificial languages
with unusual properties (for example, unpredictable
rare forms) tend to evolve into languages that are
more typologically natural?

We might also want to study whether children’s
morphological systems increase in i-complexity
as they approach the adult system. Interestingly,
this definition of i-complexity could also explain
certain issues in first language acquisition, where
children often overregularize (Pinker and Prince,
1988): they impose the regular pattern on irregular
verbs, producing forms like runned instead of ran.
Children may initially posit an inflectional system
with lower i-complexity, before converging on the
true system, which has higher i-complexity.

Phonology Plus Orthography. A human learner
of a written language also has access to phono-
logical information that could affect predictability.
One could for example jointly model all the written
and spoken forms within each paradigm, where the
Bayesian network may sometimes predict a spoken
slot from a written slot or vice-versa.

Moving Beyond the Forms. The complexity of
morphological inflection is only a small bit of the

13Rather than, say, description length of the lexicon (Rissa-
nen and Ristad, 1994).

larger question of morphological typology. We
have left many bits unexplored. In this paper,
we have predicted orthographic forms from mor-
phosyntactic feature bundles. Ideally, we would
like to also predict which morphosyntactic bundles
are realized as words within a language, and which
bundles are syncretic. That is, what paradigm
classes are plausible or implausible?

In addition, our current treatment depends upon
a paradigmatic treatment of morphology, which
is why we have focused on inflectional morphol-
ogy. In contrast, derivational morphology is often
viewed as syntagmatic.14 Can we devise quantita-
tive formulation of derivational complexity—for
example, extending to polysynthetic languages?

10 Conclusions

We have provided clean mathematical formulations
of enumerative and integrative complexity of inflec-
tional systems, using tools from generative model-
ing and deep learning. With an empirical study on
noun and verb systems in 36 typologically diverse
languages, we have exhibited a Pareto-style trade-
off between the e-complexity and i-complexity of
morphological systems. In short, a morphological
system can mark a large number of morphosyn-
tactic distinctions, as Finnish, Turkish and other
agglutinative and polysynthetic languages do; or it
may have a high-level of unpredictability (irregu-
larity); or neither.15 But it cannot do both.

The NLP community often focuses on e-
complexity and views a language as morphologi-
cally complex if it has a profusion of unique forms,
even if they are very predictable. The reason is
probably our habit of working at the word-level,
so that all forms not found in the training set are
out-of-vocabulary (OOV). Indeed, NLP practition-
ers often use high OOV rates as a proxy for defin-
ing morphological complexity. However, as NLP
moves to the character-level, we will need other def-
initions of morphological richness. A language like
Hungarian with almost perfectly predictable mor-
phology may be easier to process than a language
like German with an abundance of irregularity.

14For paradigmatic treatments of derivational morphology,
see Cotterell et al. (2017c) for a computational perspective
and the references therein for theoretical perspectives.

15A language is under no obligation to be morphologi-
cally rich—it may have low e-complexity and i-complexity.
Carstairs-McCarthy (2010) has pointed out that languages
need not have morphology at all, though they must have
phonology and syntax.
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