
Paradigms bit by bit: an information-theoretic approach
to the processing of paradigmatic structure in inflection

and derivation

Petar Milin∗ a,e, Victor Kuperman b, Aleksandar Kostić c,e and
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1 Introduction
Most experimental work on morphological processing has been inspired by syn-
tagmatically oriented theories of word structure. Processing models that assume
obligatory morphological decomposition during lexical processing such as pro-
posed by Taft (1994, 1979, 2004) fit well with, for instance, distributed morphol-
ogy (Halle and Marantz, 1993). The same holds for the dual mechanism model of
Pinker (1991, 1999), which claims that regular inflected forms are not available in
lexical memory but derived on-line using morphological rules. The processing lit-
erature offers extensive discussion of the question to which representational levels
morphemic representations should be allocated, and seems, almost universally, to
proceed on the assumption that affixes are morphemes in the classical structural-
ist sense. Work in theoretical morphology questioning the morphemic status of
lexical formatives (Hockett, 1954; Aronoff, 1994; Beard, 1995; Matthews, 1974;
Anderson, 1992; Blevins, 2003, 2006) has not had any impact on the models psy-
chologists have proposed for processing and representation in the mental lexicon.

In this chapter, we present a survey of a line of research that departs from the
theoretical assumptions of mainstream experimental psycholinguistics in that it is
very close in spirit to Word and Paradigm morphology. It is becoming increasingly
clear that, contrary to the assumptions of the dual mechanism model and other
models positing obligatory decomposition into morphemes, that morphologically
complex words leave traces in lexical memory.

A central diagnostic for the presence of memory traces in long-term memory
has been the word frequency effect. A higher frequency of use allows for shorter
processing latencies in both visual and auditory comprehension (cf. Baayen et al.,
2003; New et al., 2004; Baayen et al., 2006, etc.), and lower rates of speech er-
rors in production (Stemberger and MacWhinney, 1986). The effect of word fre-
quency tends to be stronger for irregular complex words than for regular complex
words, and stronger for derived words than for inflected words. But even for reg-
ular inflected words, the effect of prior experience clearly emerges (Baayen et al.,
2008b). The ubiqitous effect of word frequency shows that large numbers of com-
plex words are available in the mental lexicon. This fits will with the central tenet
of Word and Paradigm morphology that inflected words are available in the lexi-
con and form the basis for analogical generalization.

In Word and Paradigm morphology, inflected words are organized into pa-
radigms and paradigms into inflectional classes. (In what follows, we will use
the term inflectional paradigm to refer to the set of inflected variants of a given
lexeme, and the term inflectional class to refer to a set of lexemes that use the
same set of exponents in their inflectional paradigms.) This raises the question of
whether there is experimental evidence supporting such a paradigmatic organiza-
tional structure for the mental lexicon.
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For derivational morphology, work on the morphological family size effect
(see, e.g. Moscoso del Prado Martín et al., 2004a) has clarified that how a given
word is processed is co-determined by other words in lexical memory to which it is
morphologically related. This constitutes evidence for paradigmatic organization
in the mental lexicon. From the perspective of inflection, however, morphological
families are very heterogeneous, and do not allow words to be grouped into higher-
order sets similar to inflectional classes.

In this chapter, we first review a series of recent experimental studies that
explore the role of paradigmatic structure for inflected words. We then present
new experimental results showing how the principles that structure inflectional
paradigmatics can be generalized to subsets of derived words.

The approach to morphological organization and morphological processing
that we describe in this chapter differs from both theoretical morphology and
mainstream experimental psycholinguistics in that it makes use of central con-
cepts from information theory. A basic insight from information theory that we
apply to lexical processing is that the amount of information carried by an event
(e.g., a word’s inflected variant, an exponent, or an inflectional class) is nega-
tively correlated with the probability of that event, and positively correlated with
processing costs (see for a similar approach to syntax Levy, 2008). We believe
information theory offers exactly the right tools for studying the processing con-
sequences of paradigmatic relations. The use of these tools does not imply that
we think the mental lexicon is organized in terms of optimally coded bit streams.
We will remain agnostic about how paradigmatic structure is implemented in the
brain. We do believe that the concepts of information science provide us with
excellent tools to probe the functional organization of the (mental) lexicon.

We begin this chapter with an introduction to a number of central concepts
from information theory and illustrate how these concepts can be applied to the
different levels of paradigmatic organization in the (mental) lexicon. We then fo-
cus on three key issues: (i) the processing cost of an exponent given its inflectional
class, (ii) the processing cost associated with paradigms and inflectional classes,
and (iii) the processing cost that arises when the probabilistic distributional prop-
erties of paradigms and inflectional classes diverge.

2 Central concepts from information theory
A fundamental insight of information theory is that the amount of information I
carried by (linguistic) unit u can be defined as the negative binary logarithm of its
probability:

Iu = − log2 Pr(u). (1)
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Consider someone in the tip-of-the tongue state saying the eh eh eh eh eh eh key.
The word eh has the greatest probability, 6/8, and is least informative. Its amount
of information is − log2(6/8) = 0.415 bits. The words the and key have a proba-
bility of 1/8 and the amount of information they carry is 3 bits. In what follows,
we assume that lexical units that have a higher information load are more costly
to access in long-term memory. Hence, we expect processing costs to be propor-
tional to the amount of information. This is, of course, exactly what the word
frequency effect tells us: higher frequency words, which have lower information
loads, are processed faster than low-frequency, high-information words.

We estimate probabilities from relative frequencies. By way of illustration,
consider the inflected variants of the Serbian feminine noun planina, “mountain”.
Serbian nouns have six cases and two numbers. Due to syncretism, the twelve
combinations of case and number are represented by only 6 distinct inflected vari-
ants. These inflected variants are listed in column 1 of the upper part of Table 1.
The second column lists the frequencies of these inflected variants in a two-million
word corpus of written Serbian.

In what follows, we consider two complementary ways of estimating proba-
bilities from frequencies. The probabilities listed in the third column of Table 1
are obtained by normalizing the frequency counts with respect to a lexeme’s in-
flectional paradigm (column three). More specifically, the probability Prπ(we) of
an inflected variant we of lexeme w is estimated in this table as its form-specific
frequency F (henceforth word frequency) of occurrence, normalized for the sum
of the frequencies of all the distinct inflected variants of its lexeme, henceforth
stem frequency:

Prπ(we) =
F (we)∑
e F (we)

. (2)

The corresponding amounts of information, obtained by applying (1), are listed in
column four. Table 1 also lists the frequencies of the six exponents (column 5),
calculated by summing the word frequencies of all forms in the corpus with these
exponents. The probabilities listed for these exponents (column six) are obtained
by normalizing with respect to the summed frequencies of these exponents:

Prπ(e) =
F (e)∑
e F (we)

. (3)

The corresponding amount of information is listed in column seven.
The second way in which we can estimate probabilities is by normalizing with

respect to the number of tokens N in the corpus. The probability of a lexeme w
is then estimated as the sum of the frequencies of its inflected variants, divided by
N :

PrN(w) =
F (w)

N
=

∑
e F (we)

N
. (4)
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feminine nouns
Inflected
variant

Inflected
variant

frequency

Inflected
variant
relative

frequency

Information
of

inflected
variant

Exponent
frequency

Exponent
relative

frequency

Information
of

exponent

F (we) Prπ(we) Iwe
F (e) Prπ(e) Ie

planin-a 169 0.31 1.69 18715 0.26 1.94
planin-u 48 0.09 3.47 9918 0.14 2.84
planin-e 191 0.35 1.51 27803 0.39 1.36
planin-i 88 0.16 2.64 7072 0.1 3.32
planin-om 30 0.05 4.32 4265 0.06 4.06
planin-ama 26 0.05 4.32 4409 0.06 4.06

masculine nouns
Inflected
variant

Inflected
variant

frequency

Inflected
variant
relative

frequency

Information
of

inflected
variant

Exponent
frequency

Exponent
relative

frequency

Information
of

exponent

F (we) Prπ(we) Iwe F (e) Prπ(e) Ie
prostor-ø 153 0.38 1.40 25399 0.35 1.51
prostor-a 69 0.17 2.56 18523 0.26 1.94
prostor-u 67 0.17 2.56 8409 0.12 3.06
prostor-om 15 0.04 4.64 3688 0.05 4.32
prostor-e 48 0.12 3.06 5634 0.08 3.64
prostor-i 23 0.06 4.06 6772 0.09 3.47
prostor-ima 23 0.06 4.06 3169 0.04 4.64

Table 1: Inflected nouns in Serbian. The upper part of the table shows inflected
variants for the feminine noun “planina” (mountain), the lower part shows the
inflected variants of the masculine noun “prostor” (space). Columns present fre-
quencies and relative frequencies of respective inflectional paradigm and the class
to which it belongs.
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In this approach, the probability of an inflected variant can be construed as the
joint probability of its lexeme w and its exponent:

PrN(we) = Pr(w, e)

= Pr(e, w)

=
F (we)

N
. (5)

Likewise, the probability Pr(e) of an exponent (e.g., -a for nominative singular
and genitive plural in Serbian feminine nouns) can be quantified as the relative
frequency of occurrence of e in the corpus:

PrN(e) =
F (e)

N
. (6)

The probabilities considered thus far are unconditional, a priori, decontextu-
alized probabilities. As exponents appear in the context of stems, we need to
consider the conditional probability of an exponent given its lexeme, Pr(e|w).
Using Bayes’ theorem, we rewrite this probability as:

PrN(e|w) =
PrN(e, w)

Pr(w)

=
F (we)

N

N

F (w)

=
F (we)

F (w)

= Prπ(we). (7)

Likewise, the conditional probability of the lemma given the exponent is defined
as:

PrN(w|e) =
PrN(w, e)

PrN(e)

=
F (we)

N

N

F (e)

=
F (we)

F (e)
. (8)

For each lexical probability we can compute the corresponding amount of infor-
mation. We allow for the possibility that each source of information may have its
own distinct effect on lexical processing by means of positive weights ω1−5:

Iwe = −ω1 log2 F (we) + ω1 log2N
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Iw = −ω2 log2 F (w) + ω2 log2N

Ie = −ω3 log2 F (e) + ω3 log2N

Ie|w = −ω4 log2 F (we) + ω4 log2 F (w)

Iw|e = −ω5 log2 F (we) + ω5 log2 F (e). (9)

We assume that the cost of retrieving lexical information from long-term memory
is proportional to the amount of information retrieved. Hence the cost of process-
ing an inflected word we is proportional to at least the amounts of information in
(9). More formally, we can express this processing cost (measured experimentally
as a reaction time RT) as a linear function:

RT ∝ Iwe + Iw + Ie + Ie|w + Iw|e

= (ω1 + ω2 + ω3) log2N − (ω1 + ω4 + ω5) log2 F (we)

− (ω2 − ω4) log2 F (w)− (ω3 − ω5) log2 F (e). (10)

There are several predictions for the effects of lexical probabilities on lexical pro-
cessing that follow directly from (10). First, word frequency F (we) will always
elicit a facilitatory effect, as all its coefficients have a negative sign in (10). Sec-
ond, stem frequency may either facilitate or inhibit processing, depending on the
relative strengths of the coefficients ω2 and ω4. Third, the frequency of the expo-
nent can also either speed up or hinder processing depending on values of ω3 and
ω5. The first two predictions are supported by the large-scale regression studies
reported by Baayen et al. (2008b) and Kuperman et al. (2008).

We now proceeed from basic lexical probabilities that operate at the level of
individual inflected words to the quantification of the information carried by in-
flectional paradigms and inflectional classes. The paradigm of a given lexeme
can be associated with a distribution of probabilities {Prπ(we)}. For planina in
Table 1, this probability distribution is given in column three. The amount of
information carried by its paradigm as a whole is given by the entropy of the
paradigm’s probability distribution:

H = −
∑
e

Prπ(we) log2(Prπ(we)). (11)

Formally, H is the expected (weighted average) amount of information in a pa-
radigm. The entropy increases with the number of members of the paradigm. It
also increases when the probabilities of the members are more similar. For a given
number of members, the entropy is maximal when all probabilities are the same.
H also represents the average number of binary decisions required to identify a
member of the paradigm, i.e., to reduce all uncertainty about which member of
the paradigm is at issue, provided that the paradigm is represented by an optimal
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Figure 1: Optimal and non-optimal binary coding schemes for the inflectional
class of regular feminine nouns in Serbian.
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binary coding. We illustrate the concept of optimal coding in Figure 1 using as an
example the inflectional class of regular feminine nouns in Serbian.

The upper panel of Figure 1 shows an optimal binary coding scheme, in which
the most probable exponent (-e, Prπ = 0.39) occupies the highest leaf node in the
tree. The lower the probability of the other exponents, the lower in the tree they
are located. Thus, the exponents with the lowest probabilities in the inflectional
class, -om (Prπ = 0.06) and -ama (Prπ = 0.06) are found at the lowest leaf
nodes. The second panel of Figure 1 represents another possible coding, which is
suboptimal in that some exponents with relatively high probabilities are located
below lower-probability exponents in the tree. Finally, the third panel shows the
least optimal coding, in which the less probable the exponent is, the higher it is
positioned in the tree. The average number of binary decisions (the number of
bits) required to identify a given paradigm member, i.e., to reach the paradigm
member’s leaf node when starting at the root node of the tree, is the sum of the
products of the number of steps and the members’ probabilities. This average
is never greater than the entropy of the paradigm H + 1 (Ross, 1988). For the
upper panel of Figure 1, the average number of binary decisions is 2.33 bits, for
the coding in the second panel, it is 2.83, and for the worst coding in the third
panel, it is 4.29. In section 4 we will review experimental studies showing that
paradigmatic entropies co-determine lexical processing.

Thus far, we have considered probabilities and the corresponding entropy at
the level of the inflectional class of regular feminine nouns in Serbian. However,
the probability distribution of the inflected variants of a given lexeme may dif-
fer substantially from the probability distribution of the exponents at the level of
the inflectional class. As a consequence, the corresponding entropies may dif-
fer substantially from each other as well. The extent to which these probability
distributions differ is quantified by the relative entropy, also known as Kullback-
Leibler divergence. By way of example, consider again the Serbian feminine noun
planina ’mountain’ and its inflectional class as shown in Table 1. The third col-
umn lists the estimated probabilities for the paradigm, and the sixth column lists
the probability distribution of the class. Let P denote the probability distribution
of the paradigm, and Q the probability distribution of the inflectional class. The
relative entropy can now be introduced as:

D(P ||Q) =
∑
e

Prπ(we) log2

Prπ(we)

Prπ(e)
. (12)

Relative entropy is also known as information gain,

D(P ||Q) = IG(Prπ(e|w)||Prπ(e|c))

=
∑
e

Prπ(e|w) log2

Prπ(e|w)

Prπ(e|c)
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=
∑
e

Prπ(we) log2

Prπ(we)

Prπ(e)
, (13)

as it measures the reduction in our uncertainty about the exponent when going
from the situation in which we only know its inflectional class to the situation
in which we also know the lexeme. For planina, H = 2.22, and D(P ||Q) =
0.05. For the masculine noun listed in the lower half of Table 1, H = 2.42 and
D(P ||Q) = 0.07. In both cases, the two distributions are fairly similar, so the
relative entropies are small. There is little that the knowledge of planina adds
to what we already new about regular feminine nouns. If we approximate the
probability distribution of planina with the probability distribution of its class, we
are doing quite well. In what follows, we will refer to relative entropy simply as
RE. In section 4.2 we review a recent study demonstrating that RE is yet another
information theoretic predictor of lexical processing costs.

In what follows, we will review a series of studies that illustrate how these
information theoretic concepts help us to understand paradigmatic organization in
the mental lexicon. Section 3 addresses the question of how the probability of an
exponent given its inflectional class is reflected in measures of lexical processing
costs. Section 4 reviews studies that make use of entropy and relative entropy to
gauge lexical processing and paradigmatic organization. Finally, in section 5 we
present new experimental results showing how concepts from information theory
that have proved useful for understanding inflection can also be made fruitful for
understanding derivation.

3 The Structure of Inflectional Classes
The consequence of the amount of information carried by an exponent for lexi-
cal processing has been explored in a series of experimental studies on Serbian
(Kostić, 1991, 1995; Kostić et al., 2003). A starting point for this line of research
is the amount of information carried by an exponent,

Ie = − log2 Pr
π

(e).

The problem addressed by Kostić and colleagues is that exponents are not equal
with respect to their functional load. Some exponents (given their inflectional
class) express only a few functions and meanings, others express many. Table 2
lists the functions and meanings for the exponents of the masculine and regular
feminine inflectional class of Serbian. The count of numbers of functions and
meanings for a given exponent were taken from an independent comprehensive
lexicological survey of Serbian (see also the appendix of Kostić et al. 2003, for
a shortlist of functions and meanings). Instead of using just the flat corpus-based
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Figure 2: Partial effects of the probability of an exponent and its number of syn-
tactic functions and meanings on the weighted amount of information I ′e.

relative frequencies, Kostić and colleagues propose to weight these probabilities
for their functions and meanings. Let Re denote the number of functions and
meanings carried by exponent e. Then the weighted amount of information I ′e can
be expressed as follows:

I ′e = − log2

(
Prπ(e)/Re∑
e Prπ(e)/Re

)
(14)

The ratio (Prπ(e)/Re) gives us the average probability per syntactic function/mean-
ing for a given exponent. In order to take the other exponents within the inflec-
tional class into account, this ratio is weighted by the sum of the ratios for each of
the exponents (see, e.g., Luce, 1959). The resulting proportion is log-transformed
to obtain the corresponding amount of information in bits. The partial effects of
probability on the one hand, and the number of functions and meanings on the
other, is shown in Figure 2. The weighted information is predicted to decrease
with probability, and to increase with the number of functions and meanings. Ta-
ble 2 lists I ′e for each of the exponents of the masculine and regular feminine
inflectional classes.

To assess the predictivity of I ′e, Kostić et al. (2003); Kostić (2008) calculated
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masculine nouns
Exponent Case and Number Frequency Functions and

Meanings
Information

ø nom sg 12.83 3 0.434
a gen sg/acc sg /gen pl 18.01 109 5.128
u dat sg /loc sg 4.64 43 5.744
om ins sg 1.90 32 6.608
e acc pl 2.21 58 7.243
i nom pl 3.33 3 2.381
ima dat pl/loc pl/ins pl 1.49 75 8.186

feminine nouns
Exponent Case and Number Frequency Functions and

Meanings
Information

a nom sg/gen pl 12.06 54 1.464
u acc sg 5.48 58 2.705
e gen sg /nom pl/acc pl 14.20 112 2.280
i dat sg /loc sg 3.80 43 2.803
om ins sg 1.94 32 3.346
ama dat pl/loc pl/ins pl 1.69 75 4.773

Table 2: Exponents, case and number, frequency of the exponent, number of func-
tions and meanings of the exponents, and amount of information carried by the
exponents, for masculine nouns (upper table) and regular feminine nouns (lower
table).

the mean lexical decision latency for each exponent in a given inflectional class,
and investigated whether these mean latencies can be predicted from the weighted
amounts of information such as listed in Table 2. The Pearson correlation between
the mean latencies and the weighted information scores was highly significant
for both masculine and feminine nouns (R2 = 0.88 for masculine nouns, R2 =
0.98 for regular feminine nouns and R2 = 0.99 for irregular feminine nouns).
Furthermore, when mean reaction time is regressed on the weighted information
load, the slopes of the regression lines are positive. Exponents carrying a greater
average amount of information are more difficult to process. In other words, these
data show that the average processing cost of an exponent in its inflectional class
is very well predicted from its frequency and its functional load as given by (14)
and illustrated above in Figure 2.

The probabilities that we considered in these analyses were estimated by sum-
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ming across all words with a given exponent in a given inflectional class. In this
way, the information about the probabilities of the different exponents in the in-
flectional paradigms of specific words is lost. In order to address the possibility
that word-specific probabilities of exponents also co-determine lexical processing,
Kostić et al. (2003) first applied the same weighting scheme underlying (14) at the
level of individual lexemes, giving a lexeme-specific weighted information I ′we

:

I ′we
= − log2

(
Prπ(we)/Re∑
e Prπ(we)/Re

)
. (15)

Kostić et al. (2003) then constructed two sets of lexemes (henceforth Inflectional
Groups) which contrasted maximally with respect to I ′we

. For each of the two
inflectional groups, they then calculated the average value of I ′we

for each of the
exponents. Regression analysis showed that these group-averaged amounts of
information contributed independently to the model, over and above the general
class-based information values I ′e. As before, larger values for the group-averaged
amounts of information I ′we

corresponded to longer mean lexical decision laten-
cies.

It is useful to probe the lexeme-specific weighted information (15) with re-
spect to how it relates to the frequential properties of the lexeme and its inflected
variants, as well as to the functional ambiguities existing in inflectional paradigms
and classes. First consider a simple lower bound for (15):

I ′we
= − log2

(
Prπ(we)/Re∑
e Prπ(we)/Rwe

)

= − log2

Prπ(we)

Re

+ log2

∑
e

Prπ(we)

Re

≥ − log2 Prπ(we) + log2Re + log2

∏
e

Prπ(we)

Re

≥ − log2 Prπ(we) + log2Re +
∑
e

log2

Prπ(we)

Re

≥ log2Re −
∑
e

log2Re − log2 Prπ(we) +
∑
e

log2 Prπwe. (16)

The third term is the amount of information carried by the inflected variant, Iwe ,
see (2), and

∑
j log2 Prπwj is a measure of the lexeme’s stem frequency, evaluated

by summing the log frequencies of its inflected variants rather than by summing
the bare frequencies of its inflected variants. At the level of the inflected vari-
ant, then, the amount of information (15) incorporates two well-known frequency
effects that have been studied extensively in the processing literature. The word
frequency effect (− log2 Prπ(we)) is facilitatory, as expected. By contrast, the
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stem frequency effect (
∑
e log2 Prπwe) is predicted to be inhibitory. However,

both frequency effects are complemented by measures gauging ambiguity. Am-
biguity of the given exponent is harmful, whereas ambiguity in the rest of the
paradigm is facilitatory. Thus, the stem frequency effect emerges from this model
as a composite effect with an inhibitory and a facilitatory component. This may
help explain why stem frequency effects are often much less robustly attested in
experimental data (see, e.g., Baayen et al., 2008b) compared to word frequency
effects.

In order to evaluate how well the lower bound given in (16) approximates the
original measure given in (15), we examined for the two inflectional groups for
regular feminine nouns the exponent frequency, the group average functions and
meanings, information values, and mean reaction times, as listed in Table 3 (data
from Kostić et al., 2003). As a consequence, the terms in (16) represent the am-
biguity of the exponent, the joint ambiguity of all exponents, the word frequency
effect of the inflected variant, and the stem frequency effect of its lexeme.

For the data in Table 3, we first carried out a linear regression analysis with
RT as dependent variable and I ′ and Inflectional Group as predictors. The R2 for
this model was 0.863. We then carried out a linear regression analysis, but now
with as predictors the two measures that figure in the lower bound of the amount
of information: exponent frequency and the number of functions and meanings of
the exponent R. The R2 of this model was 0.830. Furthermore, the effect of the
number of functions and meanings was inhibitory (β̂ = 27.5, t(8) = 2.512, p =
0.0362) and the effect of exponent frequency was facilitatory (β̂ = −5.2, t(8) =
−5.813, p = 0.0004) as expected given (16). In other words, the two variables that
according to (16) should capture a substantial proportion of the variance explained
by the amount of information I ′, indeed succeed in doing so: 0.830 is 96% of
0.863.

The lower bound estimate in (16) is a simplification of the full model I ′we

defined by (15). Because the simplification allows us to separate the word and
stem frequency effects, it clarifies that these two frequency effects are given the
same overall weight. There is evidence, however, that stem frequency has a much
more modest weight than word frequency (Baayen et al., 2008b), and may even
have a different functional form. This suggests that it may be preferable to rewrite
(15) as:

I ′we
= − log2

(
ω1 Prπ(we)/Re

ω2
∑
e Prπ(we)/Re

)
, (17)

with separate weights ω for numerator and denominator.
On the other hand, at the level of a given class the lower bound estimate in (17)

reduces to the exponent frequency and the overall class frequency. The exponent
frequency can be translated into affix frequency, for which Baayen et al. (2008b)
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Exponent Exponent frequency R I ′ Inflectional Group RT

a 12.06 3.99 1.46 high 674
e 14.20 4.72 2.28 high 687
i 3.80 3.76 2.80 high 685
u 5.48 4.06 2.71 high 693
om 1.94 3.47 3.35 high 718
ama 1.69 4.32 4.77 high 744
a 12.06 3.99 1.46 low 687
e 14.20 4.72 2.28 low 685
i 3.80 3.76 2.80 low 730
u 5.48 4.06 2.71 low 712
om 1.94 3.47 3.35 low 722
ama 1.69 4.32 4.77 low 746

Table 3: Mean reaction times in visual lexical decision (RT), exponent frequency,
number of functions and meanings of the exponent (R), amount of information
(I), and Inflectional Group (high versus low by-word amount of information) for
the Exponents of the regular feminine declension class.

confirmed a significant facilitatory effect. However, it is presently unclear how
class frequency could be generalized and gauged with derivations. Inflectional
classes are well contained and it is easy to count-out their overall frequencies.
However, within and between derivational classes there are no clear partitions of
the lexical space and while inflected words belong to only one inflectional class,
any given base word may participate in several derivations. We shall address
the issue of relations between base words and their derivatives in co-determining
lexical processing in great detail in section 5.

It is also useful to rewrite (14) along similar lines as we did for (15). In this
case, the lower bound for the amount of information can be written as the sum of
two conditional probabilities. First consider the probability of exponent e given
its inflectional class c:

Pr(e|c) =
Pr(e, c)

Pr(c)

=
Pr(e)

Pr(c)
.

(Note that the probability of an exponent is defined strictly with respect to its
inflectional class. We never sum frequencies of exponents across inflectional
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classes.) The information corresponding to this conditional probability is

Ie|c = − log2

Pr(e)

Pr(c)

= − log2 Pr(e) + log2 Pr(c)

= − log2 Pr(e) + log2

∑
j

Pr(ej)

≥ − log2 Pr(e) + log2

∏
j

Pr(ej)

≥ − log2 Pr(e) +
∑
j

log2 Pr(ej)

= I ′e|c (18)

Note that I ′e|c is a lower bound of Ie|c.
Next, let Re denote the number of functions and meanings of exponent e in

class c, and let Rc denote the total count of functions and meanings within the
class. The conditional probability of the functions and meanings of exponent e
given its class c is

Pr(Re|Rc) =
Pr(Re, Rc)

Pr(Rc)

=
Pr(Re)

Pr(Rc)

=
Re

Rc

and the corresponding information is therefore

IRe|Rc = − log2

Re

Rc

= − log2Re + log2Rc

= − log2Re + log2

∑
j

Rj

≤ − log2Re + log2

∏
j

Rj

≤ − log2Re +
∑
j

log2Rj

= I ′Re|Rc
(19)

Here, I ′Re|Rc
is an upper bound of IRe|Rc .
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Taking into account that I ′e|c is a lower bound of Ie|c, and that I ′Ri|Rc
is an upper

bound of IRi|Rc , we can now approximate (14) as follows:

Iwe ≈ log2Re −
∑
j

log2Rj − log2 Prπwe +
∑
j

log2 Prπwj

≈ −I ′Re|Rc
+ I ′e|c. (20)

In other words, the amount of information as defined in (14) is related to the
sum of two conditional probabilities: (i) the probability of the exponent given its
class, and (ii) the probability of the ambiguity of the exponent given the ambiguity
in its class. The partial effects of these two conditional probabilities are shown
in Figure 3. As expected, the partial effects are very similar to those shown in
Figure 2.

At this point, the question arises why I ′Re|Rc
appears with a negative sign in

(20). To answer this question, we need to consider the function of exponents in
their classes: to differentiate between the functions and meanings an inflected
form can have in the discourse. Now consider the case in which Re → Rc. The
more the functions expressed by exponent e become similar to the universe of
functions and meanings carried by the inflectional class, the less distinctive the
exponent becomes. In other words, an exponent is more successful as a distinctive
functional unit of the language when |Rc − Re| is large. If so, the corresponding
amount of information is small, and processing is fast. By contrast, an exponent
for which IRe|Rc is large is dysfunctional, and therefore harder to process, leading
to longer processing latencies.

4 The information structure of paradigms

4.1 Entropy
Thus far, we have considered the processing load of an inflected form given its
paradigm, or an exponent given its inflectional class. Moscoso del Prado Martín
et al. (2004b) added a new dimension to the experimental study of paradigmat-
ics by considering the cost of the complexity of a paradigm as such, gauged by
means of the entropy measure H . We illustrate the difference between Kostić’s
approach and the one developed by Moscoso del Prado and his colleagues by
means of Figure 1 shown above. Ignoring the weighting for numbers of functions
and meanings, Kostić’s measure simplifies to − log2(Prπ(e)), which reflects the
number of steps from the root node to the leaf node of the exponent e in an op-
timal binary coding scheme (see the upper panel; for numbers of nodes that are
integer powers of two, the− log2(Prπ(e)) is exactly equal to the number of steps).
However, this measure is insensitive to the size and configuration of the tree. To

16



●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

0.2 0.4 0.6 0.8

−
0.

5
0.

5
1.

5

Pr(ei|c)

su
m

m
ed

 w
ei

gh
te

d 
in

fo
rm

at
io

n

Ri|Rc= 0.5

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

0.2 0.4 0.6 0.8
−

2.
0

−
1.

0
0.

0

Ri|Rc

su
m

m
ed

 w
ei

gh
te

d 
in

fo
rm

at
io

n

Pr(ei|c) = 0.5

Figure 3: The left panel shows the partial effect of the information carried by the
probability of the exponent given its class I ′e|c. The right panel shows the partial
effect of the information carried by the proportion of the number of functions and
meanings conditioned on the total number of functions and meanings for the class
I ′Re|Rc

. Both partial effects are calibrated for the other effect evaluated at 0.5, and
are calculated straightforwardly from (20).

capture these aspects of the tree, we can make use of the entropy measure. The
entropy, which is the same for each and every member of the paradigm, quantifies
the expected number of steps from the root to a leaf node.

Moscoso del Prado Martín et al. (2004b) applied the entropy measure to Dutch
paradigms, but used a much broader definition of paradigms that extended the
concept of the morphological family. Table 4 shows the words listed in CELEX

that contain neighbour as a constituent. The left two columns list the morpho-
logical family as defined by Schreuder and Baayen (1997), the middle columns
list the inflected variants that were found for two of the members of the family,
and the rightmost columns list the set that merges the family members with the
inflected variants. Moscoso del Prado and colleagues calculated the entropy over
this merged set, and proposed this entropy as an enhanced measure for capturing
the morphological family size effect. They pointed out that when all family mem-
bers are equiprobable, the entropy of the family reduces to the log of the number
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morphological family inflectional paradigms merged paradigms
word F word F word F

neighbour 901 neighbour 343 neighbour 343
neighbourhood 407 neighbours 558 neighbours 558
neighbouring 203 neighbourhood 386
neighbourliness 3 neighbourhood 386 neighbourhoods 21
neighbourly 14 neighbourhoods 21 neighbouring 203

neighbourliness 3
neighbourly 14

Table 4: Morphological family and inflectional paradigms for neighbor.

of family members. Since it is exactly this log-transformed count that emerged as
predictive for processing latencies, the entropy of the family can be viewed as a
principled way of weighting family members for their token frequency.

Moscoso del Prado and colleagues combined this generalized entropy measure
with the amount of information carried by a word (inflected or uninflected) as
estimated from its relative frequency to obtain what they called the information
residual:

IR = Iw −H = logN − log2 Fw −H. (21)

This information residual performed well in a series of post-hoc analyses of pro-
cessing of Dutch complex words.

By bringing several measures together in a single predictor, IR, stem frequency
and entropy receive exactly the same regression weight:

RT ∝ β0 + β1IR

= β0 + β1(Iw −H)

β0 − β1 log2 Fw − β1H. (22)

However, subsequent work (Baayen et al., 2006) suggests that frequency, the en-
tropy calculated over the morphological family while excluding inflected variants,
and the entropy of the paradigms of individual lexemes should be allowed to have
different importance (i.e, different β weights). Their study examined a wide range
of lexical predictors for simple English nouns and verbs, and observed indepen-
dent effects of inflectional entropy (henceforth Hi) across both the visual lexical
decision and word naming tasks. An effect of derivational entropy (henceforth
Hd) was present only in the visual lexical decision task. Here, it emerged with a
U-shaped curve, indicating the presence of some inhibition for words with very
information-rich families. In their study of the lexical processing of 8486 complex
words in English, Baayen et al. (2008b) also observed an independent facilitatory
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effect of inflectional entropy, side by side with a facilitatory effect of the family
size of the lexeme.

These results suggest that, when considered in terms of optimal binary cod-
ing schemes, inflected words and lexemes should not be brought together in one
encompassing binary tree. Instead, lexemes form one tree, and each lexeme then
comes with its own separate disjoint tree for its inflected variants.

Inflectional paradigms in languages such as Dutch and English are trivially
simple compared to the paradigms one finds in morphologically rich languages.
This raises the question to what extent entropy measures inform us about the pro-
cessing complexity of more substantive paradigmatic structure. We address this
issue for nominal paradigms in Serbian.

4.2 Relative entropy
When the inflectional entropy is computed for a given lexeme, it provides an es-
timate for the complexity of this lexeme’s inflectional paradigm. This measure,
however, does not take into account the complexity of the inflectional class, and
the extent to which the probability distribution of a lexeme’s paradigm diverges
from the probability distribution of its inflectional class. We could consider bring-
ing the entropy of the inflectional class into our model, but this class entropy
would be the same for all lexemes in the class. Hence, it would not be much more
informative than a plain name for that class (for example, Latin declension I, or
Serbian declension III). Therefore, Milin et al. (2008) considered the simultane-
ous influence of paradigms and classes on the processing of inflected nouns in
Serbian by means of relative entropy, RE.

Milin et al. (2008) investigated whether relative entropy is predictive for lexi-
cal processing in visual lexical decision using masculine and feminine nouns with
the case endings -om, -u and -e. A mixed-effects analysis with word frequency
and stem frequency, bigram frequency, number of orthographic neighbors and en-
tropy as covariates revealed an independent inhibitory effect of RE, as shown in
the lower right panel of Figure 4. Comparison with the other significant partial
effects in the model shows that the magnitude of the effect ofRE is comparable to
that of stem frequency and orthographic neighborhood size. However, the effect
of the entropy did not reach significance (p > 0.15).

What this experiment shows is that it is neither the probability distribution of
the inflected variants in a word’s paradigm, nor the probability distribution in its
inflectional class considered separately that are at issue, but rather the divergence
between the two distributions. The greater this divergence, the longer the response
latencies. A similar pattern was observed for the accuracy measure as well: the
greater the divergence of the probability distribution of the paradigm from the
probability distribution of the class, the more errors were made.

19



−2 −1 0 1 2 3

50
0

55
0

60
0

65
0

70
0

form frequency

R
T

−1.5 −0.5 0.5 1.5

50
0

55
0

60
0

65
0

70
0

stem frequency

R
T

−2 −1 0 1 2

50
0

55
0

60
0

65
0

70
0

neighborhood count

R
T

0 2 4 6

50
0

55
0

60
0

65
0

70
0

relative entropy

R
T

Figure 4: Partial effects of distributional predictors for the response latencies in
visual lexical decision to Serbian nouns (Milin et al., 2008).
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From the perspective of cognitive psychology, these results are interesting in
that they provide further evidence for the importance of structured lexical connec-
tivity. From the perspective of linguistic morphology, they support the theoretical
concepts of paradigms and inflectional classes. Combined with the presence of a
strong effect of the word frequency, an effect that is much stronger than the effect
of the word’s stem (compare the upper panels in Figure 4), these results provide
strong support for Word and Paradigm morphology (Matthews, 1974; Blevins,
2003, 2006) and for exemplar-based approaches to lexical processing in general
(see, e.g., Baayen, 2003).

5 Paradigmatic structure in derivation
In languages such as Dutch or English, morphological families consist predomi-
nantly of compounds. As a consequence, the family size effect (cf., Schreuder and
Baayen, 1997) is driven almost exclusively by lexical connectivity between com-
pounds. Little is known about the role of derived words. The problem here is that
a given base word combines with only a handful of derivational affixes at best.
Counts of the number of different prefixes and suffixes that English monomor-
phemic base words combine with, based on the English section of the CELEX lex-
ical database (Baayen et al., 1995), illustrate that 60% English monomorphemic
base words combine with only one affix. Table 5 shows a steep decrease (a Zip-
fian distribution) in the number of derivational affixes that are attested for a given
base word. The verbs act and play are exceptional in combining with 11 different
affixes. The maximum family size in English, 187, observed for man, is an order
of magnitude larger. With such small numbers of derived family members, it be-
comes very difficult to gauge the role of a strictly derivational family size count
in lexical processing.

Derived words, however, enter into more systematic relations than most com-
pounds, even when we take into account that the meaning of a compound is pre-
dictable from its constituents to a much greater extent than has traditionally been
assumed (Gagné and Shoben, 1997; Gagné, 2001). For instance, derived adjec-
tives with the prefix un- systematically express negation. Taking this fact into ac-
count, we asked ourselves whether such systematic relations between base words
and their derivatives co-determine lexical processing. As a first step towards an
answer, we introduce two simple concepts: the mini-paradigm and the mini-class.
Here, the term mini-paradigm refers to pairs of base words and their derivatives.
Thus, kind and unkind form a mini-paradigm, and so do clear and clearly. In the
same line, the term mini-class refers to the set of mini-paradigms sharing the same
derivational affix. All pairs of base words and the corresponding un- derivatives
constitute the mini-class of: kind - unkind, true - untrue, pleasant - unpleasant,
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Number of affixes Count of base words
1 3449
2 1391
3 516
4 202
5 105
6 31
7 13
8 11
9 2
10 3
11 2

Table 5: The number of monomorphemic base words that can attach the given
number of affixes (prefixes or suffixes) when forming bi-morphemic derived
words.

simple base complex base
-able 70 0
-er (comparative) 98 0
-er (deverbal) 240 24
-ly (adverbial) 21 355
-ness (complex base) 0 65
-ness (simple base) 152 0
-est (superlative) 95 0
un- 18 111

Table 6: Affixes in the study based on latencies extracted from the English Lexi-
con Project, cross-classified by the complexity of their base words.

etc. Mini-paradigms and mini-classes approximate inflectional paradigms and in-
flectional classes in the sense that the semantic relations within the pairs tend to
be more consistent and transparent than in general morphological families or in
families of derived words with different prefixes and suffixes.

In what follows, we therefore investigate whether the measures of entropy and
relative entropy are significant predictors for lexical processing when applied to
mini-paradigms and mini-classes.
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5.1 Materials
We selected six suffixes and one prefix, for which we extracted all formations
listed in the CELEX lexical database and for which latencies were also available in
the English Lexicon Project (Balota et al., 2007) for both the derived word and its
base. The resulting counts of formations are available in Table 6, cross-classified
by whether the base word is simple or complex. For all words, we extracted from
CELEX their frequency of occurrence, their length in letters, the number of synsets
for the base as listed in WordNet (Miller, 1990; Beckwith et al., 1991, and studied
by Baayen et al., 2006), the family size of the base (calculated from the morpho-
logical parses in CELEX), and their frequency in the demographic subcorpus of
conversational English in the British National Corpus (Burnard, 1995). From the
English Lexicon Project, we added the by-item mean naming latencies and the
by-item mean lexical decision latencies.

For each pair of base and derivative, we calculated its entropy and its relative
entropy. For the derived words, the entropy of the mini-paradigm was calculated
on the basis of the relative frequencies of the derivative and its base word (e.g., for
kind and unkind, the relative frequencies are 72/(72 + 390) and 390/(72 + 390)).
For the base words, we distinguished between base words with only one deriva-
tive, and base words with two or more derivatives. For base words with a single
derivative, the procedure for estimating the entropy was the same as for derived
words. For base words with more than one derivative, the problem arises how
to calculate entropies. Selection of a single derivative seems arbitrary. Taking
all derivations linked with a given base word into account is possible, but then
the mini-class distribution would contain the maximum number of 11 relative fre-
quencies (see Table 5), most of which would be zero for almost all words. words
would have a much smaller number of non-zero relative frequencies. We there-
fore opted for taking only two relative frequencies into account when calculating
the entropy: the frequency of the base itself, and the summed frequency of all its
derivatives.

The probability distribution for a given mini-class was obtained by summing
the frequencies of all base words in the class on the one hand, and all derivatives
in the class on the other hand. The resulting frequencies were then transformed
into relative frequencies. These relative frequencies then served as the Q distri-
bution (also known as the reference distribution) for the calculation of the relative
entropy.

In the following analyses, frequency measures, family size, number of synsets,
and response latencies were log-transformed to eliminate the adverse effect of
outliers on the model fit.

23



5.2 Derived words
We investigated the predictivity of the entropy and relative entropy measures for
word naming and lexical decision latencies to the derived words. For that, we
applied linear mixed-effects modeling (Baayen et al., 2008a; Bates, 2005, 2006;
Baayen, 2008), with Task (lexical decision versus naming) as a fixed-effect fac-
tor, and with the set of relevant covariates including length, base frequency, word
frequency, spoken word frequency, number of synsets in WordNet, morphologi-
cal family size, entropy and relative entropy. Word and affix were considered as
random effects.

For the covariates, we investigated whether nonlinearity was present. This
turned out to be the case only for word length. We also observed interactions
of Task with word frequency and spoken word frequency, with length (only the
quadratic term), and with entropy and relative entropy. Finally, we considered
whether by-word or by-affix random slopes were required. It turned out that by-
affix random slopes were necessary only for the two entropy measures.

Inspection of the coefficients for the entropy measures in the resulting model
revealed that entropy and relative entropy had positive coefficients of similar mag-
nitude (H : 0.034, σ̂ = 0.025; RE : 0.058, σ̂ = 0.016), with small differ-
ences across the two tasks. In word naming, the effect of entropy was slightly
larger, while the effect of relative entropy was fractionally smaller (H in naming:
0.034 + 0.041; RE in naming: 0.058− 0.014).

These observations invite a simplification of the regression model. Let β0

denote the coefficient for the intercept, and let β1 and β2 denote the coefficients
for entropy and relative entropy respectively. Given that β1 and β2 are very similar,
we can proceed as follows:

β0 + β1H + β2RE ≈ β0 + β1H + β1RE

= β0 + β1(H +RE). (23)

Interestingly, the sum of entropy and relative entropy is equal to another infor-
mation theoretical measure, the cross entropy (CE) (Manning and Schütze, 1999;
Cover and Thomas, 1991). Applied to the present data, we have that

CE = H +RE =

= −
∑
L

Prπ(wL) log2(Prπ(wL) +RE

= −
∑
L

Prπ(wL) log2(Prπ(wL) +
∑
L

Prπ(wL) log2

Prπ(wL)

Prπ(cL)

= −
∑
L

Prπ(wL) log2(Prπ(cL)). (24)
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In (24), L indexes the base and derived lexemes for mini-paradigms, and the sets
of base words and derived words for the mini-class. Thus, Prπ(wL) denotes the
probability of a base or derived lexeme in its mini-paradigm, and Prπ(cL) denotes
the corresponding probability in the mini-class. Technically, the cross entropy
between the probability distribution of the mini-paradigm and the probability dis-
tribution of the mini-class measures the average number of bits needed to identify
a form from the set of possible forms in the mini-paradigm, if a coding scheme is
used based on the reference probability distribution Prπce of the mini-class, rather
than the “true” distribution Prπwe of the mini-paradigm. More informally, we can
interpret the cross entropy as gauging the average amount of information in the
mini-paradigm, corrected for the departure from the prior reference distribution
of the corresponding mini-class.

We therefore replaced entropy H and relative entropy RE as predictors in
our regression model by a single predictor, the cross entropy CE, and refitted
the model to the data. After removal of outliers and refitting, we obtained the
model summarized in Table 7 and visualized in Figure 5. The standard deviation
of the by-word random intercepts was 0.0637, the standard deviation for the by-
affix random intercepts was 0.0399, the standard deviation for the by-affix random
slopes for cross entropy was 0.0277, and the standard deviation for the residual
error was 0.0663. All random slopes and random intercepts were supported by
likelihood ratio tests (all p-values < 0.0001).

Estimate Lower Upper P
Intercept 6.6679 6.5830 6.7607 0.0001
Task=naming -0.1419 -0.2158 -0.0688 0.0001
length (linear) 0.0056 -0.0109 0.0228 0.5162
length (quadratic) 0.0012 0.0004 0.0020 0.0034
word frequency -0.0382 -0.0428 -0.0333 0.0001
spoken frequency -0.0183 -0.0245 -0.0117 0.0001
synset count -0.0277 -0.0339 -0.0212 0.0001
cross entropy 0.0565 0.0164 0.0937 0.0076
Task=naming: word frequency 0.0067 0.0022 0.0112 0.0036
Task=naming:length (linear) 0.0132 -0.0025 0.0283 0.0914
Task=naming:length (quadratic) -0.0011 -0.0019 -0.0003 0.0026
Task=naming:spoken frequency 0.0124 0.0062 0.0186 0.0001

Table 7: Partial effects of the predictors for the visual lexical decision and naming
latencies to derived words. The reference level for Task is lexical decision. Lower,
Upper: 95% highest posterior density interval; P: Markov chain Monte Carlo p-
value.

With respect to the control variables, we note that word length was a strongly

25



nonlinear (positively accelerated) predictor for especially lexical decision, with
longer lengths eliciting elongated response latencies. The word frequency effect
was similar for both tasks, albeit slightly stronger for lexical decision. Similarly,
the spoken word frequency added facilitation specifically for lexical decision. The
effect of number of synonyms, as gauged with the help of the synset count, was
facilitatory and the same across the two tasks. The effect of cross entropy was
inhibitory, and also did not differ across tasks. Its effect size (roughly 100 ms)
exceeds that of the spoken frequency effect and that of the number of meanings.
Interestingly, the model with cross entropy as predictor provides an equally tight
fit to the data as the model with entropy and relative entropy as predictors, even
though the latter model had two additional parameters (a beta coefficient for a sec-
ond entropy measure, and a random-effects standard deviation for by-item slopes
for the second entropy measure): the log likelihood of the simpler model with
cross entropy was 2364, while for the more complex model with entropy and rel-
ative entropy it was 2362 (a greater log likelihood implies a better fit). From
this, we conclude that the relevant entropy measure for understanding the role of
paradigmatic complexity during lexical processing of derived words is the cross
entropy measure.

The synset measure in our data estimates the number of meanings that a base
word has (e.g., bank as a part of the river and a financial institution). Generally,
the meaning of a derivative builds on only one of the meanings of its base word
(e.g., embank). The lower the number of synsets, the tighter we may expect the
relationship between the base and its derivatives to be. The synset measure does
not interact with cross entropy, nor does it substantially affect the estimate of its
slope. To further rule out potential semantic confounds, we also considered a
semantic measure that specifically gauges the semantic similarity between a given
derived word and its base. The measure that we used is the LSA score for the
distance between the derived word and its base in co-occurrence space (Landauer
and Dumais, 1997), using the software available at http://lsa.colorado.
edu. For the subset of our mini-paradigms, the LSA scores elicited a significant
facilitatory effect on lexical decision latencies (β̂ = −0.1196, p = 0.0001). As for
the synset measure, there was no significant effect for word naming. Crucially, the
measure of cross entropy retained significance also when the pairwise semantic
similarity between base and derived word in mini-paradigms has been taken into
account.

The presence of random slopes for cross entropy in this model indicates that
the effect of cross entropy varied with mini-class. Table 8 lists the individual
slopes for the different mini-classes that we considered. Slopes range from 0.097
for superlative -est to 0.004 for -ness formations derived from simple base words.
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Figure 5: Partial effects of the predictors for word naming and visual lexical deci-
sion latencies for derived words. The lower panels are calibrated for visual lexical
decision, and come with 95% highest posterior density confidence intervals.
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slope
-est (superlative) 0.097
-ly (adverbial) 0.090
-ness (complex base) 0.086
-able 0.068
-er (comparative) 0.054
-er (deverbal) 0.031
un- 0.021
-ness (simple base) 0.004

Table 8: Estimated slopes for derived words for the different mini-classes, posi-
tioned in decreasing order.

5.3 Base words
Because complex base words (e.g., surprising) come with predictors such as the
frequency of the stem (surprise) that do not apply to the simple base words, we
analyzed the simple and complex base words separately. We proceeded in the
same way as for the derived words. We fitted a mixed-effects model to the data,
observed that again the coefficients for entropy and relative entropy were very
similar and statistically indistinguishable in magnitude and had the same sign,
replaced the two measures by the cross entropy measure, refitted the model and
removed overly influential outliers.

The coefficients of a mixed-effects model fitted to the lexical decision and
naming latencies to the complex base words are listed in Table 9. The corre-
sponding partial effects are graphed in Figure 6.

As for the preceding data sets, we find effects of word length (longer words
elicit longer latencies, upper left panel) and word frequency (more frequent words
elicit shorter latencies, upper center panel). Adding frequency of use in spoken
English as a predictor again contributes significantly to the model over and above
the written frequency measures (upper right panel). The frequency of the base
word (lower left panel of Figure 6) also emerged as a significant predictor, but
with a slope that is substantially shallower than that of the word frequency effect.
The Synset Count of the embedded base word is predictive as well, and facilitatory
just as observed for the derived words (lower center panel). Finally, the lower right
panel shows that there is a small effect of cross entropy. But while for the derived
words, the effect of cross entropy was inhibitory, it is facilitatory for the base
words.

Before discussing this unexpected change in sign, we first inquire whether
facilitation for cross entropy also characterizes the set of simple base words. Ta-
ble 10 lists the partial effects of the predictors that were retained after stepwise
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Figure 6: Partial effects of the predictors for word naming and visual lexical de-
cision latencies for complex base words. Markov chain Monte Carlo based 95%
confidence intervals are shown for those predictors that do not enter into interac-
tions.
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Estimate Lower Upper P
Intercept 6.6006 6.5428 6.6596 0.0001
Experiment=naming -0.0397 -0.0750 -0.0031 0.0326
Length 0.0357 0.0325 0.0387 0.0001
Word Frequency -0.0305 -0.0363 -0.0250 0.0001
Spoken Frequency -0.0143 -0.0195 -0.0090 0.0001
Base Frequency -0.0061 -0.0086 -0.0035 0.0001
Synset Count -0.0230 -0.0311 -0.0147 0.0001
cross entropy -0.1038 -0.1605 -0.0483 0.0002
Experiment=naming:Length -0.0082 -0.0115 -0.0052 0.0001
Experiment=naming:Word Frequency 0.0100 0.0057 0.0141 0.0001

Table 9: Partial effects of the predictors for word naming and visual lexical de-
cision latencies for complex base words. Lower, Upper: 95% highest posterior
density interval; P: Markov chain Monte Carlo p-value.

variable elimination. Figure 7 visualizes these partial effects. The upper left panel
shows the effect of orthographic length, which shows a clear minimum near the
median length (5 letters) for visual lexical decision but not for word naming. For
the latter task, the shorter the word, the easier it is to articulate. For the former
task, 5-letter words emerge as most easily read. The upper right panel shows that,
as for the derived words, spoken frequency allows greater facilitation for visual
lexical decision than for word naming.

Estimate Lower Upper P
Intercept 6.8433 6.7756 6.9097 0.0001
Experiment=naming -0.2520 -0.3213 -0.1885 0.0001
Length (linear) -0.0613 -0.0797 -0.0430 0.0001
Length (quadratic) 0.0067 0.0052 0.0080 0.0001
Spoken Frequency -0.0251 -0.0286 -0.0216 0.0001
Family Size 0.0107 0.0021 0.0193 0.0158
Word Frequency -0.0090 -0.0125 -0.0054 0.0001
cross entropy -0.1316 -0.1823 -0.0869 0.0001
Synset Count -0.0235 -0.0321 -0.0154 0.0001
Experiment=naming:Length (linear) 0.0507 0.0305 0.0722 0.0001
Experiment=naming:Length (quadratic) -0.0034 -0.0050 -0.0018 0.0002
Experiment=naming:Spoken Frequency 0.0173 0.0141 0.0202 0.0001

Table 10: Partial effects of the predictors for word naming and visual lexical deci-
sion latencies for simple base words. Lower, Upper: 95% highest posterior density
interval; P: Markov chain Monte Carlo p-value.
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The lower left panel presents the expected facilitatory effect of the Synset
Count, and illustrates that words with more meanings elicit shorter latencies, for
both word naming and lexical decision. Surprisingly, the lower central panel
shows that the partial effect of Family Size is inhibitory, instead of facilitatory,
as reported for previous experiments. We return to this finding below. The partial
effect of cross entropy is presented in the lower right panel of Figure 7. As for the
complex base words, the effect of cross entropy for simple base words is again
facilitatory.

The analyses of the two sets of base words leave us with two questions. First,
how should we understand the change in sign of the cross entropy effect between
derived words and base words? Second, why do we have inhibition from the
morphological family size for simple base words, and no effect of family size for
complex base words?

With respect to the first question, we note that for base words there is bottom-
up support for only the base word, and no such support for their derivatives. In
the case of derived words, by contrast, there is bottom-up support for the derived
word itself, its base word, and its affix. In other words, for derived words, three
of the four elements in a proportional analogy such as

great : greatest︸ ︷︷ ︸
mini paradigm

= A : -est︸ ︷︷ ︸
mini class

(25)

are actually present in the signal. For derived words, we can therefore under-
stand the effect of cross entropy as reflecting the cost of resolving the proportional
analogy between mini-paradigm and mini-class. More specifically, the cross en-
tropy reflects the average complexity of identifying the derived word in its mini-
paradigm on the basis of the generalized probability distribution of the mini-class.
Thus, the cross entropy can be understood as reflecting the cost of resolving the
ambiguity in the visual input with the help of generalized knowledge in long-term
memory about the corresponding mini-class. From this perspective, the inhibitory
effect of cross entropy for derived words makes perfect sense: The higher the
cross entropy, the more information has to be retrieved from memory to resolve
the proportional analogy.

Let us now consider the facilitatory effect of cross entropy for simple base
words. For simple base words, the visual input is unambiguous, with bottom-
up support only for the word itself. There is no cost of a call on proportional
analogy to resolve morphological ambiguity. In the absence of a morphological
parsing problem, the cross entropy effect apparently reverses and emerges as a
measure of the amount of support the base receives from related derived words co-
activated by the base. Crucially, it is not simply the count of related derived words
(we checked that this count is not predictive for the present data) but rather the

31



2 4 6 8 10 12

55
0

60
0

65
0

70
0

75
0

80
0

length

R
T

lexdec

E
xp

er
im

en
t

naming

2 4 6 8 10

55
0

60
0

65
0

70
0

75
0

80
0

Word Frequency

R
T

0 2 4 6 8 10

55
0

60
0

65
0

70
0

75
0

80
0

Spoken Frequency

R
T

lexdec

naming

0 1 2 3 4

55
0

60
0

65
0

70
0

75
0

80
0

Synset Count

R
T

0 1 2 3 4

55
0

60
0

65
0

70
0

75
0

80
0

Family Size

R
T

0.5 0.6 0.7 0.8 0.9

55
0

60
0

65
0

70
0

75
0

80
0

Cross Entropy

R
T

Figure 7: Partial effects of the predictors for word naming and visual lexical de-
cision latencies for simple base words. Markov chain Monte Carlo based 95%
confidence intervals are shown for those predictors that do not enter into interac-
tions.
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Frequency Family Synset cross RT RT
Size Count entropy lexdec naming

Frequency 1.000 0.320 0.345 -0.527 -0.379 -0.266
Family Size 0.320 1.000 0.643 0.245 -0.473 -0.392
Synset Count 0.345 0.643 1.000 0.092 -0.552 -0.434
cross entropy -0.527 0.245 0.092 1.000 -0.085 -0.101
RT lexical decision -0.379 -0.473 -0.552 -0.085 1.000 0.648
RT naming -0.266 -0.392 -0.434 -0.101 0.648 1.000

Table 11: Pairwise correlations between key predictors and lexical decision
(lexdec) and naming latencies for the set of simple base words.

analogical support for the base given its derivative (defined in the mini-paradigm)
and the general likelihood of a base word having derivatives (defined in the mini-
class).

The second question to be considered is why we observe inhibition from the
morphological family size for simple base words, and no effect of family size for
complex base words. The unexpected inhibitory effect of family size is probably
due to what is known in the statistical literature as suppression (see, e.g., Friedman
and Wall, 2005): When predictor variables are correlated, and both are correlated
with the dependent variable, then, depending on the strength of the former corre-
lation, the beta coefficient of one of the predictors can become non-significant or
even change sign. Table 11 presents the correlation matrix for key predictors, and
reveals a large positive coefficient for the correlation of Family Size and the Synset
Count, and the expected negative correlations for Family Size and response laten-
cies in lexical decision and naming. This by itself is a warning that suppression
might be at issue here.

We therefore inspected whether Family Size was significant in a model for the
simple base words, excluding the Synset Count as predictor. It was not (p > 0.8).
When cross entropy was also removed as predictor, the Family Size measure
emerged as significant (p < 0.01), now with a negative slope, as expected given
previous studies. For the complex base words, excluding only the Synset measure
was sufficient to allow a facilitatory effect of Family Size to emerge. What this
suggests is that the Family Size effect, which has always been understood as a se-
mantic effect (see, e.g., Schreuder and Baayen, 1997; Moscoso del Prado Martín
et al., 2004a), would be a composite effect that bundles effects of semantic similar-
ity and effects of paradigmatic structure. Effects of similarity would then be better
captured by means of the Synset Count, and effects of derivational paradigmatic
structure would then be better captured by means of the cross entropy measure.

The question that arises at this point is whether the semantic aspect of the
Family Size effect has no specifically morphological component whatsoever. To
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answer this question, we first partioned the Synset Count into two disjunct counts,
a count for morphologically related synsets, and a count for morphologically un-
related synsets. A morphologically related synset is a synset in which at least one
of the synset members is morphologically related to the target word (not counting
the target word itself). A morphologically related synset, therefore, is a family
size count that only includes semantically highly related family members.

In the model for the simple base words, we then replaced the Family Size mea-
sure and the Synset Count by the counts of morphologically related and unrelated
synset counts. A mixed-effects analysis revealed that for visual lexical decision
both counts were significant predictors with very similar coefficients (-0.018 and
-0.015 respectively). For the naming latencies, however, only the synset count of
morphologically unrelated synsets was significant. This interaction (p = 0.0049)
shows that in a task such as word naming, which does not require deep seman-
tic processing, semantic ambiguity that arises through morphological connectivity
does not play a role. By contrast, the lexical decision task, which invites deeper
semantic processing, allows the effect of morphologically related words that are
also very similar in meaning to become visible. We therefore conclude that mor-
phologically related words that are also semantically very similar have a special
status compared to semantically similar but morphologically unrelated words (see
also Moscoso del Prado Martín et al., 2004a).

6 Concluding remarks
In the preceding sections, we reviewed and presented studies each of which ad-
dressed a specific aspect of the complexities of paradigmatic structure in lexical
processing. In order to obtain a model for the full complexity for an inflected
variant we, we combine equations (10), (14), and (15) and add the effects of the
entropy and relative entropy measures, leading to the following equation:

I ∝ β0 + β1 log2 PrN(we) + β2 log2 PrN(w) +

+ β3 log2

(
Prπ(e)/Re∑
e Prπ(e)/Re

)
+

+ β4 log2

(
Prπ(we)/Re∑
e Prπ(we)/Re

)
+

+ β5Hd +

+ β6Hi + β7RE. (26)

Large regression studies are called for that bring all these variables into play si-
multaneously. However, even though (26) is far from simple, it is only a first
step towards quantifying the complexities of inflectional processing. We mention
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here only a few of the issues that should be considered for a more comprehensive
model.

First, Kostić et al. (2003) calculated the number of functions and meanings
Re of exponent e conditionally on a lexeme’s inflectional class. For instance, the
number of functions and meanings listed for the exponent a for masculine nouns
in Table 2, 109, is the sum of the numbers of functions and meanings for mascu-
line genitive and the masculine accusative singular. This provides a lower bound
for the actual ambiguity of the exponent, as the same exponent is found for nomi-
native singulars and genitive plurals for regular feminine nouns. The justification
for conditioning on inflectional class is that the stem to which an exponent at-
taches arguably provides information about its inflectional class. This reduces the
uncertainty about the functions and meanings of an exponent to the uncertainty
in its own class. Nevertheless, it seems likely that an exponent that is unique to
one inflectional class (e.g., Serbian ama for regular feminine nouns) is easier to
process than an exponent that occurs across all inflectional classes (e.g., a, u), es-
pecially when experimental items are not blocked by inflectional class. (Further
complications that should be considered are the consequences of, for instance,
masculine nouns (e.g., sudija "judge", sluga "servant") taking the same inflec-
tional exponents as regular feminine nouns do, and of animate masculine nouns
being associated with a pattern of exponents that differs from that associated with
inanimate masculine nouns.)

Second, the standard organization of exponents by number and case has not
played a role in the studies that we discussed. Thus far, preliminary analyses of the
experimental data available to us have not revealed an independent predictive role
for case, over and above the attested role of ambiguity with respect to numbers of
functions and meanings. This is certainly an issue that requires further empirical
investigation, as organization by case provides insight into the way that functions
and meanings are bundled across inflectional classes.

Third, we have not considered generalizations across, for instance, irregular
and regular feminine nouns in Serbian, along the lines of Clahsen et al. (2001).
The extent to which inflected forms inherit higher-order generalizations about
their phonological form provides further constraints on lexical processing.

Fourth, the size of inflectional paradigms has not been investigated systemat-
ically. Although the nominal inflectional classes of Serbian are an enormous step
forward compared to the nominal paradigms of English or Dutch, the complexi-
ties of verbal paradigms can be orders of magnitude larger. From an information-
theoretic perspective, the entropy of the complex verbal paradigms of Serbian
must be much larger than the entropy of nominal paradigms, and one would ex-
pect this difference to be reflected in elongated processing latencies for inflected
verbs. The study by Traficante and Burani (2003) provides evidence supporting
this prediction. They observed that inflected verbs in Italian elicited longer pro-
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cessing latencies than inflected adjectives.
Fifth, all results reported here are based on visual comprehension tasks (lexical

decision, word naming). Some of the present results are bound to change as this
line of research is extended to other tasks and across modalities. For instance, the
effect of inflectional entropy reported by Baayen et al. (2006) for visual lexical
decision and word naming was facilitatory in nature. However, in a production
study by Bien (2007), inflectional entropy was inhibitory. In lexical decision, a
complex paradigm is an index of higher lexicality, and may therefore elicit shorter
response latencies. In production, however, the paradigm has to be accessed, and
a specific word form has to be extracted from the paradigm. This may explain why
in production a greater paradigm complexity goes hand in hand with increasing
processing costs. More in general, it will be important to establish paradigmatic
effects for lexical processing in natural discourse using tasks that do not, or only
minimally, impose their own constraints on processing.

Sixth, it will be equally important to obtain distributional lexical measures that
are more sensitive to contextual variation than the abstract frequency counts and
theoretical concepts of functions and meanings that have been used thus far. In-
terestingly, Moscoso del Prado Martín et al. (2008) and Filipović Durdević (2007)
report excellent predictivity for lexical processing of more complex information
theoretic measures of morphological and semantic connectivity derived bottom-up
from a corpus of Serbian.

To conclude, it is clear that the information theoretic measures that we have
proposed and illustrated in this chapter capture only part of the multidimensional
complexity of lexical processing. Each measure by itself presents, as it were,
only one plane cross-cutting this multidimensional space. In spite of these limi-
tations, the extent to which the present information-theoretic approach converges
with Word and Paradigm morphology is striking. Across our experimental data
sets we find evidence for exemplars, irrespective of whether the language under
investigation is Dutch, English, or Serbian. At the same time, we observe the pre-
dictivity of entropy measures, which generalize across probability distributions
tied to subsets of these exemplars, and evaluate the complexity of paradigms and
the divergence between different levels of morphological organization. However,
all the results discussed here pertain to the processing of familiar words. In order
to properly gauge the processing complexity of new inflected and derived words,
it will be necessary to combine Word and Paradigm morphology and the present
information theoretic approach with memory-based computational models of lan-
guage processing (Daelemans and Van den Bosch, 2005).
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