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Abstract This paper offers a study of vowel harmony in Finnish as an example of
how information theoretic concepts can be employed in order to better understand the
nature of phonological structure. The probability assigned by a phonological model
to a corpus is used as a means to evaluate how good such a model is, and informa-
tion theoretic methods allow us to determine the extent to which each addition to our
grammar results in a better treatment of the data. We explore a natural implemen-
tation of autosegmental phonology within an information theoretic perspective, and
find that it is empirically inadequate; that is, it performs more poorly than a simple bi-
gram model. We extend the model by means of a Boltzmann distribution, taking into
consideration both local, segment-to-segment, relations and distal, vowel-to-vowel,
relations, and find a significant improvement. We conclude with some general obser-
vations on how we propose to revisit other phonological questions from this perspec-
tive.

Keywords Information theory · Learning · Vowel harmony

1 Introduction

1.1 Information theoretic phonology

Vowel harmony has been a constant concern of phonologists since Trubetzkoy’s
Grundzüge der Phonologie 1939/1968, because it has something to interest everyone.
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Vowel harmony is widespread without being anywhere near universal; it is often pho-
netically motivated and yet, just as often, not entirely phonologically regular. Where
it is found, vowel harmony describes the phonotactics of the language, governing the
choice of vowels that appear within a morpheme and the choice of distinctive vowels
over morpheme boundaries within words. In many cases, furthermore, vowel har-
mony appears to provide prima facie evidence of the active role played by distinctive
features in natural language.

Our goal in this paper is to explore the role vowel harmony plays as a phono-
tactic using information theoretic models. Such models provide phonologists with
remarkably powerful quantitative tools for analysis starting from very few empirical
assumptions. Such models can, indeed, be understood as empiricist models of phono-
logical material, in the sense that the generalizations that emerge can be perfectly well
understood as inhering in the data, rather than being the result of inferences that we
make after the fact about the hidden nature of the device (the human brain) that gen-
erated the data in question (the phonological representations of various utterances).
The question that we pose in this paper is whether such information theoretic mod-
els can be extended to the treatment of vowel harmony systems, and if so, whether
non-local effects can be discovered and modeled in phonological data.

The central idea in this approach is that virtually all rational thought about em-
pirical observations—of any sort—can be recast as a pair of measurable hypotheses:
a fully explicit statement of the hypothetical model responsible for ‘generating the
data,’ using the tools of computer science, and a precise statement of how likely the
model predicts the observations to be.1 The goal is to find a model that is simultane-
ously (relatively) simple and a good predictor of the observed data.

In Sect. 2, we define a class of probabilistic phonological models, and sketch some
reasons for believing that these types of models are the most suitable for describing
phonotactics. Despite their obvious utility and ubiquity in other fields, these mod-
els are not at present the norm in mainstream linguistics; we believe they should be,
and some of the general reasons for this have been discussed elsewhere by Gold-
smith (2007a, 2007b).

In Sects. 3 and 4, we explore a powerful aspect of the probabilistic framework,
which is that it allows us to algorithmically compare alternative probabilistic models
of a given set of data, and empirically test which is the superior model by comparing
the probability assigned to the same set of data. To illustrate our proposal, we ex-
plore the vowel harmony system of Finnish, and present a probabilistic model within
which it is possible to discover non-local dependencies among Finnish vowels and to
represent these dependencies with probabilistic grammars.

In developing the Finnish model, we first illustrate a well-known limitation of
probabilistic models based on pairs of adjacent segments, which is that they can-
not capture non-local phenomena. We then propose to overcome this limitation by
augmenting the model with an autosegmental vowel tier on which the harmonizing
vowels are adjacent, and hence their interaction is local. Surprisingly, this move does

1This tradition of probabilistic analysis comes from encoding theory and works like those of Shannon
and Weaver (1949), Shannon (1951), Solomonoff (1959a, 1959b, 1964, 1997), Rissanen (1989), or Li and
Vitányi (1997), to mention a few of the most important.
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not improve the analysis of Finnish vowel harmony. The failure arises from the fact
that our augmented model isolates the vowels on the vowel tier and thereby occludes
consonant-to-vowel and vowel-to-consonant patterns in the Finnish data. This leads
us to develop a somewhat more sophisticated probabilistic model using a Boltzmann
distribution to allow both segment-to-segment and vowel-to-vowel effects to be si-
multaneously modeled. This result has implications for how we should account for
local and non-local patterns simultaneously and how we should understand autoseg-
mental models of vowel harmony systems.

1.2 Probabilistic models

Probabilistic models are in essence quantitative models of evidence; they are ideally
suited for a domain such as phonology, in which the goal is to determine what aspects
of the data are due to structure (either of a sort already understood, or of a sort that
remains to be determined) and what aspects are not.

Probabilistic models offer the possibility of a style of model evaluation in which
success is quantifiable in terms of the entirety of the available data without the need
for putative exceptions to be ignored. As we will see in the examples analyzed in this
paper, there are two primary characteristics of empirical probabilistic studies. First,
the data which they seek to account for is generally quite large, and, in particular,
is not selected or filtered to suit the specific needs of the analysis being evaluated—
ideally, it is a corpus that has been independently collected. Second, describing the
data in probabilistic terms provides a clear quantitative measure of the degree to
which the model predicts the patterns in the data.

A probabilistic model begins with a theoretical statement of what the sample space
is, what the universe of possibilities is, and a measure of how much of the probability
of that sample space is to be attributed to the observed data. If the observed data filled
all of the sample space (so that its probability were 1.0), then the model would be
claiming (absurdly, in most cases) that the observations were an empirical necessity
and could never have been anything other than what they were. In actual cases, the
probability assigned to the observations will be quite small, but the discrepancies of
the probabilities assigned to the data by different models will nonetheless constitute
a clear statement about how ‘accidental’ each model takes the data to be. In general,
all other things being equal, we prefer an analysis in which the patterns in the data are
seen to be as minimally accidental as possible. In this context, what this means is that
we want to find the model by virtue of which we can assign the highest probability to
the data.

We wish to underscore the fact that probabilistic linguistic models are thoroughly
structure-dependent; no such model can be developed without a clear understanding
of the structure that it proposes to find in the data. Probabilistic models in linguis-
tics have sometimes been associated with skepticism about the existence of abstract
structure, but this perspective is not inherent to the logic of a probabilistic model
(and we are not skeptical about the existence of such structure). Nonetheless, there is
a reason that lurks behind this perception: probabilistic models extract considerably
more information about a body of data than non-probabilistic models.

As we will see below, when faced with a model of phonological data in which
each representation is little more than a sequence of phonemes, a probabilistic model
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is able to extract a considerable amount of information without making use of features
or hierarchical structure. Probabilistic models are not inimical to structure, far from
it—they offer an explicit and quantitative measure of how much improvement models
with additional structure give us, by comparison with less structured models.

The probabilistic approach to linguistic description consists essentially of noting
the way in which the basic elements of a language (phonemes, features, units of all
sorts) depart from equiprobability: to what extent is the average utterance in lan-
guage X a departure from a random compilation of sounds from its inventory of
sounds? We are able to measure how well a given model fits the data from a language
in terms of its ability to quantify the degree to which the average utterance is indeed
a departure from randomness.

Along the way, numerical values representing probabilities will be assigned to
the basic elements of the model and to each way of combining them (regardless of
whether each possible combination is actually present in the language). In this way,
probabilistic analyses implement a straightforward model of markedness in terms of
deviation from what is typical in a language.

2 Basics of probability

2.1 Distributions

A discrete probabilistic model such as we will consider here consists of a set U1,
called the sample space, in which each element is associated with a value between
0 and 1, which is its probability. In this work, our sample space will consist of an
infinite number of simple phonological representations. We will generally refer to
the function that associates an element to its probability as pr() and note that, in order
to be well-formed, the sum of the probabilities associated with each of the elements
in the sample space of the function must be 1. A function such as pr() that assigns
non-negative numbers to the members of a set so that the sum of these values is 1.0
is said to be a distribution over that set.

(1) pr : U1 → [0,1]
∑

x∈U1

pr(x) = 1

Note that one can have different probability models that are based on the same
sample space but assign different probabilities to the individual elements.

Our task will be to consider various distributions over linguistic structures and to
figure out which is the best distribution and how it can be calculated. In reasoning
about these models, it is important to bear in mind the fact that the sum of an infinite
series of positive values can be finite, such as 0.9 + 0.09 + 0.009 + · · · = 0.9̄ = 1.
Though this seems counter-intuitive to some, 0.9̄ and 1.0 are merely different rep-
resentations of the same number (see Courant and Robins 1941: 64 or Lewin 2003:
Chap. 12 for more discussion of this fact). Even though the set of possible linguistic
structures in our sample space is infinite, the sum of the probabilities associated with
these structures will always equal 1, even in cases where the function pr(·) assigns
non-zero probability to each one.
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2.2 Strings and their simplest model

Let us start by developing a probabilistic model for strings of symbols. In the present
work, the symbols will represent phonemes but they could also correspond to feature
bundles, autosegmental representations, etc. We begin with a finite set of symbols,
A, referred to as the alphabet. The notation A+ denotes all strings (sequences) of
one or more symbols drawn from A. We add a special symbol, # not present in A,
to represent the word boundary.2 We then define a word as any finite sequence of
one or more symbols that ends with #. Given this definition, a word-set S is a subset
of the set of all possible words: S ⊆ (A+#). Similarly, a word-list or corpus C is an
element of the set of all possible sequences of words, C ∈ (A+#)∗. In this work we
will be presenting analyses based on sets of words, so the definitions that we give in
this section will be for word-sets.

One of the simplest questions that can be asked about a set of words is how of-
ten any given single symbol, or unigram, appears. For a unigram a, we will write
Count(a) to indicate the total number of times that a occurs in all the words in the
set. For each symbol a ∈ A ∪ {#}, the unigram model induced from a word-set S

assigns a probability to a that represents its frequency in the word-set. That is:

(2) pr(a) = Count(a)

|S|
where |S| equals the total number of symbols in all the words in S.

For a word w ∈ S, we use the notation w[n] to refer to the n-th symbol in the string
(i.e. w[1] is the first symbol, w[2] the second, and so on). Given a word w, the unigram
probability of w, denoted pr(w), is defined as the product of the probabilities of the
segments comprising the word. For a set of words S, the product of the probabilities
of the words is denoted pr(S). These are given in (3a) and (3b):

(3) a. pr(w) =
|w|∏

i=1

pr(w[i]) b. pr(S) =
∏

w∈S

pr(w)

where |w| denotes the number of symbols in w (i.e. the length of the word). Note that
in (3a), pr is a probability distribution over all possible words. When evaluating a set
of words as in (3b), pr is a distribution over all sets of size k for any given k > 0,
but pr is not a distribution over all sets of all sizes. This is appropriate in cases, such
as the one at hand, where one is evaluating different models of the same word-set
S because k is fixed. This very simple model independently scrutinizes each of the
segments of the word without any regard for their order or configuration.

In many cases, the probability computed by a model is the product of a number
of distinct factors; because x × y = log(x) + log(y) we can interpret the probability

2This allows us to assess average word length and to refer to segments at word edges as being adjacent to
# in the same way that they are adjacent to their segmental neighbors. Like the symbols for phonemes in
A, the symbol # is associated with a probability and can condition the probability of its neighbors. Thus,
in what follows, we will refer to # as a phoneme (though it is, in many ways, a different kind of abstract
object than a consonant or a vowel).
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Table 1 Top and bottom five words and phonemes by (average) plog

Rank Orthography Phonemes Avg.plog

1 a � 3.11

2 an �n 3.44

3 to t� 3.47

4 and �nd 3.80

5 eh �� 3.88

63,200 geoid ���� �	
� 7.40

63,201 Cesare �������� 7.40

63,202 Thurgood ������� 7.47

63,203 Chenoweth ������	���� 7.49

63,204 Qureshey ������� 7.54

Rank Phoneme Plog

1 # 2.30

2 � 3.92

3 n 4.10

4 t 4.17

5 s 4.61

50 �	 11.79

51 � 12.76

52 �� 14.30

53 ��� 14.35

54 �	
 15.91

assigned to a form as the sum of the logarithms of these factors. Since log(x) is
negative for 0 < x < 1, the logs of probabilities are often multiplied by −1 to yield
what is referred to as inverse log probability; we propose a simpler neologism, the
positive log probability, or plog, for short. Thus (3) can be recast with plogs as in (4).

(4) a. plog(w) = −1
|w|∑

i=1

log pr(w[i]) b. plog(S) = −1
∑

w∈S

log pr(w)

The average plog of a word w or word-set S can be calculated as in (5a) or (5b).

(5) a. − 1

|w|
|w|∑

i=1

log pr(w[i]) b. − 1

|S|
∑

w∈S

log pr(w)

Insofar as expectedness is the opposite of complexity (a basic premise of coding
theory), the average plog, as calculated in (5a), encodes the average complexity of
the phonemes comprising the word. If we calculate this figure for all the words
of our vocabulary and sort them in light of this figure, the words with the small-
est value will be the words largely composed of high frequency phonemes, and
the words with the largest values will be words composed largely of low frequency
phonemes.

In Table 1 we illustrate the range of average plogs from the top five and the bottom
five of a sample of 63,204 English words along with the plogs of the frequencies of the
top and bottom five of 54 English phonemes. The data combines a modified version
of the CMU English lexicon weighted by word frequencies based on counts from the
Brown corpus. The particular transcriptions that appear may raise some eyebrows,
but we have used their transcription throughout, though we have used here American
phonetic symbols rather than the Darpabet.
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If one takes the (not completely uncontroversial) position that markedness is corre-
lated with frequency, then the plogs in this table would be seen as roughly quantitative
estimates of various segments’ markedness.3

2.3 Linear structure: bigram model

Unigram models describe the basic frequency of phonemes. Much of the phonologi-
cal structure of languages, however, involves conditions on sequences of phonemes,
which goes beyond the descriptive purview of unigram models. The natural way to
encode this information is to use a bigram model, which is to say, to use as the prob-
ability for a given phoneme its probability in a given context.

One of the simplest models along these lines conditions the probability of a
phoneme on its left-hand neighbor in the word. Because the initial segment of a word,
w[1], does not have a left-neighbor, it is conventional to define w[i<1] as the boundary
symbol #. Informally speaking, the conditional probability of phoneme b immedi-
ately following a, where a is the left-neighbor or # if b is word-initial, is calculated
as in (6):

(6) pr(b | a) = Count(ab)

Count(a)

where Count(ab) denotes the number of times that b occurs in context a in the word-
set and Count(a) denotes the number of times that context a occurs.4

A considerable advantage comes now from using logarithms: it allows us to easily
express what the advantage is of the bigram model over the unigram model. The
change in the log probability computed under the unigram and the bigram models
is precisely equal to another quantity of particular interest, the mutual information,
defined as in (7).

(7) MI(a;b) = log
pr(ab)

pr(a)pr(b)
= log pr(ab) − log pr(a) − log pr(b)

= −plog(ab) + plog(a) + plog(b)

If pr(ab) = Count(ab)
|S| is the probability of the pair ab and pr(a)pr(b) is the product

of the symbol’s individual probabilities, then the mutual information between a and
b is the log of the ratio of these quantities. The probability of a joint event, such as
the sequence ab, is equal to the product of the individual probabilities just in case the
two events are independent of each other (this being the definition of independence),
so the ratio here takes the value 1 just in case the two events are independent.

If the probability sequence of the phonemes is greater than the product of the in-
dividual probabilities, then the structure involved in the model being explored pulls

3In constraint-based models other than Optimality Theory (Prince and Smolensky 1993/2004) that allow
violability but eschew strict domination such as, e.g., Pater et al. (2007), Hayes and Wilson (2008), or
Goldwater and Johnson (2003) one could view the unigram model as setting up a constraint against each
segment, and weighting the violation of constraint ∗a by the value plog(a).
4More formally, pr(b | a) is the probability that a certain function will take on the value a or ab (see Cover
and Thomas 1991: Chap. 2 for a thorough exposition).
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Table 2 English words ranked
by average plog in the bigram
model

Rank Orthography Phonemes Avg. plog2

1 the �� 1.93

2 hand hǽnd 2.15

12,640 plumbing �������� 3.71

12,642 Friday �� ��
��� 3.71

25,281 tolls tólz 4.01

25,282 recorder ����� ���̆ 4.01

37,922 overburdened � !��"������ 4.32

37,923 Australians �	�#� �
�
��� 4.32

50,563 retire ���# ��
� 4.75

50,564 poorer ��$��� 4.75

63,200 eh �� 9.07

63,201 Oahu � ��%�$ 9.21

the two events together, while if the probability of the phonemes together is less than
the product, the structure at hand is responsible for them repelling each other, so to
speak. By taking the logarithm of this ratio, we translate attraction to a positive value,
repelling to a negative value, and independence to a zero value. (When we are cal-
culating this quantity for particular symbols, the term pointwise mutual information
is often used, and then the term mutual information is used to describe the average
pointwise mutual information as we average over all pairs of elements, each pair
weighted by its probability.)

Just as important, the mutual information is exactly the difference between the
unigram and bigram models’ log probability. This is shown in (8).

(8)
|w|∑

i=1

log pr(w[i] | w[i−1]) =
|w|∑

i=1

log
pr(w[i] w[i−1])

pr(w[i−1])

=
|w|∑

i=1

log pr(w[i]) +
|w|∑

i=1

log
pr(w[i] w[i−1])

pr(w[i−1])pr(w[i])

=
|w|∑

i=1

log pr(w[i]) + MI(w[i−1]; w[i])

For a concrete illustration we return to our English word list from Table 1. Our
English data set contains 54 phonemes, and thus there are 542 = 2,916 possible bi-
grams. Consider, in Table 2, the way that the bigram model enriches the evaluation
of the English data by taking two-word slices at six points along the ranking of all
63,000 words according to their average bigram plog.

With the bigram model, we obtain a set of parameters that describe the phonolog-
ical well-formedness (in terms of ‘typicality’) to a second order degree of detail. If
there are P phonemes in the language, then the number of parameters for the uni-
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gram and bigram models together is P + P 2. Each setting of values (weights) for the
parameters assigns a probability to a corpus, and the degree of success acheived by a
set of parameters with weightings can be measured by that probability: the higher the
probability, the more successful the characterization.5

The reader should bear in mind the following tension: when presented with prob-
abilistic analyses of this sort regarding linguistic data, there is often a tendency to
interpret it as, in effect, an implicit argument against the necessity for structure going
beyond that which is used by the model (i.e. purely linear and symbolic structure).
The reason for this may be that one can get quite striking results on the basis of simple
quantitative methods that do not incorporate structure other than the most superficial.
It might not be surprising if some were to interpret these results as a sign that linguis-
tic structure need not be incorporated in the next generation of phonological analysis,
and that what is necessary is more mathematics instead. Such a conclusion would be
hasty, and just as surely wrong. We believe that the right way to think about it is that
any account of phonological representations will include statements about segmental
inventory and linear position in the formation of morphemes and words, and if mean-
ingful generalizations can be extracted with simple modeling of this data, then we
should identify what that information is. But that there is more structure than linear
and quantitative structure is not in any sense challenged by the material we describe
here, as the second part of this paper, on vowel harmony, attempts to show.

2.4 The problem of sparse data

The problem posed by sparse data is how to treat all the structures that occur rarely
or not at all in the training data. Thus far, we have been using what are known as
maximum likelihood estimates (MLE) in our models. Using MLE, the probability
assigned to structure a, pr(a) = Count(a)/|S| is essentially its frequency. This ap-
proach provides the tightest fit between the parameters (i.e. probability estimates) in
a model and the data with which it is trained. Consequently, any structures (phones,
n-grams, whatever) that are not observed in the training data will be assigned zero
probability and thus treated as true grammatical impossibilities. It can be the case,
however, that the missing structures are accidental gaps in the training data. When a
model erroneously treats an accidental gap as a systematic gap the model is said to
have over-fit the training data.

If the goal is the construction of a generative model, MLE probabilities are usually
avoided because they yield models that are ‘brittle’ in the sense that the occurrence

5One striking characteristic of probabilistic phonology of the 1950s (e.g., Cherry et al. 1953; Belevitch
1956; etc.), compared with what we attempt to do here (or Coleman and Pierrehumbert 1997), is the focus
in that early work on average values over an entire corpus. The clearest example of this is the emphasis
on calculating the entropy of a language under various models. The entropy is the weighted average of
the inverse log frequency, and each word in the lexicon contributes to its computation in proportion to the
word’s frequency in the language. By contrast, we are not only interested in these ensemble averages, we
are also interested in how some words (or subgroups of words) differ from other words, although we have
not emphasized that in this paper. The most striking relevance of probabilities at the level of individual
words involves the selection of the appropriate form of a suffix in a vowel harmony system, in which we
typically find (as we find in Finnish) two forms of the suffix, one corresponding to each of the harmonic
feature values. Selection of the correct harmonic feature value in a suffix corresponds to selection of the
suffix allomorph that maximizes the phonological probability of the word (stem plus suffix).
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of a zero-probability element in a form nullifies all other distinctions (i.e. any pair
of words containing zero probability elements have the same probability, zero, re-
gardless of any other distinctions between them). This problem has been extensively
studied in statistical natural language processing, and it has been approached with
a wide range of sophisticated solutions that go by the general name of smoothing
techniques.

One of the most basic smoothing strategies is to use Laplace’s Law in a scheme
that adds one to all counts by initializing each count to one when computing fre-
quencies. This is a specific instance of a more general strategy of adding λ, called
Lidstone’s Law:

(9) pr(s) = Count(s) + λ

N + Bλ
,

where N is the total number of instances of structures like s, and B is the number
of possible kinds of structures like s. When λ = 0 this formula is simply the max-
imum likelihood estimator; this gives the best fit for the training data but reserves
no probability for unseen events. When λ = 1 we are using what is usually referred
to as Laplace’s Law, which corresponds conceptually to a uniform Bayesian prior
over the possible structures. When λ = 1/2 we are using what is usually called the
Jeffreys-Perks Law (though Perks more strongly advocated λ = 1/|T | where T is the
set of types). The value λ = 1/2 is also referred to as expected likelihood estimation
(ELE) and is the most commonly used fixed value for λ in language modeling. There
are many strategies for calculating optimal values for λ in given contexts and, more
generally, many other strategies for calculating the amount of probability to reserve
for unseen events (see Manning and Schütze 2000, Chap. 6 for an overview and Good
1980 for a thorough discussion of the development of many of these ideas). In our
general presentation of models in the sections that follow we will use MLE probabil-
ities. However, whenever we compare alternative models we will use ELE λ = 1/2
in smoothing the probabilities. Smoothing is useful in comparing alternative models
to evaluate not only their ability to fit the data but also their tendency to over-fit the
data. In Sect. 4.4 we will discuss an alternative to smoothing whereby minimization
of model complexity is used to avoid over-fitting.

3 Finnish

In this section, we consider information theoretic approaches to patterns whose scope
is larger than pairs of adjacent segments. For this study, we will use vowel harmony in
Finnish. Vowel harmony presents a type of phonological pattern that simple bigram
models miss, but that any algorithm designed to act like a human phonologist ought
to detect. In vowel harmony, vowels exhibit a high degree of mutual information, but
because they can be separated by varying numbers of consonants, this information is
hidden from bigram models.

In the next two sections, we will explore more sophisticated bigram models that
capitalize on the autosegmental idea that segments which are not adjacent in the sur-
face string can be adjacent at another level of representation (i.e. on another tier). By
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Fig. 1 Front, neutral, and back
vowels in Finnish

allowing our model to try out various partitionings of the segments into groups that
interact as if they were adjacent even when segments from a different group inter-
vene, we are able to algorithmically discover something like an autosegmental vowel
tier. In Finnish, separating the vowels from the consonants adds an extra level of
representation where all vowels are adjacent and thereby renders their mutual infor-
mation transparent to a bigram-based analysis over the separate tiers. Before getting
into the specifics and results of the model, we will establish a baseline with unigram
and bigram models for a Finnish corpus.

We remind the reader that Finnish contains eight vowels that are usually grouped
into those that are strictly front {ä, ö, y}, those that are strictly back {a, o,u}, and
those that are neutral {i, e}— this is illustrated in Fig. 1. The strictly front and the
neutral vowels together comprise the front vowels of the language, and the strictly
back and the neutral vowels comprise the back vowels of the language. A majority of
words in Finnish are harmonic, which is to say, all the vowels of a given word come
from either the front vowel set or the back vowel set.6

We begin with an analysis of unigrams and bigrams to establish a baseline against
which models of harmony can be evaluated. For this case study, we used a word list
containing 44,040 unique inflected Finnish words with initial and final word bound-
ary symbols ‘#’. The orthography of Finnish is particularly helpful to our endeavor
because it transparently encodes the relevant properties of the vowels.

3.1 A unigram model of Finnish

In Table 3 we present the counts, frequencies, and plogs for the unigrams in our
Finnish corpus. Analysis of the unigrams gives us a fair amount of information about
the corpus.

There are 510,174 unigrams in total, the sum of their positive log probabilities
(plogs) is 2,088,530, and the average positive log probability per segment is 4.09.
Thus the average positive log probability (i.e. the entropy under this model) of our
corpus is 4.09 and the total cost (in terms of bits of information) for encoding our
Finnish corpus given the unigram model is 2,088,530 bits.

This base-line entropy of 4.09 for the unigram model and base-line encoding cost
of 2,088,530 bits is what we aim to improve upon with more articulated models ex-
pressed over bigrams and other kinds of enriched representations.

6See Kiparsky (1973), Ringen (1975/1988), and citations in Ringen and Heinämäki (1997).
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Table 3 Counts and frequencies for unigrams in our Finnish corpus

Type Count Frequency plog

a 56397 0.11000 3.18

i 50053 0.09810 3.35

t 47927 0.09390 3.41

# 44040 0.08630 3.53

s 38567 0.07560 3.73

e 37362 0.07320 3.77

n 35072 0.06870 3.86

l 28060 0.05500 4.18

k 26064 0.05100 4.29

u 25314 0.05000 4.33

o 22097 0.04330 4.53

ä 15102 0.02960 5.08

m 14815 0.02900 5.11

Type Count Frequency plog

r 13540 0.02650 5.24

v 11487 0.02250 5.47

p 9970 0.01950 5.68

y 9300 0.01820 5.78

h 9018 0.01760 5.82

j 7048 0.01380 6.18

d 3734 0.00732 7.09

ö 2989 0.00586 7.42

g 828 0.00162 9.27

b 580 0.00113 9.78

f 326 0.00063 10.6

c 312 0.00061 10.7

w 118 0.00023 12.0

3.2 A bigram model of Finnish

Though a unigram model of Finnish captures some basic properties of the data, it can
be significantly improved by widening the model’s scope to include information from
adjacent segments (as will be true in all natural languages). Incorporating bigrams
into our model of the Finnish corpus will capture more of the structure that is present
in the data and thus will assign a higher probability to the corpus.

Table 4 gives the mutual information for a small 8 × 8 fragment of the bigrams of
Finnish. Recall from (7) that the MI for a bigram ab is plog(a)+plog(b)−plog(ab).
For the bigram ab which has a frequency of 0.0001 whose positive log is 13.29, the
mutual information MI(a;b) = −0.33 is obtained by adding 3.18 to 9.78 (the plogs
for a and b in Table 3) and then subtracting 13.29. The natural unit for quantifying
mutual information is the bit. Mutual information tells us the increase or decrease in
the cost of describing a segment in a particular environment, given our model.

In Table 4, the base cost of describing a segment is taken to be plog of its uni-
gram probability (also expressed in bits), so the MI directly encodes the increase or
decrease in the expectation of a given segment in a particular environment. This is
expressed in terms of how many fewer bits it takes to describe that segment in that
environment. Consider the third row in Table 4. This row gives the MI for bigrams
in which the first element is b. Here we see that the word boundary is less common
immediately following a b than it is overall, so the cost of describing it (3.53 bits in
Table 3) goes up by 3.06 bits. Conversely, b is relatively more common immediately
following another b, so the cost of describing it (9.78 bits in Table 3) goes down
by 4.30 bits. The clusters bf , bg, and bh are unattested in our corpus and thus, since
log 0 is undefined, their plogs and MI are also undefined.7

7Because there are zero occurrences of f following b in the corpus the ML estimate of the probability
of f in this position is zero. Leaving no bits/probability aside for f makes the description of the attested
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Table 4 Mutual information among Finnish bigrams (∗ marks gaps)

# a b c d e f g h . . .

# * −1.04 2.54 2.00 −1.41 −0.97 2.40 0.46 1.62

a 1.33 −0.19 −0.33 −0.30 −0.49 −4.79 −0.92 −0.63 0.03

b −3.06 1.06 4.30 3.08 −2.09 1.08 * * *

c −1.05 0.42 1.50 2.39 * 0.57 2.33 0.98 3.69

d −2.36 −0.55 1.08 * −2.77 2.64 −1.25 −0.60 −6.04

e −0.65 −3.54 −1.41 −0.43 0.58 0.06 −1.99 −0.06 0.50

f −1.64 −0.26 * * −1.25 1.47 5.72 * *

g −0.91 0.24 1.67 * −0.60 1.34 0.92 1.16 −1.55

h −5.36 0.73 −3.36 * 3.39 0.90 −1.53 * *

. . .

There are 510,174 segments in our Finnish corpus. The average unigram plog is
4.09 bits and concomitantly the sum of the unigram plogs for the whole corpus is
2,088,533 bits. The average MI among adjacent segments is 0.59 bits per bigram.
This increase in the probability of each bigram is directly reflected in the sum of the
positive logs of the conditional probabilities in the corpus, which is 1,780,261 bits.

3.3 Harmony and tiers

But what of vowel harmony? Thus far it has played no role in our description of
Finnish. The challenge, as discussed in Sect. 1.2, is to formulate a representation for
Finnish words under which potential connections among non-adjacent vowels can
be described in the same way as the connections between adjacent segments. One
particularly simple way to do this is to bifurcate the Finnish corpus so as to extract
the vowels onto a separate tier that excludes the consonants. By selectively ignoring
consonants we can obtain a vowel-only sub-corpus that exposes connections among
non-adjacent vowels.

But it is appropriate to stop and ask what the epistemological basis is for using
features: given the nature of what we are trying to do, should we allow ourselves to
use them? Can a foundation be found for them that rests on probabilistic grounds?

The answer is yes. We outline here the proposal of Goldsmith and Xanthos (2006).
If we ask the question, what partitioning of the segments of Finnish into two cate-
gories, C1 and C2, maximizes the probability of the data, given that each category
assigns a probability distribution over the segments, and only two independent vari-
ables are allowed for transition probabilities (the probability of transition from C1
to C2, and the probability of transition from C2 to C1), the answer turns out to be:
one category consists of all the vowels, and the other consists of all the consonants.
This is a reflection of the fact that in any language where there is a preference for
vowel-consonant alternation such a division of segments is very likely to maximize

elements smaller. However, if the model were applied to future data in which an f occurred in this context
the model would not be able to recognize/represent it at all.
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Fig. 2 A vowel/consonant
HMM

the probability of a corpus subject to the constraint that the probability is computed
by a two-state first order Markov model.8

There is a well-known algorithm for hidden Markov models (HMMs) that deter-
mines the optimal parameters for the emission and transition parameters that maxi-
mizes the probability of the data, and this algorithm quickly learns to assign the task
of generating the vowels to one of the states, and the task of generating the conso-
nants to the other. In addition, each of the two states assigns a higher probability to
the option of shifting to the other state than to the option of staying in the same state;
in short, vowels and consonants prefer to alternate, and this is easily learned. This is
illustrated in Fig. 2.

Normally, one would expect there to be symbols that both states emitted with a
non-zero probability. Interestingly, that is not what we find here. The data of Finnish
forces the conclusion that the highest-probability model assigns, for each phoneme,
a positive probability of emission from one of the states, and a probability that is
negligibly far from zero for the other state: a very unambiguous categorization of the
segments into two non-overlapping sets.

If a second wave of analysis takes the categories induced in the first wave and
applies the same HMM learning algorithm to the stream of vowels alone we obtain
the HMM in Fig. 3. Unlike the results of the first HMM learning step, the second stage
does not neatly partition the vowels into two disjoint sets. Instead, the strictly front
vowels {ä, ö, y} are definitively associated with one state, while the strictly back
vowels {a, o,u} are associated with the other (though with o a lot less certain about
it than a or u), but the neutral vowels are associated with almost equal probability
to both states in the HMM. This distribution is illustrated in Table 5. The numbers
that are presented there are the (base 2) logarithms, for each symbol, of the ratios of

8There is nonetheless an unexpected substantive point to note here. The gross generalization that con-
sonants prefer to transition to vowels, and vice versa, could have been modeled in one of two ways, in
view of the fact that there are many consonant-consonant transitions, such as st and a number of gemi-
nate consonants. The system might have allowed both states to generate s and t , and maintained transition
probabilities of State 1 → State 2 and that of State 2 → State 1 as 1.0 (or very close to it). Indeed, the
system, in learning, often stays very close to that system for quite a few learning iterations. However, it
eventually decides to increase the probabilities of staying in the same states (that is, pr(State 1 → State 1)

and pr(State 2 → State 2)), and dividing the segments up very strictly between the two states, so that the
vowels have a zero probability of emission from the consonant state, and vice versa.
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Fig. 3 A vowel-feature HMM

Table 5 Log ratios of emission
probabilities for Finnish vowels Vowel Log ratio Vowel Log ratio Vowel Log ratio

ä 961 i 0.148 a −927

ö 999 e 0.655 u −990

y 309 o −7.66

the probability of emission by the ‘front’ state to the probability of emission by the
‘back’ state. For example, the probability of the front vowel state emitting ä was 2961

(about 2 × 10289) times more likely than the probability that the back vowel state
emitted it. In the case of the vowel o, it was 27.66, or approximately 200, times more
likely that the back vowel state emitted it than that the front vowel state should emit
it. On the other hand, the ratio of the probabilities of emission for the vowels i, e

was not lop-sided, and was in fact quite close to 1-to-1. The ratio of the probabilities
(back to front) for i is 1 : 1.1, and for e, the ratio is 1 : 1.57. The vowels are neutral,
with a very small bias towards the front.

Another striking difference in the generation of the vowel-feature HMM is that the
transition probabilities are quite the opposite of what was found in the prior case: the
probability of staying in one state is much higher than the probability of shifting to the
other. That is the nature of a harmony system. In particular, the transition probabilities
are given in Fig. 3 and the log ratios of the emission probabilities for the vowels are
given in Table 5. A harmony system is (essentially by definition) a two state finite
state device in which the transition probability from each state to itself are greater
than 0.5; the closer these transition probabilities are to 1.0, the closer it is to a perfect
harmony system.

Thus the inference of categories like consonants and vowels, as well as the infer-
ence of the categories of front vowel, back vowel, and neutral vowels in Finnish, can
be obtained by means of the methodological principle of maximum likelihood. The
two-state HMM modeling discussed here based on the proposal in Goldsmith and
Xanthos (2006) is merely one of many possible approaches to inducing these cate-
gories. To take the issue of categories to an even more concrete level, one could start
from acoustic signals and create categories of segments and features using a strat-
egy like the one proposed by Lin (2005). An initial categorization into segments was
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Table 6 Mutual information on the vowel tier

obviated in our analysis by the use of written corpora which, obviously, come pre-
processed according to a (tacit) theory that segments Finnish into a set of symbols.

3.4 Building a tier-based bigram model of Finnish

The problem of inferring categories over which to build the structures used in phono-
logical analysis (probabilistic or otherwise) is a deep and interesting one, but is
mostly orthogonal to our main purpose, which is to show how probabilistic mod-
els can encode non-local dependencies and how they are to be evaluated. We say
mostly orthogonal because the number of categories over which the models are stated
does come into play in two specific ways. First, if two models A and B differ only in
that the latter sub-divides categories of the former, then the MLE probability that B

assigns to the corpus on which it was trained will always be better (or just as good)
as that assigned by A. Second, the number of categories also plays a role once we
begin to evaluate the trade-off between coverage of the data and the complexity of
the model itself. We will return to the issue of model complexity in Sect. 4.4.

Given our eight-way distinction on the vowel tier, the traditional front/neutral/back
categorization is represented by the shaded quadrants of Table 6. Vowel harmony is
reflected by the positive MI for the harmonic front-front and back-back pairs in the
upper-left and lower-right quadrants of Table 6. The dispreference for disharmonic
back-front and front-back pairs is reflected by the negative MI for the disharmonic
pairs in the lower-left and upper-right quadrants. Positive and negative MI values re-
spectively encode increase and decrease in the probability of a segment in a particular
environment when compared to that segment’s unigram probability. For example, a
front vowel increases the probability that the next vowel is front and decreases the
probability that the next is back.

There are two striking features of Finnish vowel harmony that are made clear
by the values in Table 6. The first is that the influences between categories are not
symmetrical and the second is that the categories are not uniform. Regarding the first
point, consider the MI values in Table 7 for vowel pairs in the three categories.

Keeping in mind the fact that the MI values represent deviation from the unigram
probabilities, there are four immediate generalizations about V1 C+ V2 sequences:



Information theoretic approaches to phonological structure 875

Table 7 Average MI among
categories

(10) i. if V1 is back then the probability that V2 is front is reduced
ii. if V1 is front then the probability that V2 is back is reduced
iii. if V1 is front then the probability that V2 is front is increased
iv. if V1 is back then the probability that V2 is back is increased

The strength of these generalizations decreases from (i) to (iv), with the strength
of the last being on par with that of generalizations about the neutral vowels. On
one hand, these generalizations could be seen as a reflecting the characterization in
Goldsmith (1985) of Finnish vowel harmony as an instance of front harmony. On the
other hand, these generalizations offer a nuanced picture of which vowels are more
prevalent than expected, and which less, in each environment, generalizations that are
outside the scope of autosegmental analyses such as Goldsmith (1985).9

We will say nothing here about why Finnish vowel harmony shows these specific
patterns. Though the question is of indubitable linguistic importance, our current goal
is to provide methods for evaluating the accuracy (and accuracy/complexity trade-off)
of models of the patterns. It would certainly be interesting to generate data like that
in Table 7 for a range of vowel-harmony languages (see, for instance, Baker 2009)
or to generate such data for other kinds of Finnish corpora such as a running text
or a morphologically decomposed lexicon. This line of research would allow one to
ask whether the generalizations in (10) reflect properties of our corpus, properties of

9The conception of autosegmental phonology that we employ is that of Goldsmith (1976) and (1990).
One of the key ideas in this model is that phonological features are strictly partitioned, and this partition
involves their segregation onto separate tiers (though the partition, and hence the segregation, may be dif-
ferent at different levels of the grammar; that is left open as a possibility, and was employed in the work
of both John Goldsmith and John McCarthy in the late 1970s and 1980s). There were two broad gener-
alizations that supported this organization: the phenomenon of stability (referring to those cases where
a featural specification remains present despite the deletion of the segment to which it was associated),
and the many-to-many association patterns widely observed in tonal systems. (This conception is the most
widely adopted interpretation, though it is distinct from the projection view of autosegmental representa-
tion, suggested by J.R. Vergnaud and others.)

As its name suggests, autosegmental phonology develops a model in which the autonomy of separate
aspects of a phonological representation is naturally represented. In general, interaction between phonolog-
ical information on a given tier is restricted to operations that actually affect segments on that tier (while
addition or deletion of association lines does not count as ‘affecting’ a tier in the relevant sense). Thus
when it was noted that tones in certain African languages interact with certain voiced consonants (such
consonants could add a tone to the tonal melody, or block spreading of a non-Low tone), this behavior was
modeled in the framework by explicitly inserting a Low tone on the tonal tier, associated with the voiced
consonant in question. Interaction with tone after that would be unproblematic, within the framework. See,
for example, Kisseberth (1984), Laughren (1984), Bradshaw (1999), or more recent discussion in Downing
(2008).
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Table 8 Counts and frequencies for the unigrams on the timing tier

Phone Count Frequency plog

V 218614 0.42851 1.22

t 47927 0.09394 3.41

# 44040 0.08632 3.53

s 38567 0.07560 3.73

n 35072 0.06875 3.86

l 28060 0.05500 4.18

k 26064 0.05109 4.29

m 14815 0.02904 5.11

r 13540 0.02654 5.24

v 11487 0.02252 5.47

p 9970 0.01954 5.68

Phone Count Frequency plog

h 9018 0.01768 5.82

j 7048 0.01381 6.18

d 3734 0.00732 7.09

g 828 0.00162 9.27

b 580 0.00114 9.78

f 326 0.00064 10.61

c 312 0.00061 10.68

w 118 0.00023 12.08

x 36 0.00007 13.79

q 18 0.00004 14.79

Finnish, or properties of vowel harmony more generally. The pursuit of these ques-
tions must, however, follow the development of tools for generating the data that will
be used to answer them.

The second striking feature of the data in Table 6 is the non-uniformity of the
MI values within categories. Collapsing the categories as in Table 7 shows that har-
mony is more robust among front vowels than back vowels but it fails to capture
several nuances such as the differences between the strongest and weakest pairs in
each category, the fact that MI(a;o) is actually negative, and the fact that some pairs
containing ‘neutral’ are not so neutral (e.g., contrast MI(e; ö) vs. MI(ö;a), MI(ö;o),
and MI(ö;u)). In light of these facts, we will adopt the categories C and V in the
analysis to come, but we will return to the issue in Sect. 4.4.

3.5 Applying the tier-based bigram model to Finnish

Having a model of the vowels in hand, what remains is to evaluate the rest of the
language—what we shall refer to as the timing tier. The timing tier is essentially
identical to the bigram model of Finnish as described in Sect. 3.2 save for the fact
that all of the vowels have been collapsed into a single symbol ‘V ’. This symbol will
function as a place holder on the timing tier for the vowel information recorded on the
vowel tier. We speak of this collapsing as if it were ‘dividing’ the original corpus by
the set composed of the vowel symbols: finding the ‘quotient’ amounts to replacing
the different vowel symbols with the cover symbol V .

Collapsing vowels down to a single symbol (using the ‘quotient’) yields a higher
probability for every bigram containing V on the timing tier, by comparison with the
original bigram model. For a given word w, if we replace all of the individual vowels
in it by the symbol V , we write the result as w ÷ V . For instance, in the basic bigram
model the positive log probability of a and e immediately after b are 2.11 and 2.69,
respectively. Once the vowels have been collapsed on the timing tier, however, the
positive log probability that V follows b is 0.319—quite a significant decrease. The
unigram counts and the plogs for the timing tier are given in Table 8.
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Fig. 4 A probabilistic autosegmental model of ötököiden

What remains, then, is to combine the two tiers to create a single model. Fig-
ure 4 illustrates the way that the tiers come together to form a probabilistic model of
Finnish. The probability of a word, in this autosegmental model, is the product of the
probability of the quotient string (that in which vowels have been collapsed to V ) and
the probability of the sequence of vowels. For a given word w, we indicate the string
of vowels that it contains as w ≈ V (e.g., (katab ≈ V ) = aa). To compute the vowel
tier probability pr(w ≈ V ), we take the product of the unigram probability of the first
vowel (because it is not preceded by a vowel) and the conditional probabilities of
each subsequent vowel. This yields the expression in (11) of word probability as the
product of the quotient string and vowel tier.

(11) prauto−V (w) = prbigram,tier1(w ÷ V ) × prbigram,tier2(w ≈ V )

In Fig. 4 we illustrate the probabilities and concomitant plogs that the autosegmental
model assigns to the word ötököiden. Using plogs is especially helpful in this case
because the probabilities are so small; the product of the probabilities on the timing
tier is 7.62 × 10−8, the product of the probabilities on the vowel tier is 5.79 × 10−6,
and the product of both tiers is 4.42 × 10−13.

Representing Fig. 4 with plogs on the arcs is straightforward because the positive
log of conditional probability is the joint log probability minus the log of the unigram
probability, which is computable by subtracting the unigram plogs from the bigram
plogs. Thus the bit cost of the first arc on the timing tier is plog(#V ) − plog(#) =
5.99 − 3.53 = 2.46 which is precisely the value obtained by taking the positive log
of the conditional probability: −1 × log 0.182 = 2.46. The sum of the costs on the
timing tier is 23.64 bits, and the sum of the costs on the vowel tier is 17.40 bits. Taken
together the cost of representing the word ötököiden is 41.04 bits (which is another
way of saying −1 × log 4.42 × 10−13).

After collapsing the vowels, the average plog per segment on the timing tier is
2.95, and with 510,174 segments (the same number as in the bigram model), the total
cost of the word-set on the timing tier (i.e. the sum of the plogs) is 1,273,648 bits.
Compared with cost of the bigram model of 1,780,278 bits, we see that collapsing
the vowels makes the cost of the timing tier about 28 % less than that of the bigram
model. We must, however, add the cost of the vowel tier because the timing tier alone
omits the vowel qualities. The average MI among bigrams on the vowel tier is 0.23
bits. This means that, among vowels, knowing the quality of the preceding vowel
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reduces uncertainty about the next by about 8 %. Overall, the cost of the corpus on
the vowel tier is 540,822 bits. This yields a total cost of 1,814,470 bits for the corpus
in the autosegmental model. Unfortunately, this is actually higher than the cost under
the bigram model.

3.6 Local C-to-V MI exceeds distal V-to-V MI

The idea behind our first tier-based model is simple—collapsing all of the vowels on
the timing tier makes all of the strings on that tier more probable while exposing the
non-local cases of V-to-V MI on the vowel tier makes all of the strings on that tier
more probable as well.10 If there were no neutral vowels in Finnish, and if vowels
were distributed so as to respect vowel harmony but otherwise uniformly (i.e. with-
out regard for surrounding consonants), then we would expect knowledge of vowel
harmony to decrease the information present in a word with n vowels by about n − 1
bits because the choice of each vowel after the first would be made from a set that
was only half the size of the full vowel system.

There are many words in our Finnish corpus where the results go in this direction.
For instance, ötököiden has a cost (plog sum) of 43.64 bits in the bigram model but
a cost of 41.04 in the autosegmental model—an information improvement of about
6 %. However, it turns out that about 64 % of the words in the corpus are actually
assigned a lower probability under the basic autosegmental model than the bigram
model. In the aggregate, these overwhelm the increase in probability for harmonic
forms. In (12) we give the overall results of the three models.

(12) Unigram model: 2,088,528 bits

Bigram model: 1,780,267 bits

Autosegmental: 1,814,470 bits = 1,273,648 (timing) + 540,822 (vowels)

The failure of this basic version of an autosegmental model is due mostly to the
fact that it has collapsed too many distinctions on the timing tier. Many of the words
that are assigned lower probability in the autosegmental model (even some that are
highly harmonic) contain highly probable VC and CV pairs whose mutual informa-
tion is occluded when the vowels are collapsed down to a single symbol on the timing
tier. Another deficiency of the model (much less significant in its overall effect) is that
the vowel tier lumps diphthongs together with vowel pairs in adjacent nuclei. In the
former case, seven of the vowel pairs in the harmonic category actually have negative
MI if we consider only strictly adjacent vowels and thus conflating these two cases
yields a poorer account of each.

The crux of the problem with totally segregating the tiers is revealed if we rank
the bigrams of the basic bigram model in term of the MI that they contribute. Table 9
lists the top twenty Finnish bigrams ranked by weighted mutual information, where
wMI = MI × count. Using wMI provides a rough metric of the utility of each bi-
gram in the model because it counts as most useful a bigram that has high MI and is

10This first model also provides a particularly simple way to ensure the well-formedness of the probability
distributions in that the sum of the probabilities of the set of strings that map to any given template such as
#kVtVb# will be the same in the bigram model and the two-tier model.
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Table 9 Top 20 Finnish bigrams by weighted MI (wMI = count × MI)

Bigram Count MI wMI

n# 14422 2.25 32479.13

a# 12275 1.33 16377.40

en 9019 1.81 16343.02

is 10551 1.48 15609.93

st 9743 1.43 13904.72

ll 5476 1.83 10005.10

ta 10345 0.97 9987.00

#p 4207 2.29 9631.09

#k 6234 1.47 9165.69

va 4632 1.87 8647.96

Bigram Count MI wMI

in 7521 1.13 8484.72

#v 3622 1.87 6769.37

ko 3521 1.64 5778.19

ma 4204 1.36 5717.76

el 4651 1.18 5480.94

an 6760 0.80 5422.02

tu 4994 1.07 5345.63

mi 3705 1.35 5001.56

se 5360 0.92 4954.16

ää 2172 2.28 4953.32

Table 10 Performance of the three models on the test data divided into 12 sets

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

Unigram 79,441 79,407 80,018 80,025 80,492 79,530 80,521 81,109

Autoseg. 70,174 70,250 70,591 70,785 71,114 70,474 71,108 71,847

Bigram 69,111 69,129 69,548 69,468 69,853 69,174 69,764 70,490

Test 9 Test 10 Test 11 Test 12 Sum Mean Variance

Unigram 80,731 79,718 79,097 78,197 958,286 79,857 642,241

Autoseg. 71,487 70,533 70,003 69,179 847,545 70,628 508,038

Bigram 70,288 69,342 68,881 67,970 833,018 69,418 442,053

prevalent in the data. Table 9 reveals that 13 out of the top 20 bigrams are either VC
or CV. Thus, even though collapsing the vowels increases the probability of the tim-
ing tier, the separation of the vowels from the consonants hides the influence that the
consonants have on the vowels and vice versa.

3.7 Evaluating the differences

In order to be confident that differences among the models are robust and not an arti-
fact of over-fitting, we evaluate their performance using only half of the data (selected
randomly) for training and split rest into a dozen batches for testing. To prevent ac-
cidental gaps from compromising the models’ probability distributions we add half a
count for each structure type (i.e., ELE smoothing) in training the models. The bit-
costs of each of the twelve test-sets under the Unigram, Autosegmental, and Bigram
models are given in Table 10.

For each of the batches of test data, the Bigram model fares better than the Au-
tosegmental model, which in turn fares better than the Unigram model. Evaluating
the differences in the models’ performance with a paired-sample Wilcoxon signed-
rank test (a non-parametric test) yields a Wilcox rank sum test statistic V of 0 with
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a p-value of 0.0004883 for each pair of models indicating that the differences are
highly significant in each case.

Overall, the fact that this first-pass autosegmental model does a significantly worse
job predicting the data than the basic bigram model shows that, while it may be useful
to incorporate mutual information between vowels across consonants, doing so by
occluding the mutual information between consonants and vowels yields a net loss.
In the next section we consider a more nuanced model that can utilize both sources
of information.

4 Boltzmann model

4.1 An introduction to Boltzmann models

In Sect. 3, we described our probabilistic autosegmental model of Finnish phono-
tactics, and how the results showed that the statistical effects of vowel harmony on
segment sequencing were overall slightly weaker than the aggregate of the effects
of surrounding consonants on vowel quality. This result went counter to our expec-
tations, but once we take note of the fact that our expectations were not met, it is
instructive to see where our expectations came from, and it is critical to deal with a
more complex linguistic reality.

Our expectations were based on the incorrect assumption that consonants do not
significantly ‘choose’—that is, condition—the vowel that immediately follows (or
at the very least that any such effect should be weaker than the influence of vowels
on one another in a vowel harmony language like Finnish). However, the fact of the
matter is that linguistic structures, like most structures in the natural world, show
complex partial dependencies, and we need a probabilistic model that is capable of
dealing with such cases.11

One widely used model of this sort employs an approach which goes by a number
of names, including the Boltzmann distribution. The heart of the Boltzmann model
is the idea that a probability is assigned to a representation on the basis of a score,
and the difference between the scores of two representations R and S is equal to the
ratio of the probabilities assigned to R and S—or to put it another way, the difference
in the scores of R and S is equal to the difference of the log probability of R and
S.12 This way of putting it makes it clear that if the score that is assigned has some

11For current views on consonant-vowel interactions and on consonant-vowel harmony systems see Pad-
gett (2011) and Rose and Walker (2011).
12 See Geman and Johnson (2001), for example, which is an excellent introduction for the relevance of
this notion to linguistics. The notion arose in the context of statistical physics, where it is natural to define
a notion of energy εi for each state that an object may be in, and then assign a probability to being in that
state which is proportional to 2−εi . In order to make these values a distribution, they must be normalized,

and so one generally indicates the probability in an expression of the form 2−εi

Z
, where Z is the sum, for

all i, of 2−εi . In interesting cases, the model may be modified so that the influence of the differences of
energy may be attenuated by introducing a notion of temperature t in a modified formula for probability

of being in state i: 1
Z

2− εi
t .

In work on computational learning, the notion of a conditional random field has been explored by Laf-
ferty et al. (2001), of which the present model is a special case; we return to this in Sect. 5.2.
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linguistic meaning, the probabilistic model that the Boltzmann model creates is one
in which probability is tightly linked to the score.

It is traditional to define the score in such a way that the larger the score of a repre-
sentation is, the smaller is its probability. This convention is encoded in the presence
of the negative sign in the exponent of 2 in (13). Thus the score in a Boltzmann model
should be thought of as a measure of phonological ill-formedness.13 For a model m

and a sample space U1 of possible phonological representations, each element r ∈ U1

in the sample space is assigned a score h(r) by m. This, in turn, yields an exponenti-
ated score of 2−h(r) that can be turned into to a probability in a well-formed proba-
bility distribution. To do this normalization, each 2−h(r) is divided by Z, the sum of
the exponentiated scores of all elements of the sample space.

(13) prB(r) = 1

Z
2−h(r) = 2−h(r)

∑
s∈U1

2−h(s)

The main substance of any model thus consists of how the score function h is de-
fined. A wide range of possibilities is available. For example, if we define the score
of a representation to be the sum of the scores of the individual segments, and define
the score of an individual segment as the plog of its unigram frequency, then the prob-
ability assigned to a representation is just its familiar unigram probability. This can
be seen in (14) where the calculations show that when the score is directly based on
log probabilities, it is natural that exponentiating that value should give us back prob-
abilities, and the denominator, Z, sums to 1, as it actually sums all the probabilities
of the unigram sample space.

(14) prB(r) = 1

Z
2−h(r) = 2−h(r)

∑
s∈U1

2−h(s)

= 2−∑|r|
i=1 plog(pr(r[i]))

∑
s∈U1

2−∑|s|
i=1 plog(pr(s[i]))

=
∏|r|

i=1 2log pr(r[i])
∑

s∈U1

∏|s|
i=1 2log pr(s[i])

=
∏|r|

i=1 pr(r[i])
∑

s∈U1

∏|s|
i=1 pr(s[i])

= pr(r)∑
s∈U1

pr(s)
= pr(r)

1
= pr(r)

13The intent of the notion of well-formedness described in Goldsmith (1990), Goldsmith (1991), Gold-
smith (1993) was to be −1 times this quantity, and the aim of that analysis was to show that level-internal
phonological processes always correspond to a decrease in ill-formedness. Those references failed to offer
an explicit way to calculate the ‘phonotactics’; the present paper offers the expressions that calculate the
plog of a representation as the correct method for calculating such phonotactics.
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But the beauty of a probabilistic model such as this is that it allows a wider range of
freedom than simply to use the log probability of an element as its score. We could,
for example, set up a list of regular expressions ci , each associated with a weight,
and then assign a score to a representation which was equal to the sum of the weights
associated with each expression ci . If each ci modeled some characteristic that the
system tries to avoid, so to speak, then such a Boltzmann model assigns a probability
based on these terms, weighted by the ‘strength’ of each particular expression.14

Returning to the general point, the score assigned to any given representation is
the exponential of (−1 times) the weighted sum of the values associated with each
phonological ‘feature’ associated with (or simply found in) a given representation.
By ‘feature,’ again, we do not mean simply phonological features in the usual sense
(although these could be features in the present sense), but a set of features selected
from any property at all that can be measured.

4.2 A Boltzmann model for two tiers

For the case of Finnish, we propose to use three sources for features in the Boltzmann
scoring: the unigram positive log probabilities of the segments (a quantity often re-
ferred to as self-information), the mutual information between pairs of consecutive
segments, and the mutual information between non-adjacent vowels. (We return be-
low to the question of whether this decision is made on a language-particular basis or
more generally.)

(15) U(w) =
|w|∑

i=1

log pr(w[i])

M1(w) =
|w|∑

i=1

MI
(
wtier1

[i−1];wtier1
[i]

)

M2(w) =
|w|∑

i=1

MI
(
wtier2

[i−1];wtier2
[i]

)

Score(w) = U(w) − M1(w) − M2(w)

The reader will recall that the first term in (15), alone, expresses the unigram model
probabilities, and that the first two terms together express the bigram model. It is thus
the presence of the third term that incorporates the analysis of vowel harmony into
the model. What we propose to do is sketched in Fig. 5.

The solid arrows in Fig. 5 give the plogs of the conditional probabilities in the basic
bigram model, which are equal to the plog of the unigram probabilities minus the
mutual information of the bigrams. Given this base value, we then subtract a second
line of mutual information for non-adjacent vowels to create our Boltzmann model.

14Proposals along these lines have been made by Goldwater and Johnson (2003) and Hayes and Wilson
(2008) where expectation maximization is used to find optimal weights over each ci , and by Wilson (2006)
who puts the various ci together in a conditional random field to create a model whose structure is, in many
ways, similar to what we propose in Sect. 4.2.
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Fig. 5 Plogs of conditional probabilities +V–V mutual information

We use the second source of MI only for non-adjacent vowels because interactions
among adjacent vowels are already captured by the bigram model.

In both models, we compute the statistical connections between items and their
neighbors by means of computing mutual information. Consonants thus have only
one neighbor (to their left or right), but some vowels have two neighbors (on each
side): a ‘local’ neighbor and a more distant neighbor, a notion that is in effect modeled
by the autosegmental representation.

4.3 Computing Z

In light of the discussion in the previous section, we calculated a set of scores for the
words in the Finnish corpus described above. Each word w’s score, h(w), is equal to
the sum of the plogs of its phones, less the mutual information between successive
phones and the mutual information between successive non-adjacent vowels. Each
word was assigned an exponentiated score 2−h(wi), which is transformed into a prob-
ability by division by Z, the partition function.

Computation of Z is often the hardest part of developing a Boltzmann model.
Happily, the models that we are working with obey a simple structural restriction
that makes it possible to compute Z relatively easily. Even though the harmony com-
ponent of our model is recursive (i.e. can operate over arbitrary distances), it can
nonetheless be encoded as a simple weighted finite state automaton (wFSA).

We represent the harmony component of the model as a wFSA, H , whose arcs
are labeled with mutual information scores for vowel pairs. We represent the bigram
component of our model as a wFSA, B , whose arcs are weighted with positive logs
of conditional probabilities. Using these representations, it is possible to construct
a new wFSA, B × H , by intersecting the structures of B and H (cf. Hopcroft and
Ullman 1979) and assigning new weights to the arcs by subtracting the V–V MI from
the plog of the conditional probability for any vowel that has a vowel antecedent. This
new machine represents both segment-to-segment interactions, and distal vowel-to-
vowel interactions within a single weighting function. The only wrinkle is that, after
the intersection, the weights on the arcs of the new wFSA no longer represent a well-
formed probability distribution. To recover a probability distribution from the new
model we must sum the weight assigned to every possible representation r ∈ U1; that
is, we must compute Z.

It is not possible to compute Z by incrementally summing weights because there
are infinitely many possible phonological representations in U1. This is where the
use of a finite-state representation for our linguistic forces is most useful. Because
the combined wFSA B ×H is a finite encoding of the weighting of the infinite range
of representations, we can ‘solve’ the weight that the dynamic system assigns to U1
by a recursive computation on B ×H in the manner described by Eisner (2002). Fol-
lowing this procedure, we find that Z ≈ 1.0177 for the MLE model with probabilities
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Table 11 Performance of the Bigram and Boltzmann models on the 12 sets of test data

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

Bigram 69,111 69,129 69,548 69,468 69,853 69,174 69,764 70,490

Boltzmann 68,380 68,429 68,850 68,800 69,155 68,491 69,060 69,821

Test 9 Test 10 Test 11 Test 12 Sum Mean Variance

Bigram 70,288 69,342 68,881 67,970 833,018 69,418 442,053

Boltzmann 69,575 68,653 68,207 67,283 824,704 68,725 441,487

generated from the whole corpus.15 The fact that Z is quite close to 1.0 means that
the exponentiated scores need only be reduced slightly to yield a well-formed proba-
bility distribution, and hence the probability of the corpus (which is what we are most
interested in calculating) is enhanced by this model.

At a more abstract level, what this means is that the exponentiated score that we
have calculated, if summed over the entire space of representations, would be slightly
more than 1—alternatively put, by and large, and on the average, adding mutual in-
formation between vowels to our scoring function does not help to improve words
generated randomly (Finnish words are not random). Hence, the fact that including
mutual information in the scoring of the real Finnish data did improve the exponenti-
ated score is highly non-trivial. Put more simply, the relationship between the vowels
in the Finnish corpus increases the probability of the data, and thus should be captured
in a statement of Finnish phonology. In (16) we give the bit-costs for the models.

(16) Unigram model: 2,088,528 bits

Bigram model: 1,780,267 bits

Boltzmann: 1,760,523 bits

The improvement offered by the Boltzmann model is relatively small when compared
to the difference between the Unigram model and the Bigram model. Nonetheless, the
differences between the models are significant. A paired-sample Wilcoxon signed-
rank test yields a Wilcox rank sum test statistic V of 0 with a p-value of 0.002516.
The bit-costs of the data in the test-sets under the Bigram and Boltzmann models are
given in Table 11.

In evaluating what appears to be a relatively small improvement over the bigram
model, one needs to keep in mind the fact that the bigram model encompasses all
segment-to-segment effects (including those among vowels) while the harmony tier
encodes only the non-local interactions among vowels. To put this in perspective, the
harmony tier has 8 × 8 = 64 free parameters to track non-local V–V pairs while the
bigram tier has 28 × 28 = 784 free parameters to track all pairs. The bigram model
replaces the 28 free parameters of the unigram model with 784 free parameters and in
so doing decreases the cost of the corpus by about 14.8 %. By contrast, the Boltzmann

15For the ELE model, if probabilities are generated from the whole corpus then Z ≈ 1.0175 and if proba-
bilities are generated from the training data used in our comparisons then Z ≈ 1.0177.
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model adds 64 free parameters on top of the bigram model and in so doing decreases
the cost of the corpus by about 2.2 %. In the former case the number of parameters
differ by a factor of 28 and in the latter by a factor of ∼1.08.

4.4 Model complexity

One of the most relevant properties of the model that we have proposed is that it is
a synthesis of second order models rather than a third (or higher) order model. One
could conceivably try to capture Finnish vowel harmony by casting an ever wider
net using 3-grams, 4-grams, 5-grams, and so on with exponentially larger numbers of
probabilistic parameters. However, the alternative that we advocate here is simply the
addition of another relatively compact model alongside the bigram model that allows
vowels to act on each other at arbitrary distances. By that same token, instead of
trying to capture harmony with a trigram-like model in which each consonant is split
into eight categories according to its preceding vowel, we obtain a smaller model by
treating the harmony tier and bigram tier as independent.

In developing an approach of the sort described here, it is critical to be able to
express quantitatively the complexity of the formal model used, and there needs to
be some explicit price ‘paid’ for increasing the complexity of a model. The reason
for this is somewhat complicated, but, for our current purposes it suffices to note that
the notion of complexity measure in Chomsky (1956/1975) is closely related to this
trade-off between model complexity and fidelity of description, as is the notion of
algorithmic complexity.16

A crucial insight of the theory of algorithmic complexity (see Li and Vitányi 1997)
is that the units that are used to measure a grammar’s length are the same units used
to measure the logarithm of the probability of an object (or rather, the plog): in both
cases, we use bits as our units. In light of this, we recognize that the choice for the
language-learning system is not necessarily, “should I include a bigram model of my
phones in the phonological account?” but rather, “for how many, and for which, pairs
of segments, or categories of segments, should I keep track of the relevant mutual
information statistics?”

The way to answer these questions that we believe is the most linguistically illu-
minating is embodied by the Minimum Description Length Principle. Using MDL
we select the h ∈ H that minimizes:

(17) hMDL = arg min
h∈H

LC1(h) + LC2(D|h)

where LC(x) is the description length of x under encoding C. Because it is possible
to encode the data D using n bits where n is the positive log of the probability as-
signed to D by h, this is an expression of Bayes rule arg maxh∈H

P(D|h)P (h)
P (D)

under
the assumption that the prior probability of hypothesis h is the number of bits that it
takes to encode h. In an idealized sense, this approach embodies a Kolmogorov-prior

16Various approaches have been suggested to the task of assigning a prior probability over models. One
approach, incorporated into Minimum Description Length models (Rissanen 1989), assigns a probability
of 2−|m| , where |m| is the length of the grammar in some appropriately compact formulation.
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Table 12 Total costs of models
and data Model # Param. Model cost Cost(data|model) Total cost

Unigram 28 448 2,088,528 2,088,976

Bigram 784 12,544 1,780,267 1,792,811

Boltzmann 848 13,568 1,760,523 1,774,091

VC-combo 5,040 80,640 1,710,499 1,791,139

Trigram 21,952 351,232 1,553,644 1,904,876

wherein we assume that the prior probability of a hypothesis is the reciprocal of 2
raised to its complexity (length) in bits. Unfortunately, Kolmogorov complexity is
not generally computable, so we are left to propose encoding schemes for classes of
hypotheses and then work within those.

One of the most basic properties of models is their number of free parameters.
We can get a base-line cost for representing the models under consideration here
by calculating the cost of representing the parameters. (These are really families of
models with the same structure but different parameter values.) Assuming that 16 bits
will allow sufficient precision in representing the probabilities in the models, we will
need 16 bits for each parameter in the model.17 This gives us a rough estimate of the
cost of each model. In Table 12, we add the costs of various models to the (MLE)
cost that each model assigns to the corpus. For comparison we also include a trigram
model and a model VC-combo in which the bigram and harmony tier are not treated
as independent.

What Table 12 shows is that even though moving to a trigram model would do a
better job compressing the corpus, this improvement would be overshadowed by the
cost of encoding the model itself. Because the Boltzmann model is a linear combi-
nation of the bigram model and the harmony tier, which has 64 free parameters, we
need only add 64 × 16 = 1,024 bits to the cost of the bigram model to reduce the
bit-cost of the corpus by about 20,000 bits.

4.5 Model complexity revisited

Baker (2009) applies the approach discussed in this paper to several languages in-
cluding Finnish, and he proposes a range of modifications and innovations to the pro-
posals here, including a strategy for evaluating each parameter of a model in terms
of the degree to which it compresses the corpus. Baker found that the neutral vowels
on the harmony tier were not particularly useful in this regard, and suggested that
they be effectively removed. This revision to the Boltzmann model actually improves
the compression of the corpus to 1,755,148 bits—a 1.1 % savings—and does so with
28 fewer parameters (i.e. the harmony tier tracks only 6 × 6 = 36 pairs). Because
the neutral vowels of Finnish are transparent to harmony (see Ringen 1975/1988),
removing them allows the model to capture interactions among non-neutral vowels
at greater distances. This provides a perfect example of the fact that probabilistic
models and traditional linguistic structures are not at all antithetical.

17This assumption is very generous to large models because most of the probabilities we observe require
more than the 4-decimal-place fidelity that can be recorded with 16 bits.



Information theoretic approaches to phonological structure 887

Table 13 Front/back counts and front/back mutual information
����V1

V2 Front Back Total

Front 9,753 2,575 12,328

Back 2,045 54,963 57,008

Total 11,798 57,538 69,336

����V1

V2 Front Back

Front 2.22 −1.99

Back −2.25 0.22

wMI 1.46 0.12

Given the fact that removing the category of neutral vowels from our harmony
tier reduces the number of parameters in the model without reducing the probabil-
ity assigned to the corpus, it is natural to ask whether collapsing the front or back
vowels down to a single category would offer similar benefit. Considering only the
strictly-front and strictly-back vowels, {ä, ö, y, a, o,u}, our Finnish data contains
69,336 pairs of vowels, (V1, V2), separated by at least one consonant. In 17 % of
the instances V2 is front and in the other 83 % of the instances V2 is back. When the
cases are separated into groups based on the color of V1, however, quite a reversal
is revealed; though back vowels are about five times more common in general, they
are actually four times less common than front vowels when V1 is front and about 25
times more common than front vowels when V1 is back.

Table 13 offers insight into why the effects of adding vowel harmony to the model
are rather small despite the fact that the generalizations are fairly robust. Most of the
vowels that could be subject to harmony are back and the vast majority of these occur,
as expected, following back vowels. In the environment V1C+V2, the probability
that V2 is back is 0.83, and when V1 is back, this jumps to 0.96, but the difference
between plog(0.83) and plog(0.96) is only about 0.22 bits. Overall, saving 0.22 bits
in describing the fifty-five thousand back vowels that occur after back vowels while
spending an extra 2 bits to describe the front vowels that occur after back vowels
yields an average savings of 0.12 bits per vowel in this environment. The average
savings are much greater in describing vowels that follow front vowels but there are
far fewer of these.18

A similar set of generalizations can be made about the interactions of the eight
vowels on the harmony tier introduced in Sect. 3.4, but they are much easier to see
once the vowels are collapsed into just two groups. The critical question from the
perspective that we advocate here is whether using 4 rather than 64 parameters to
describe the vowel interactions is superior in terms of the cost of the model plus
the cost of the data given the model. We contrast a Boltzmann model with only two
classes of vowels, Boltz-2, with our original model, Boltz-8, in Table 14.

Assuming, as we did above, that each free parameter costs 16 bits, we find that,
for this data and this metric of model cost, the reduction in the cost of the model is
outweighed by the loss in predictive power.

One might ask how things would have to be different in order for the Boltz-2
model to be the best. This would be especially germane in a case where we had

18It is also important to keep in mind that these numbers are for the harmony tier all by itself. Once the
harmony tier is included with the bigram tier in the Boltzmann model these values will be normalized to
produce a well-formed probability distribution.
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Table 14 Evaluating a
Boltzmann model with fewer
parameters

Model # Param. Model cost Cost(data—model) Total cost

Bigram 784 12,544 1,780,267 1,792,811

Boltz-2 788 12,608 1,765,451 1,778,059

Boltz-8 848 13,568 1,760,523 1,774,091

some independent evidence that the smaller model was somehow the ‘right’ one.
This could happen if, for instance, one were attempting to model experimental data
for phonological generalizations made by humans in which there was evidence that
the front vowels were treated as a unit for the purposes of harmony. Though we are
expressly not trying to model humans’ phonological generalizations here (for that we
would need very different kind of data), the evaluation metric that we have proposed
can be straightforwardly applied to such a task.

One natural way to tip the balance in favor of the Boltz-2 model would be to
increase the cost for encoding each parameter by an order of magnitude; our assump-
tion of 16 bits was quite low to begin with. This would work for the data at hand
but would likely break down for larger sets of data because the importance of the
model’s cost diminishes as the data grows.19 A more interesting approach would be
to assume an upper bound on the amount of data that can be taken into consideration
when choosing between the models. If, for instance, the decision was made based on
a window of the 20,000 most common (or recent) words, then the relative importance
of minimizing the size of the model would increase.

This example illustrates but one of hugely many possible groupings of Finnish
segments into categories; there is an extensive literature on strategies for doing this
kind of grouping (for an introduction, see Kaufman and Rousseeuw 2005). In this
work we adopted the categories C and V following Goldsmith and Xanthos (2006)
in order to implement our tier-based harmony model and to show that such a model
is ‘simple’ in the right way (i.e. tiers can capture non-local interactions while adding
relatively little complexity). The problem of searching the space of models is highly
relevant but is beyond the scope of this current paper. All that we will say about it here
is that a basic strategy for searching the model-space can be obtained by combining
the evaluation metric in (17) with any clustering algorithm and the premise that things
in the same category can interact non-locally on a tier.20

5 Discussion

In this section, we will comment on some general issues that are raised by the kind
of approach that we have envisioned in this paper. The first is the relationship of

19This is exactly as it should be; even small deviations from the (unigram) expectations are significant and
worth encoding if they hold over large enough sets of observations.
20This premise can be seen as an implementation of the idea that harmony (and respectively disharmony)
operates over elements that are sufficiently similar (see, for instance, Cole 1987, 2009; Walker 2000, 2005;
Hansson 2001; Rose and Walker 2004). The approach in Cole (2009), though couched in an exemplar-
based model, is conceptually quite close to what we advocate here.
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probabilistic models to generative models and the second involves where this line of
research may be taking us.

5.1 Information theory and generative phonology

Our goal in the work described here is to develop a framework of phonological anal-
ysis which is explicit enough to algorithmically determine which of a finite set of
candidate analyses is the best, given a set of data from a language. In a sense, our
approach is entirely within the original framework of generative grammar, though
to our knowledge, relatively little work along these lines has actually been carried
out since Chomsky (1956/1975) and Chomsky (1957: 52f). Our goal is not to dis-
cover that Finnish has vowel harmony—that was known well before there was such a
thing as generative phonology—but rather to develop a device that quantitatively and
algorithmically substantiates that kind of analysis of a Finnish corpus.

It may seem odd to hear probabilistic models being touted as exemplars of gener-
ative grammar, but we have tried to emphasize that probabilistic models are always
as formal as any other type of grammar: a probabilistic model is subject to the con-
straints that each element in U1 be assigned a probability and the summation of these
values (which is typically infinite) must yield the value 1.0. We suspect that the rea-
son some linguists find this odd is that early work on probabilistic models typically
used very simple unigram and bigram models, even to handle syntactic phenomena,
and probabilistic models were, quite erroneously, identified with the simplest of fi-
nite state models. However, there is no reason to limit the application of probabilistic
tools to models that are linguistically simple or naive.

It is fair to say that probabilistic models are not widely employed at the center
of phonological work in the United States today. Bod et al. (2003) write: “One of
the foundations of modern linguistics is the maxim of categoricity: language is cate-
gorical. Numbers play no role, or, where they do, they are artifacts of non-linguistic
performance factors.” As a remark about the foundations of modern linguistics, we
disagree; Trubetzkoy (1939/1968), surely one of the founders of modern phonology,
wrote, “All the particular properties that give a language its unique phonological char-
acter can be expressed in numbers.” Along a similar line, Henry Kučera (1982: 167)
wrote, “[The] correlation between structure and language statistics is important since
it supports the basic notion that the markedness relation, in reflecting an informational
economy in language coding, has the expected statistical effects.”

Still, probabilistic models do have a strong presence in fields closely related to
phonology: in all work today on speech recognition (see Huang and Acero 2001
for a recent overview); in much of the work in computational linguistics (see, e.g.,
Manning and Schütze 2000 for a recent overview);21 in some European traditions,
notably the work of Gabriel Altmann (1980, e.g.) and others publishing in the Journal
of Quantitative Linguistics; and a wide range of phonological work by authors writing

21Also, Pereira (2000) makes an argument regarding probabilistic models of syntax much in the spirit of
what we argue here. He points out that there are many widely held misconceptions about weaknesses of
probabilistic models that stem from overgeneralizing the weaknesses of straw-man models in well-known
papers. Like Pereira, we aim to correct the misconception that probabilistic models are antithetical to
linguistic structure.
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in the 1950s and 1960s, including Morris Halle, Roman Jakobson (see, e.g., Cherry
et al. 1953, Henry Kučera 1982; G. Herdan 1956, 1960, 1964; see also Halle 1958
for a review of the first), and many others.

Since the 1990s, another wave of scholarship on probabilistic phonological mod-
els has emerged that, from a historical point of view, forms an organic whole with the
earlier work cited above. Indeed, one could argue that, if a historical fact is in need
of explanation, it is the temporary absence of work in this area in the period from
the late 1960s until the early 1990s. A partial list of this more recent wave of prob-
abilistic work includes Pierrehumbert (1994, 2001, 2003), Coleman and Pierrehum-
bert (1997), Seidenberg (1997), Frisch et al. (2000), Albro (2000), Bailey and Hahn
(2001)), Dainora (2001), Goldsmith (2002), Billerey-Mosier (2003), Jäger (2004),
Goldwater and Johnson (2004), Hayes and Wilson (2008), and Cole (2009) to name
just a few. The latter three of these, especially Hayes and Wilson (2008), have many
similarities to our proposal here.

We find it very encouraging that our work is among several lines of research that
are independently converging on what seems to be a common information theoretic
framework for modeling phonological phenomena. There are, however, a few signif-
icant differences in our approach that bear mentioning.

First, we believe the distributional properties of the data are sufficient for discover-
ing the categories that are relevant for local and non-local interactions in a given lan-
guage. Thus, unlike Hayes and Wilson (2008), we do not assume that natural classes
or specific tiers for non-local interaction are antecedently given. Hayes and Wilson
make this assumption, in part, to restrict the model search-space, which is a more
central focus of their work. Thus, we acknowledge that our assumptions may turn out
to be problematic when we move on to the next stage of this work, which will involve
more model building. Nonetheless, we are encouraged by the fact that the evaluation
metric we propose can be used to adjudicate among the clusterings of segments (i.e.
classes) produced by any clustering algorithm.

A second central difference, is the way that our evaluation metric incorporates
both the complexity of a model and its fit of the data. Hayes and Wilson employ
heuristics in evaluating models that also favor low complexity but this complexity is
assessed in terms of the natural classes they take as a starting assumption. Though our
model-complexity metric of 16 bits per parameter is admittedly crude, we think that
it is ultimately more illuminating to demonstrate that ‘classical’ linguistic structures
like natural classes can emerge from distributional patterns in the data. Cole (2009)
makes much the same point and goes further to assess theories about why the patterns
are there in the data.

5.2 Further directions: towards a phonological field theory

It is natural to ask what the origin is of the surprising aspect of the model in (15) and
illustrated in Fig. 5, which is to say: why should there be vowel harmony in a lan-
guage? We have focused thus far on the use of mathematical tools, particularly those
associated with information theory, and we have thought of the generation of a word
in Finnish (or any other language) as a stochastic process in which the probability of
a given phoneme is conditioned by preceding phones. In this final section, we will
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briefly describe a somewhat different view that we think is lurking behind the struc-
ture of vowel harmony, and one which attempts to exploit mathematical methods used
in statistical mechanics. In this view, the probability of a given string is related to its
‘potential,’ and this potential is related in turn to the degree to which the segment at
a particular position in an utterance is in agreement with the statistical expectation
established by the segments surrounding it.

According to this picture, assimilatory and dissimilatory effects, both local and
distant, are the effects of a field of ‘forces’ present in varying degrees at every point
in a representation; each segment contributes to the field in its neighborhood, and each
segment is in turn influenced by the orientation of the force-field at its location. The
image we have in mind is much like that of a magnetic field: each atom contributes to
the magnetic field in which it exists, and each atom in turn is affected by the potential
which increases as the magnetic orientation of the atom fails to match up with the
preferred direction of the field at that point.

We imagine that a phonological representation can be viewed as a sequence of
units each of which can assume different ‘states,’ much like a die can be flipped so as
to show different faces pointing upward. Let us call this sequence of positions {si}i .
Each unit si is a skeletal position, and the ‘state’ that it is in defines which segment
(selected from the inventory of the language) it represents. To clarify the metaphor a
bit, we may say that there are P different phonemes in the inventory of the language,
and that each position si is in one of these different states.22 If one is willing to go
beyond the dice metaphor, we can say that each skeletal position si is associated with
a vector in a space of dimensionality RP which we call its characteristic vector. The
direction of that vector at each position is what we think of as the surface realization
of that position. In the terms of conditional random fields, mentioned above (see
footnote 12), the underlying representation specifies the ‘input’ random variables,
and the surface form is specified by the ‘output’ values. In many applications of
conditional random fields, the output values are interpreted as (otherwise hidden)
labels of observed data; this is not the case here, however.23

The direction of the characteristic vector is determined by three things: the under-
lying specification of the position, the influence of the phonological force field at the
position in which the position occurs, and the ‘stiffness’ associated with a twisting of
the direction of the vector from one direction to another—in effect, the cost associated
with shifting from one segment-type to another (here, twisting it from its underlying
‘direction’ to its surface direction). The direction of the characteristic vector directly
determines what the surface form of the position is.

As we have tried to show in this paper, the critical factor describing quantitatively
the effect of a segment in one position on another position is the mutual information;
we assume here that for any two segments, there are two such parameters, local mu-

22For a segment to shift from one phoneme to another (a d might become a t , for example), the unit takes
on a different state, which metaphorically could be viewed as a die whose d-labelled face is up flipping to
a state where the face labelled t is up.
23There is a growing body of literature on the automatic learning of the features used in conditional random
fields (see McCallum 2003 and more recent papers). These methods could be used for the automatic
learning of the present model.
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tual information MIL(p;q) and distal mutual information MID(p;q), just as we did
in the previous two sections.

We indicate the force field at position i as F (i); this is a vector in RP . For a given
string S, the strength of F (i) in a given direction p is determined by the unigram plog
of segment p, minus the local and distal mutual informations; this is approximated
in (18):

(18) Fp(i) = plog(p) − MID

(
S[i − 2],p) − MIL

(
S[i − 1],p)

− MIL

(
p,S[i + 1]) − MID

(
p,S[i + 2])

A natural definition for the potential of string S at position i in the presence of field
F is given in (19) where 〈., .〉 represents the vector inner product.

(19) H(S, F , i) = 〈−→
S[i], F (i)

〉
,

A natural way to deal with alternations in this framework is to include a set
of P 2 parameters τj,k describing the potential associated with twisting an underlying
phoneme-state j to a surface phoneme-state k. For the first time, we need to dis-
tinguish the underlying specification of a segment from its surface form, and so we
extend our notation slightly: when there is a discrepancy between the two, we take
S/i/ to represent the ith position of the underlying string, and S[i] to represent the
ith position of the surface string. The potential described in (19) would then include
a term expressing the phonological probabilistic cost of mismatch between deep and
surface form. (This is similar to models that compare strings in bioinformatics; see,
for example, Durbin et al. 1999, Chap. 2.) Let us assume that we have established
an alignment between underlying and surface forms; this alignment need not be one-
to-one, and it will certainly be probabilistic, and we use it to establish a probability
distribution over pairs of segments prd(/x/, [y]) as in (20).

(20)
∑

x,y∈�

prd
(
/x/, [y]) = 1.

In this model, it would be natural to interpret the potential function as a linear
combination of the expression in (19) and sum of the plogs of the deep-surface seg-
ment pairings {S/i/, S[i]}i . We are pursuing these developments in work in progress
as natural extensions of the models described here.

6 Conclusion

This paper has been an exploration of the usefulness of information theoretic tools
for understanding phonological phenomena. It began, from our point of view, with
the conjecture presented in Sect. 3.6: the effects of vowel harmony in a language like
Finnish should result in a decrease in entropy if we condition the probability of a
vowel on the vowel that precedes, at whatever distance, rather than by the immedi-
ately preceding segment. To our surprise, this hypothesis was soundly defeated by
the data. As we continued to explore why the hypothesis was wrong, we came to be
more and more impressed by the usefulness of a methodology that allows structure
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in the phonological data to speak so forthrightly to the researcher. We were never in
a situation where our preference as to styles of phonological analysis (autosegmen-
tal, rule-based, constraint-based, innate features, etc.) played a significant role in the
testing of any hypothesis; at best, or at worst, such preferences may have limited the
range of hypotheses our creativity was limited to.

We are only too aware of additional steps that should be taken even in the analysis
of Finnish vowel harmony, not to mention similar problems in every other language in
the world. Perhaps the most important next step is to compare the model developed in
this paper based on whole words to a model based on words divided into morphemes,
so that vowel harmony strictly inside of morphemes can be studied separately and
compared to cross-morpheme vowel harmony.

In the final analysis, we believe that information theory is a critical tool for ana-
lyzing and understanding linguistic data—and linguistic data is what linguists build
their theories on. Adoption of these mathematical tools is in no sense a repudiation
of the essential and integral role of formal modeling or abstract structure in linguistic
theories. Indeed, the main goal of this paper has been to understand how a particular
kind of abstract structure—the vowel tier—can arise as a necessary consequence of
the use of probabilistic models in which we seek to maximize coverage while simul-
taneously minimizing model complexity. As E.T. Jaynes (2003) aptly puts it, we view
probability distributions as carriers of information.

The most important next step is to better explore the relationship between increas-
ing the size of our model and increasing the probability of the data. We need to better
understand and to explicitly model the trade-off between expanding the information
contained in a grammatical description of a language, on the one hand, and the im-
provement in the log probability of the data that follows from that expansion of the
grammar. In addition, we plan to look to see whether the economy that information
theory provides will help us better understand the trade-off between phonology and
morphology. There is already a fair literature on the information theoretic complex-
ity of morphological analysis (e.g. Goldsmith 2001), and it should be possible to
explicitly compare the relative complexity of analyzing various phenomena in mor-
phological terms with that of analyzing them phonologically. If we can achieve that
goal, we will have arrived at a significantly deeper explanation of the relationship of
two significant components of linguistic grammar, and a new understanding of how
the phonological analysis of a natural language is justified.
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