
7 | INFORMATION THEORY 
 
(All I’m After Is Just a Mundane Brain) 
 
 Perhaps coming up with a theory of information and its processing is 
a bit like building a transcontinental railway. You can start in the east, 
trying to understand how agents can process anything, and head west. Or 
you can start in the west, with trying to understand what information is, 
and then head east. One hopes that these tracks will meet. 
 —Jon Barwise (1986)♦ 
 
 AT THE HEIGHT OF THE WAR, in early 1943, two like-minded 
thinkers, Claude Shannon and Alan Turing, met daily at teatime in the 
Bell Labs cafeteria and said nothing to each other about their work, 
because it was secret.♦ Both men had become cryptanalysts. Even 
Turing’s presence at Bell Labs was a sort of secret. He had come over on 
the Queen Elizabeth, zigzagging to elude U-boats, after a clandestine 
triumph at Bletchley Park in deciphering Enigma, the code used by the 
German military for its critical communication (including signals to the 
U-boats). Shannon was working on the X System, used for encrypting 
voice conversations between Franklin D. Roosevelt at the Pentagon and 
Winston Churchill in his War Rooms. It operated by sampling the analog 
voice signal fifty times a second—“quantizing” or “digitizing” it—and 
masking it by applying a random key, which happened to bear a strong 
resemblance to the circuit noise with which the engineers were so familiar. 
Shannon did not design the system; he was assigned to analyze it 
theoretically and—it was hoped—prove it to be unbreakable. He 
accomplished this. It was clear later that these men, on their respective 
sides of the Atlantic, had done more than anyone else to turn cryptography 
from an art into a science, but for now the code makers and code breakers 
were not talking to each other. 
 With that subject off the table, Turing showed Shannon a paper he 
had written seven years earlier, called “On Computable Numbers,” about 



the powers and limitations of an idealized computing machine. They 
talked about another topic that turned out to be close to their hearts, the 
possibility of machines learning to think. Shannon proposed feeding 
“cultural things,” such as music, to an electronic brain, and they outdid 
each other in brashness, Turing exclaiming once, “No, I’m not interested 
in developing a powerful brain. All I’m after is just a mundane brain, 
something like the president of the American Telephone & Telegraph 
Company.”♦ It bordered on impudence to talk about thinking machines in 
1943, when both the transistor and the electronic computer had yet to be 
born. The vision Shannon and Turing shared had nothing to do with 
electronics; it was about logic. 
 Can machines think? was a question with a relatively brief and 
slightly odd tradition—odd because machines were so adamantly physical 
in themselves. Charles Babbage and Ada Lovelace lay near the beginning 
of this tradition, though they were all but forgotten, and now the trail led 
to Alan Turing, who did something really outlandish: thought up a 
machine with ideal powers in the mental realm and showed what it could 
not do. His machine never existed (except that now it exists everywhere). 
It was only a thought experiment. 
 Running alongside the issue of what a machine could do was a 
parallel issue: what tasks were mechanical (an old word with new 
significance). Now that machines could play music, capture images, aim 
antiaircraft guns, connect telephone calls, control assembly lines, and 
perform mathematical calculations, the word did not seem quite so 
pejorative. But only the fearful and superstitious imagined that machines 
could be creative or original or spontaneous; those qualities were opposite 
to mechanical, which meant automatic, determined, and routine. This 
concept now came in handy for philosophers. An example of an 
intellectual object that could be called mechanical was the algorithm: 
another new term for something that had always existed (a recipe, a set of 
instructions, a step-by-step procedure) but now demanded formal 
recognition. Babbage and Lovelace trafficked in algorithms without 
naming them. The twentieth century gave algorithms a central 



role—beginning here. 
 Turing was a fellow and a recent graduate at King’s College, 
Cambridge, when he presented his computable-numbers paper to his 
professor in 1936. The full title finished with a flourish in fancy German: 
it was “On Computable Numbers, with an Application to the 
Entscheidungsproblem.” The “decision problem” was a challenge that had 
been posed by David Hilbert at the 1928 International Congress of 
Mathematicians. As perhaps the most influential mathematician of his 
time, Hilbert, like Russell and Whitehead, believed fervently in the 
mission of rooting all mathematics in a solid logical foundation—“In der 
Mathematik gibt es kein Ignorabimus,” he declared. (“In mathematics 
there is no we will not know.”) Of course mathematics had many unsolved 
problems, some quite famous, such as Fermat’s Last Theorem and the 
Goldbach conjecture—statements that seemed true but had not been 
proved. Had not yet been proved, most people thought. There was an 
assumption, even a faith, that any mathematical truth would be provable, 
someday. 
 The Entscheidungsproblem was to find a rigorous step-by-step 
procedure by which, given a formal language of deductive reasoning, one 
could perform a proof automatically. This was Leibniz’s dream revived 
once again: the expression of all valid reasoning in mechanical rules. 
Hilbert posed it in the form of a question, but he was an optimist. He 
thought or hoped that he knew the answer. It was just then, at this 
watershed moment for mathematics and logic, that Gödel threw his 
incompleteness theorem into the works. In flavor, at least, Gödel’s result 
seemed a perfect antidote to Hilbert’s optimism, as it was to Russell’s. But 
Gödel actually left the Entscheidungsproblem unanswered. Hilbert had 
distinguished among three questions: 
 
 Is mathematics complete? 
 
 Is mathematics consistent? 
 



 Is mathematics decidable? 
 
 Gödel showed that mathematics could not be both complete and 
consistent but had not definitively answered the third question, at least not 
for all mathematics. Even though a particular closed system of formal 
logic must contain statements that could neither be proved nor disproved 
from within the system, it might conceivably be decided, as it were, by an 
outside referee—by external logic or rules.♦♦ 
 Alan Turing, just twenty-two years old, unfamiliar with much of the 
relevant literature, so alone in his work habits that his professor worried 
about his becoming “a confirmed solitary,”♦ posed an entirely different 
question (it seemed): Are all numbers computable? This was an 
unexpected question to begin with, because hardly anyone had considered 
the idea of an uncomputable number. Most numbers that people work with, 
or think about, are computable by definition. The rational numbers are 
computable because they can be expressed as the quotient of two integers, 
a/b. The algebraic numbers are computable because they are solutions of 
polynomial equations. Famous numbers like Π and e are computable; 
people compute them all the time. Nonetheless Turing made the 
seemingly mild statement that numbers might exist that are somehow 
nameable, definable, and not computable. 
 What did this mean? He defined a computable number as one whose 
decimal expression can be calculated by finite means. “The justification,” 
he said, “lies in the fact that the human memory is necessarily limited.”♦ 
He also defined calculation as a mechanical procedure, an algorithm. 
Humans solve problems with intuition, imagination, flashes of 
insight—arguably nonmechanical calculation, or then again perhaps just 
computation whose steps are hidden. Turing needed to eliminate the 
ineffable. He asked, quite literally, what would a machine do? “According 
to my definition, a number is computable if its decimal can be written 
down by a machine.” 
 No actual machine offered a relevant model. “Computers” were, as 
ever, people. Nearly all the world’s computation was still performed 



through the act of writing marks on paper. Turing did have one 
information machine for a starting point: the typewriter. As an 
eleven-year-old sent to boarding school he had imagined inventing one. 
“You see,” he wrote to his parents, “the funny little rounds are letters cut 
out on one side slide along to the round along an ink pad and stamp 
down and make the letter, thats not nearly all though.”♦ Of course, a 
typewriter is not automatic; it is more a tool than a machine. It does not 
flow a stream of language onto the page; rather, the page shifts its position 
space by space under the hammer, where one character is laid down after 
another. With this model in mind, Turing imagined another kind of 
machine, of the utmost purity and simplicity. Being imaginary, it was 
unencumbered by the real-world details one would need for a blueprint, an 
engineering specification, or a patent application. Turing, like Babbage, 
meant his machine to compute numbers, but he had no need to worry 
about the limitations of iron and brass. Turing did not plan ever to build 
his machine. 
 He listed the very few items his machine must possess: tape, symbols, 
and states. Each of these required definition. 
 Tape is to the Turing machine what paper is to a typewriter. But 
where a typewriter uses two dimensions of its paper, the machine uses 
only one—thus, a tape, a long strip, divided into squares. “In elementary 
arithmetic the two-dimensional character of the paper is sometimes used,” 
he wrote. “But such a use is always avoidable, and I think that it will be 
agreed that the two-dimensional character of paper is no essential of 
computation.”♦ The tape is to be thought of as infinite: there is always 
more when needed. But just one square is “in the machine” at any given 
time. The tape (or the machine) can move left or right, to the next square. 
 Symbols can be written onto the tape, one per square. How many 
symbols could be used? This required some thought, especially to make 
sure the number was finite. Turing observed that words—in European 
languages, at least—behaved as individual symbols. Chinese, he said, 
“attempts to have an enumerable infinity of symbols.” Arabic numerals 
might also be considered infinite, if 17 and 999,999,999,999,999 were 



treated as single symbols, but he preferred to treat them as compound: “It 
is always possible to use sequences of symbols in the place of single 
symbols.” In fact, in keeping with the machine’s minimalist spirit, he 
favored the absolute minimum of two symbols: binary notation, zeroes 
and ones. Symbols were not only to be written but also read from the 
tape—“scanned” was the word Turing used. In reality, of course, no 
technology could yet scan symbols written on paper back into a machine, 
but there were equivalents: for example, punched cards, now used in 
tabulating machines. Turing specified one more limitation: the machine is 
“aware” (only the anthropomorphic word would do) of one symbol at a 
time—the one on the square that is in the machine. 
 States required more explaining. Turing used the word 
“configurations” and pointed out that these resembled “states of mind.” 
The machine has a few of these—some finite number. In any given state, 
the machine takes one or more actions depending on the current symbol. 
For example, in state a, the machine might move one square to the right if 
the current symbol is 1, or move one square to the left if the current 
symbol is 0, or print 1 if the current symbol is blank. In state b, the 
machine might erase the current symbol. In state c, if the symbol is 0 or 1, 
the machine might move to the right, and otherwise stop. After each 
action, the machine finishes in a new state, which might be the same or 
different. The various states used for a given calculation were stored in a 
table—how this was to be managed physically did not matter. The state 
table was, in effect, the machine’s set of instructions. 
 And this was all. 
 Turing was programming his machine, though he did not yet use that 
word. From the primitive actions—moving, printing, erasing, changing 
state, and stopping—larger processes were built up, and these were used 
again and again: “copying down sequences of symbols, comparing 
sequences, erasing all symbols of a given form, etc.” The machine can see 
just one symbol at a time, but can in effect use parts of the tape to store 
information temporarily. As Turing put it, “Some of the symbols written 
down … are just rough notes ‘to assist the memory.’ ” The tape, unfurling 



to the horizon and beyond, provides an unbounded record. In this way all 
arithmetic lies within the machine’s grasp. Turing showed how to add a 
pair of numbers—that is, he wrote out the necessary table of states. He 
showed how to make the machine print out (endlessly) the binary 
representation of Π. He spent considerable time working out what the 
machine could do and how it would accomplish particular tasks. He 
demonstrated that this short list covers everything a person does in 
computing a number. No other knowledge or intuition is necessary. 
Anything computable can be computed by this machine. 
 Then came the final flourish. Turing’s machines, stripped down to a 
finite table of states and a finite set of input, could themselves be 
represented as numbers. Every possible state table, combined with its 
initial tape, represents a different machine. Each machine itself, then, can 
be described by a particular number—a certain state table combined with 
its initial tape. Turing was encoding his machines just as Gödel had 
encoded the language of symbolic logic. This obliterated the distinction 
between data and instructions: in the end they were all numbers. For every 
computable number, there must be a corresponding machine number. 
 Turing produced (still in his mind’s eye) a version of the machine 
that could simulate every other possible machine—every digital computer. 
He called this machine U, for “universal,” and mathematicians fondly use 
the name U to this day. It takes machine numbers as input. That is, it reads 
the descriptions of other machines from its tape—their algorithms and 
their own input. No matter how complex a digital computer may grow, its 
description can still be encoded on tape to be read by U. If a problem can 
be solved by any digital computer—encoded in symbols and solved 
algorithmically—the universal machine can solve it as well. 
 Now the microscope is turned onto itself. The Turing machine sets 
about examining every number to see whether it corresponds to a 
computable algorithm. Some will prove computable. Some might prove 
uncomputable. And there is a third possibility, the one that most interested 
Turing. Some algorithms might defy the inspector, causing the machine to 
march along, performing its inscrutable business, never coming to a halt, 



never obviously repeating itself, and leaving the logical observer forever 
in the dark about whether it would halt. 
 By now Turing’s argument, as published in 1936, has become a 
knotty masterpiece of recursive definitions, symbols invented to represent 
other symbols, numbers standing in for numbers, for state tables, for 
algorithms, for machines. In print it looked like this: 
 
 By combining the machines D and U we could construct a machine 
M to compute the sequence β′. The machine D may require a tape. We 
may suppose that it uses the E-squares beyond all symbols on F-squares, 
and that when it has reached its verdict all the rough work done by D is 
erased.… 
 
 We can show further that there can be no machineEwhich, when 
applied with the S.D of an arbitrary machineM, will determine whether M 
ever prints a given symbol (0 say). 
 
 Few could follow it. It seems paradoxical—it is paradoxical—but 
Turing proved that some numbers are uncomputable. (In fact, most are.) 
 Also, because every number corresponds to an encoded proposition 
of mathematics and logic, Turing had resolved Hilbert’s question about 
whether every proposition is decidable. He had proved that the 
Entscheidungsproblem has an answer, and the answer is no. An 
uncomputable number is, in effect, an undecidable proposition. 
 So Turing’s computer—a fanciful, abstract, wholly imaginary 
machine—led him to a proof parallel to Gödel’s. Turing went further than 
Gödel by defining the general concept of a formal system. Any 
mechanical procedure for generating formulas is essentially a Turing 
machine. Any formal system, therefore, must have undecidable 
propositions. Mathematics is not decidable. Incompleteness follows from 
uncomputability. 
 Once again, the paradoxes come to life when numbers gain the 
power to encode the machine’s own behavior. That is the necessary 



recursive twist. The entity being reckoned is fatally entwined with the 
entity doing the reckoning. As Douglas Hofstadter put it much later, “The 
thing hinges on getting this halting inspector to try to predict its own 
behavior when looking at itself trying to predict its own behavior when 
looking at itself trying to predict its own behavior when …”♦ A 
conundrum that at least smelled similar had lately appeared in physics, 
too: Werner Heisenberg’s new uncertainty principle. When Turing learned 
about that, he expressed it in terms of self-reference: “It used to be 
supposed in Science that if everything was known about the Universe at 
any particular moment then we can predict what it will be through all the 
future.… More modern science however has come to the conclusion that 
when we are dealing with atoms and electrons we are quite unable to 
know the exact state of them; our instruments being made of atoms and 
electrons themselves.”♦ 
 A century had passed between Babbage’s Analytical Engine and 
Turing’s Universal Machine—a grand and unwieldy contraption and an 
elegant unreal abstraction. Turing never even tried to be a machinist. “One 
can picture an industrious and diligent clerk, well supplied with scratch 
paper, tirelessly following his instructions,”♦ as the mathematician and 
logician Herbert Enderton remarked years later. Like Ada Lovelace, 
Turing was a programmer, looking inward to the step-by-step logic of his 
own mind. He imagined himself as a computer. He distilled mental 
procedures into their smallest constituent parts, the atoms of information 
processing. 
 Alan Turing and Claude Shannon had codes in common. Turing 
encoded instructions as numbers. He encoded decimal numbers as zeroes 
and ones. Shannon made codes for genes and chromosomes and relays 
and switches. Both men applied their ingenuity to mapping one set of 
objects onto another: logical operators and electric circuits; algebraic 
functions and machine instructions. The play of symbols and the idea of 
mapping, in the sense of finding a rigorous correspondence between two 
sets, had a prominent place in their mental arsenals. This kind of coding 
was not meant to obscure but to illuminate: to discover that apples and 



oranges were after all equivalent, or if not equivalent then fungible. The 
war brought both men to cryptography in its most riddling forms. 
 Turing’s mother often asked him what use his mathematics had, and 
he told her as early as 1936 that he had discovered a possible application: 
“a lot of particular and interesting codes.” He added, “I expect I could sell 
them to H. M. Government for quite a substantial sum, but am rather 
doubtful about the morality of such things.”♦ Indeed, a Turing machine 
could make ciphers. But His Majesty’s Government turned out to have a 
different problem. As war loomed, the task of reading messages 
intercepted from German cable and wireless traffic fell to the Government 
Code and Cypher School, originally part of the Admiralty, with a staff at 
first composed of linguists, clerks, and typists, but no mathematicians. 
Turing was recruited in the summer of 1938. When the Code and Cypher 
School evacuated from London to Bletchley Park, a country mansion in 
Buckinghamshire, he went along with a team that also included some 
champions at chess and crossword-puzzle solving. It was clear now that 
classical language scholarship had little to contribute to cryptanalysis. 
 The German system, named Enigma, employed a polyalphabetic 
cipher implemented by a rotor machine the size of a suitcase, with a 
typewriter keyboard and signal lamps. The cipher had evolved from a 
famous ancestor, the Vigenère cipher, thought to be unbreakable until 
Charles Babbage cracked it in 1854, and Babbage’s mathematical insight 
gave Bletchley early help, as did work by Polish cryptographers who had 
the first hard years of experience with the Wehrmacht’s signal traffic. 
Working from a warren known as Hut 8, Turing took the theoretical lead 
and solved the problem, not just mathematically but physically. 
 This meant building a machine to invert the enciphering of any 
number of Enigmas. Where his first machine was a phantasm of 
hypothetical tape, this one, dubbed the Bombe, filled ninety cubic feet 
with a ton of wire and metal leaking oil and effectively mapping the rotors 
of the German device onto electric circuitry. The scientific triumph at 
Bletchley—secret for the duration of the war and for thirty years 
after—had a greater effect on the outcome than even the Manhattan 



Project, the real bomb. By the war’s end, the Turing Bombes were 
deciphering thousands of military intercepts every day: processing 
information, that is, on a scale never before seen. 
 

  
 A CAPTURED ENIGMA MACHINE (Illustration credit 7.1) 
 
 Although nothing of this passed between Turing and Shannon when 
they met for meals at Bell Labs, they did talk indirectly about a notion of 
Turing’s about how to measure all this stuff. He had watched analysts 
weigh the messages passing through Bletchley, some uncertain and some 
contradictory, as they tried to assess the probability of some fact—a 
particular Enigma code setting, for example, or the location of a 
submarine. He felt that something here needed measuring, mathematically. 
It was not the probability, which would traditionally be expressed as an 
odds ratio (such as three to two) or a number from zero to one (such as 0.6, 
or 60 percent). Rather, Turing cared about the data that changed the 
probability: a probability factor, something like the weight of evidence. 
He invented a unit he named a “ban.” He found it convenient to use a 



logarithmic scale, so that bans would be added rather than multiplied. 
With a base of ten, a ban was the weight of evidence needed to make a 
fact ten times as likely. For more fine-grained measurement there were 
“decibans” and “centibans.” 
 Shannon had a notion along similar lines. 
 Working in the old West Village headquarters, he developed 
theoretical ideas about cryptography that helped him focus the dream he 
had intimated to Vannevar Bush: his “analysis of some of the fundamental 
properties of general systems for the transmission of intelligence.” He 
followed parallel tracks all during the war, showing his supervisors the 
cryptography work and concealing the rest. Concealment was the order of 
the day. In the realm of pure mathematics, Shannon treated some of the 
same ciphering systems that Turing was attacking with real intercepts and 
brute hardware—for example, the specific question of the safety of 
Vigenère cryptograms when “the enemy knows the system being used.”♦ 
(The Germans were using just such cryptograms, and the British were the 
enemy who knew the system.) Shannon was looking at the most general 
cases, all involving, as he put it, “discrete information.” That meant 
sequences of symbols, chosen from a finite set, mainly letters of the 
alphabet but also words of a language and even “quantized speech,” voice 
signals broken into packets with different amplitude levels. To conceal 
these meant substituting wrong symbols for the right ones, according to 
some systematic procedure in which a key is known to the receiver of the 
message, who can use it to reverse the substitutions. A secure system 
works even when the enemy knows the procedure, as long as the key 
remains secret. 
 The code breakers see a stream of data that looks like junk. They 
want to find the real signal. “From the point of view of the cryptanalyst,” 
Shannon noted, “a secrecy system is almost identical with a noisy 
communication system.”♦ (He completed his report, “A Mathematical 
Theory of Cryptography,” in 1945; it was immediately classified.) The 
data stream is meant to look stochastic, or random, but of course it is not: 
if it were truly random the signal would be lost. The cipher must 



transform a patterned thing, ordinary language, into something apparently 
without pattern. But pattern is surprisingly persistent. To analyze and 
categorize the transformations of ciphering, Shannon had to understand 
the patterns of language in a way that scholars—linguists, for 
example—had never done before. Linguists had, however, begun to focus 
their discipline on structure in language—system to be found amid the 
vague billowing shapes and sounds. The linguist Edward Sapir wrote of 
“symbolic atoms” formed by a language’s underlying phonetic patterns. 
“The mere sounds of speech,” he wrote in 1921, “are not the essential fact 
of language, which lies rather in the classification, in the formal 
patterning.… Language, as a structure, is on its inner face the mold of 
thought.”♦Mold of thought was exquisite. Shannon, however, needed to 
view language in terms more tangible and countable. 
 Pattern, as he saw it, equals redundancy. In ordinary language, 
redundancy serves as an aid to understanding. In cryptanalysis, that same 
redundancy is the Achilles’ heel. Where is this redundancy? As a simple 
example in English, wherever the letter q appears, the u that follows is 
redundant. (Or almost—it would be entirely redundant were it not for rare 
borrowed items like qin and Qatar.) After q, a u is expected. There is no 
surprise. It contributes no information. After the letter t, an h has a certain 
amount of redundancy, because it is the likeliest letter to appear. Every 
language has a certain statistical structure, Shannon argued, and with it a 
certain redundancy. Let us call this (he suggested) D. “D measures, in a 
sense, how much a text in the language can be reduced in length without 
losing any information.”♦ 
 Shannon estimated that English has redundancy of about 50 percent.♦ 
Without computers to process masses of text, he could not be sure, but his 
estimate proved correct. Typical passages can be shortened by half 
without loss of information. (If u cn rd ths …) With the simplest early 
substitution ciphers, this redundancy provided the point of first weakness. 
Edgar Allan Poe knew that when a cryptogram contained more z’s than 
any other letter, then z was probably the substitute for e, since e is the 
most frequent letter in English. As soon as q was solved, so was u. A code 



breaker looked for recurring patterns that might match common words or 
letter combinations: the, and, -tion. To perfect this kind of frequency 
analysis, code breakers needed better information about letter frequencies 
than Alfred Vail or Samuel Morse had been able to get by examining 
printers’ type trays, and anyway, more clever ciphers overcame this 
weakness, by constantly varying the substitution alphabet, so that every 
letter had many possible substitutes. The obvious, recognizable patterns 
vanished. But as long as a cryptogram retained any trace of 
patterning—any form or sequence or statistical regularity—a 
mathematician could, in theory, find a way in. 
 What all secrecy systems had in common was the use of a key: a 
code word, or phrase, or an entire book, or something even more complex, 
but in any case a source of characters known to both the sender and 
receiver—knowledge shared apart from the message itself. In the German 
Enigma system, the key was internalized in hardware and changed daily; 
Bletchley Park had to rediscover it anew each time, its experts sussing out 
the patterns of language freshly transformed. Shannon, meanwhile, 
removed himself to the most distant, most general, most theoretical 
vantage point. A secrecy system comprised a finite (though possibly very 
large) number of possible messages, a finite number of possible 
cryptograms, and in between, transforming one to the other, a finite 
number of keys, each with an associated probability. This was his 
schematic diagram: 
 
 



 
 (Illustration credit 7.2) 
 
 The enemy and the recipient are trying to arrive at the same target: 
the message. By framing it this way, in terms of mathematics and 
probabilities, Shannon had utterly abstracted the idea of the message from 
its physical details. Sounds, waveforms, all the customary worries of a 
Bell Labs engineer—none of these mattered. The message was seen as a 
choice: one alternative selected from a set. At Old North Church the night 
of Paul Revere’s ride, the number of possible messages was two. 
Nowadays the numbers were almost uncountable—but still susceptible to 
statistical analysis. 
 Still in the dark about the very real and utterly relevant experience at 
Bletchley Park, Shannon built an edifice of algebraic methods, theorems, 
and proofs that gave cryptologists what they had never before possessed: a 
rigorous way of assessing the security of any secrecy system. He 
established the scientific principles of cryptography. Among other things, 
he proved that perfect ciphers were possible—“perfect” meaning that even 
an infinitely long captured message would not help a code breaker (“the 
enemy is no better off after intercepting any amount of material than 
before”♦). But as he gave, so he took away, because he also proved that 
the requirements were so severe as to make them practically useless. In a 



perfect cipher, all keys must be equally likely, in effect, a random stream 
of characters; each key can be used only once; and, worst of all, each key 
must be as long as the entire message. 
 Also in this secret paper, almost in passing, Shannon used a phrase 
he had never used before: “information theory.” 
 First Shannon had to eradicate “meaning.” The germicidal quotation 
marks were his. “The ‘meaning’ of a message is generally irrelevant,” he 
proposed cheerfully.♦ 
 He offered this provocation in order to make his purpose utterly clear. 
Shannon needed, if he were to create a theory, to hijack the word 
information. “ ‘Information’ here,” he wrote, “although related to the 
everyday meaning of the word, should not be confused with it.” Like 
Nyquist and Hartley before him, he wished to leave aside “the 
psychological factors” and focus only on “the physical.” But if 
information was divorced from semantic content, what was left? A few 
things could be said, and at first blush they all sounded paradoxical. 
Information is uncertainty, surprise, difficulty, and entropy: 
 “Information is closely associated with uncertainty.” Uncertainty, in 
turn, can be measured by counting the number of possible messages. If 
only one message is possible, there is no uncertainty and thus no 
information. 
 Some messages may be likelier than others, and information implies 
surprise. Surprise is a way of talking about probabilities. If the letter 
following t (in English) is h, not so much information is conveyed, 
because the probability of h was relatively high. 
 “What is significant is the difficulty in transmitting the message from 
one point to another.” Perhaps this seemed backward, or tautological, like 
defining mass in terms of the force needed to move an object. But then, 
mass can be defined that way. 
 Information is entropy. This was the strangest and most powerful 
notion of all. Entropy—already a difficult and poorly understood 
concept—is a measure of disorder in thermodynamics, the science of heat 
and energy. 



 Fire control and cryptography aside, Shannon had been pursuing this 
haze of ideas all through the war. Living alone in a Greenwich Village 
apartment, he seldom socialized with his colleagues, who mainly worked 
now in the New Jersey headquarters, while Shannon preferred the old 
West Street hulk. He did not have to explain himself. His war work got 
him deferred from military service and the deferment continued after the 
war ended. Bell Labs was a rigorously male enterprise, but in wartime the 
computing group, especially, badly needed competent staff and began 
hiring women, among them Betty Moore, who had grown up on Staten 
Island. It was like a typing pool for math majors, she thought. After a year 
she was promoted to the microwave research group, in the former Nabisco 
building—the “cracker factory”—across West Street from the main 
building. The group designed tubes on the second floor and built them on 
the first floor and every so often Claude wandered over to visit. He and 
Betty began dating in 1948 and married early in 1949. Just then he was 
the scientist everyone was talking about. 
 



  
 THE WEST STREET HEADQUARTERS OF BELL 
LABORATORIES, WITH TRAINS OF THE HIGH LINE RUNNING 
THROUGH 
 
 Few libraries carried The Bell System Technical Journal, so 
researchers heard about “A Mathematical Theory of Communication” the 
traditional way, by word of mouth, and obtained copies the traditional 
way, by writing directly to the author for an offprint. Many scientists used 
preprinted postcards for such requests, and these arrived in growing 
volume over the next year. Not everyone understood the paper. The 
mathematics was difficult for many engineers, and mathematicians 
meanwhile lacked the engineering context. But Warren Weaver, the 
director of natural sciences for the Rockefeller Foundation uptown, was 



already telling his president that Shannon had done for communication 
theory “what Gibbs did for physical chemistry.”♦ Weaver had headed the 
government’s applied mathematics research during the war, supervising 
the fire-control project as well as nascent work in electronic calculating 
machines. In 1949 he wrote up an appreciative and not too technical essay 
about Shannon’s theory for Scientific American, and late that year the two 
pieces—Weaver’s essay and Shannon’s monograph—were published 
together as a book, now titled with a grander first word The Mathematical 
Theory of Communication. To John Robinson Pierce, the Bell Labs 
engineer who had been watching the simultaneous gestation of the 
transistor and Shannon’s paper, it was the latter that “came as a bomb, and 
something of a delayed action bomb.”♦ 
 Where a layman might have said that the fundamental problem of 
communication is to make oneself understood—to convey 
meaning—Shannon set the stage differently: 
 
 The fundamental problem of communication is that of reproducing at 
one point either exactly or approximately a message selected at another 
point.♦ 
 
 “Point” was a carefully chosen word: the origin and destination of a 
message could be separated in space or in time; information storage, as in 
a phonograph record, counts as a communication. Meanwhile, the 
message is not created; it is selected. It is a choice. It might be a card dealt 
from a deck, or three decimal digits chosen from the thousand possibilities, 
or a combination of words from a fixed code book. He could hardly 
overlook meaning altogether, so he dressed it with a scientist’s definition 
and then showed it the door: 
 
 Frequently the messages have meaning; that is they refer to or are 
correlated according to some system with certain physical or conceptual 
entities. These semantic aspects of communication are irrelevant to the 
engineering problem. 



 
 Nonetheless, as Weaver took pains to explain, this was not a narrow 
view of communication. On the contrary, it was all-encompassing: “not 
only written and oral speech, but also music, the pictorial arts, the theatre, 
the ballet, and in fact all human behavior.” Nonhuman as well: why 
should machines not have messages to send? 
 Shannon’s model for communication fit a simple 
diagram—essentially the same diagram, by no coincidence, as in his 
secret cryptography paper. 
 
 

 
 (Illustration credit 7.3) 
 
 A communication system must contain the following elements: 
 The information source is the person or machine generating the 
message, which may be simply a sequence of characters, as in a telegraph 
or teletype, or may be expressed mathematically as functions—f(x, y, 
t)—of time and other variables. In a complex example like color television, 
the components are three functions in a three-dimensional continuum, 
Shannon noted. 
 The transmitter “operates on the message in some way”—that is, 
encodes the message—to produce a suitable signal. A telephone converts 
sound pressure into analog electric current. A telegraph encodes 
characters in dots, dashes, and spaces. More complex messages may be 
sampled, compressed, quantized, and interleaved. 



 The channel: “merely the medium used to transmit the signal.” 
 The receiver inverts the operation of the transmitter. It decodes the 
message, or reconstructs it from the signal. 
 The destination “is the person (or thing)” at the other end. 
 In the case of ordinary speech, these elements are the speaker’s brain, 
the speaker’s vocal cords, the air, the listener’s ear, and the listener’s 
brain. 
 As prominent as the other elements in Shannon’s diagram—because 
for an engineer it is inescapable—is a box labeled “Noise Source.” This 
covers everything that corrupts the signal, predictably or unpredictably: 
unwanted additions, plain errors, random disturbances, static, 
“atmospherics,” interference, and distortion. An unruly family under any 
circumstances, and Shannon had two different types of systems to deal 
with, continuous and discrete. In a discrete system, message and signal 
take the form of individual detached symbols, such as characters or digits 
or dots and dashes. Telegraphy notwithstanding, continuous systems of 
waves and functions were the ones facing electrical engineers every day. 
Every engineer, when asked to push more information through a channel, 
knew what to do: boost the power. Over long distances, however, this 
approach was failing, because amplifying a signal again and again leads to 
a crippling buildup of noise. 
 Shannon sidestepped this problem by treating the signal as a string of 
discrete symbols. Now, instead of boosting the power, a sender can 
overcome noise by using extra symbols for error correction—just as an 
African drummer makes himself understood across long distances, not by 
banging the drums harder, but by expanding the verbosity of his discourse. 
Shannon considered the discrete case to be more fundamental in a 
mathematical sense as well. And he was considering another point: that 
treating messages as discrete had application not just for traditional 
communication but for a new and rather esoteric subfield, the theory of 
computing machines. 
 So back he went to the telegraph. Analyzed precisely, the telegraph 
did not use a language with just two symbols, dot and dash. In the real 



world telegraphers used dot (one unit of “line closed” and one unit of 
“line open”), dash (three units, say, of line closed and one unit of line 
open), and also two distinct spaces: a letter space (typically three units of 
line open) and a longer space separating words (six units of line open). 
These four symbols have unequal status and probability. For example, a 
space can never follow another space, whereas a dot or dash can follow 
anything. Shannon expressed this in terms of states. The system has two 
states: in one, a space was the previous symbol and only a dot or dash is 
allowed, and the state then changes; in the other, any symbol is allowed, 
and the state changes only if a space is transmitted. He illustrated this as a 
graph: 
 

  
 (Illustration credit 7.4) 
 
 This was far from a simple, binary system of encoding. Nonetheless 
Shannon showed how to derive the correct equations for information 
content and channel capacity. More important, he focused on the effect of 
the statistical structure of the language of the message. The very existence 



of this structure—the greater frequency of e than q, of th than xp, and so 
forth—allows for a saving of time or channel capacity. 
 
 This is already done to a limited extent in telegraphy by using the 
shortest channel sequence, a dot, for the most common English letter E; 
while the infrequent letters, Q, X, Z are represented by longer sequences 
of dots and dashes. This idea is carried still further in certain commercial 
codes where common words and phrases are represented by four- or 
five-letter code groups with a considerable saving in average time. The 
standardized greeting and anniversary telegrams now in use extend this to 
the point of encoding a sentence or two into a relatively short sequence of 
numbers.♦ 
 
 To illuminate the structure of the message Shannon turned to some 
methodology and language from the physics of stochastic processes, from 
Brownian motion to stellar dynamics. (He cited a landmark 1943 paper by 
the astrophysicist Subrahmanyan Chandrasekhar in Reviews of Modern 
Physics.♦) A stochastic process is neither deterministic (the next event can 
be calculated with certainty) nor random (the next event is totally free). It 
is governed by a set of probabilities. Each event has a probability that 
depends on the state of the system and perhaps also on its previous history. 
If for event we substitute symbol, then a natural written language like 
English or Chinese is a stochastic process. So is digitized speech; so is a 
television signal. 
 Looking more deeply, Shannon examined statistical structure in 
terms of how much of a message influences the probability of the next 
symbol. The answer could be none: each symbol has its own probability 
but does not depend on what came before. This is the first-order case. In 
the second-order case, the probability of each symbol depends on the 
symbol immediately before, but not on any others. Then each 
two-character combination, or digram, has its own probability: th greater 
than xp, in English. In the third-order case, one looks at trigrams, and so 
forth. Beyond that, in ordinary text, it makes sense to look at the level of 



words rather than individual characters, and many types of statistical facts 
come into play. Immediately after the word yellow, some words have a 
higher probability than usual and others virtually zero. After the word an, 
words beginning with consonants become exceedingly rare. If the letter u 
ends a word, the word is probably you. If two consecutive letters are the 
same, they are probably ll, ee, ss, or oo. And structure can extend over 
long distances: in a message containing the word cow, even after many 
other characters intervene, the word cow is relatively likely to occur again. 
As is the word horse. A message, as Shannon saw, can behave like a 
dynamical system whose future course is conditioned by its past history. 
 To illustrate the differences between these different orders of 
structure, he wrote down—computed, really—a series of 
“approximations” of English text. He used an alphabet of twenty-seven 
characters, the letters plus a space between words, and generated strings 
of characters with the help of a table of random numbers. (These he drew 
from a book newly published for such purposes by Cambridge University 
Press: 100,000 digits for three shillings nine pence, and the authors “have 
furnished a guarantee of the random arrangement.”♦) Even with random 
numbers presupplied, working out the sequences was painstaking. The 
sample texts looked like this: 
 “Zero-order approximation”—that is, random characters, no structure 
or correlations. 
 
 XFOML RXKHRJFFJUJ ZLPWCFWKCYJ 
 
 FFJEYVKCQSGHYD GPAAMKBZAACIBZLHJGD. 
 
 First order—each character is independent of the rest, but the 
frequencies are those expected in English: more e’s and t’s, fewer z’s and 
j’s, and the word lengths look realistic. 
 
 OCRO HLI RGWR NIMILWIS EU LL NBNESEBYA 
 



 TH EEI ALHENHTTPA OOBTTVA NAH BRL. 
 
 Second order—the frequencies of each character match English and 
so also do the frequencies of each digram, or letter pair. (Shannon found 
the necessary statistics in tables constructed for use by code breakers.♦ 
The most common digram in English is th, with a frequency of 168 per 
thousand words, followed by he, an, re, and er. Quite a few digrams have 
zero frequency.) 
 
 ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY 
ACHIN 
 
 D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN 
ANDY 
 
 TOBESEACE CTISBE. 
 
 Third order—trigram structure. 
 
 IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID 
 
 PONDENOME OF DEMONSTURES OF THE REPTAGIN IS 
 
 REGOACTIONA OF CRE. 
 
 First-order word approximation. 
 
 REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME 
CAN 
 
 DIFFERENT NATURAL HERE HE THE A IN CAME THE TO 
 
 OF TO EXPERT GRAY COME TO FURNISHES THE LINE 



MESSAGE HAD 
 
 BE THESE. 
 
 Second-order word approximation—now pairs of words appear in 
the expected frequency, so we do not see “a in” or “to of.” 
 
 THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH 
 
 WRITER THAT THE CHARACTER OF THIS POINT IS 
 
 THEREFORE ANOTHER METHOD FOR THE LETTERS THAT 
 
 THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN 
 
 UNEXPECTED. 
 
 These sequences increasingly “look” like English. Less subjectively, 
it turns out that touch typists can handle them with increasing 
speed—another indication of the ways people unconsciously internalize a 
language’s statistical structure. 
 Shannon could have produced further approximations, given enough 
time, but the labor involved was becoming enormous. The point was to 
represent a message as the outcome of a process that generated events 
with discrete probabilities. Then what could be said about the amount of 
information, or the rate at which information is generated? For each event, 
the possible choices each have a known probability (represented as p1, p2, 
p3, and so on). Shannon wanted to define the measure of information 
(represented as H) as the measure of uncertainty: “of how much ‘choice’ 
is involved in the selection of the event or of how uncertain we are of the 
outcome.”♦ The probabilities might be the same or different, but generally 
more choices meant more uncertainty—more information. Choices might 
be broken down into successive choices, with their own probabilities, and 



the probabilities had to be additive; for example, the probability of a 
particular digram should be a weighted sum of the probabilities of the 
individual symbols. When those probabilities were equal, the amount of 
information conveyed by each symbol was simply the logarithm of the 
number of possible symbols—Nyquist and Hartley’s formula: 
 H = n log s 
 
 For the more realistic case, Shannon reached an elegant solution to 
the problem of how to measure information as a function of 
probabilities—an equation that summed the probabilities with a 
logarithmic weighting (base 2 was most convenient). It is the average 
logarithm of the improbability of the message; in effect, a measure of 
unexpectedness: 
 H = −Σ pi log2pi 
 
 where pi is the probability of each message. He declared that we 
would be seeing this again and again: that quantities of this form “play a 
central role in information theory as measures of information, choice, and 
uncertainty.” Indeed, H is ubiquitous, conventionally called the entropy of 
a message, or the Shannon entropy, or, simply, the information. 
 A new unit of measure was needed. Shannon said: “The resulting 
units may be called binary digits, or more briefly, bits.”♦ As the smallest 
possible quantity of information, a bit represents the amount of 
uncertainty that exists in the flipping of a coin. The coin toss makes a 
choice between two possibilities of equal likelihood: in this case p1 and p2 
each equal ݣ the base 2 logarithm of ݣis −1; so H = 1 bit. A single 
character chosen randomly from an alphabet of 32 conveys more 
information: 5 bits, to be exact, because there are 32 possible messages 
and the logarithm of 32 is 5. A string of 1,000 such characters carries 
5,000 bits—not just by simple multiplication, but because the amount of 
information represents the amount of uncertainty: the number of possible 
choices. With 1,000 characters in a 32-character alphabet, there are 321000 
possible messages, and the logarithm of that number is 5,000. 



 This is where the statistical structure of natural languages reenters 
the picture. If the thousand-character message is known to be English text, 
the number of possible messages is smaller—much smaller. Looking at 
correlations extending over eight letters, Shannon estimated that English 
has a built-in redundancy of about 50 percent: that each new character of a 
message conveys not 5 bits but only about 2.3. Considering longer-range 
statistical effects, at the level of sentences and paragraphs, he raised that 
estimate to 75 percent—warning, however, that such estimates become 
“more erratic and uncertain, and they depend more critically on the type 
of text involved.”♦ One way to measure redundancy was crudely 
empirical: carry out a psychology test with a human subject. This method 
“exploits the fact that anyone speaking a language possesses, implicitly, 
an enormous knowledge of the statistics of the language.” 
 
 Familiarity with the words, idioms, clichés and grammar enables him 
to fill in missing or incorrect letters in proof-reading, or to complete an 
unfinished phrase in conversation. 
 
 He might have said “her,” because in point of fact his test subject 
was his wife, Betty. He pulled a book from the shelf (it was a Raymond 
Chandler detective novel, Pickup on Noon Street), put his finger on a short 
passage at random, and asked Betty to start guessing the letter, then the 
next letter, then the next. The more text she saw, of course, the better her 
chances of guessing right. After “A SMALL OBLONG READING 
LAMP ON THE” she got the next letter wrong. But once she knew it was 
D, she had no trouble guessing the next three letters. Shannon observed, 
“The errors, as would be expected, occur most frequently at the beginning 
of words and syllables where the line of thought has more possibility of 
branching out.” 
 Quantifying predictability and redundancy in this way is a backward 
way of measuring information content. If a letter can be guessed from 
what comes before, it is redundant; to the extent that it is redundant, it 
provides no new information. If English is 75 percent redundant, then a 



thousand-letter message in English carries only 25 percent as much 
information as one thousand letters chosen at random. Paradoxical though 
it sounded, random messages carry more information. The implication 
was that natural-language text could be encoded more efficiently for 
transmission or storage. 
 Shannon demonstrated one way to do this, an algorithm that exploits 
differing probabilities of different symbols. And he delivered a stunning 
package of fundamental results. One was a formula for channel capacity, 
the absolute speed limit of any communication channel (now known 
simply as the Shannon limit). Another was the discovery that, within that 
limit, it must always be possible to devise schemes of error correction that 
will overcome any level of noise. The sender may have to devote more 
and more bits to correcting errors, making transmission slower and slower, 
but the message will ultimately get through. Shannon did not show how to 
design such schemes; he only proved that it was possible, thereby 
inspiring a future branch of computer science. “To make the chance of 
error as small as you wish? Nobody had thought of that,” his colleague 
Robert Fano recalled years later. “How he got that insight, how he came 
to believe such a thing, I don’t know. But almost all modern 
communication theory is based on that work.”♦ Whether removing 
redundancy to increase efficiency or adding redundancy to enable error 
correction, the encoding depends on knowledge of the language’s 
statistical structure to do the encoding. Information cannot be separated 
from probabilities. A bit, fundamentally, is always a coin toss. 
 If the two sides of a coin were one way of representing a bit, 
Shannon offered a more practical hardware example as well: 
 
 A device with two stable positions, such as a relay or a flip-flop 
circuit, can store one bit of information. N such devices can store N bits, 
since the total number of possible states is 2N and log22N = N. 
 
 Shannon had seen devices—arrays of relays, for example—that 
could store hundreds, even thousands of bits. That seemed like a great 



many. As he was finishing his write-up, he wandered one day into the 
office of a Bell Labs colleague, William Shockley, an Englishman in his 
thirties. Shockley belonged to a group of solid-state physicists working on 
alternatives to vacuum tubes for electronics, and sitting on his desk was a 
tiny prototype, a piece of semiconducting crystal. “It’s a solid-state 
amplifier,” Shockley told Shannon.♦ At that point it still needed a name. 
 One day in the summer of 1949, before the book version of The 
Mathematical Theory of Communication appeared, Shannon took a pencil 
and a piece of notebook paper, drew a line from top to bottom, and wrote 
the powers of ten from 100 to 1013. He labeled this axis “bits storage 
capacity.”♦ He began listing some items that might be said to “store” 
information. A digit wheel, of the kind used in a desktop adding 
machine—ten decimal digits—represents just over 3 bits. At just under 
103 bits, he wrote “punched card (all config. allowed).” At 104 he put 
“page single spaced typing (32 possible symbols).” Near 105 he wrote 
something offbeat: “genetic constitution of man.” There was no real 
precedent for this in current scientific thinking. James D. Watson was a 
twenty-one-year-old student of zoology in Indiana; the discovery of the 
structure of DNA lay several years in the future. This was the first time 
anyone suggested the genome was an information store measurable in bits. 
Shannon’s guess was conservative, by at least four orders of magnitude. 
He thought a “phono record (128 levels)” held more information: about 
300,000 bits. To the 10 million level he assigned a thick professional 
journal (Proceedings of the Institute of Radio Engineers) and to 1 billion 
the Encyclopaedia Britannica. He estimated one hour of broadcast 
television at 1011 bits and one hour of “technicolor movie” at more than a 
trillion. Finally, just under his pencil mark for 1014, 100 trillion bits, he 
put the largest information stockpile he could think of: the Library of 
Congress. 
 



  
 (Illustration credit 7.5) 
 
 ♦ Toward the end of his life Gödel wrote, “It was only by Turing’s 
work that it became completely clear, that my proof is applicable to every 
formal system containing arithmetic.” 
 ♦ “not considering statistical structure over greater distances than 
about eight letters.” 
 


