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In the last forty years, research on models of spoken and written language has
been split between two seemingly irreconcilable traditions: formal linguistics in the
Chomsky tradition, and information theory in the Shannon tradition. Zellig Har-
ris had advocated a close alliance between grammatical and information-theoretic
principles in the analysis of natural language, and early formal-language theory
provided another strong link between information theory and linguistics. Neverthe-
less, in most research on language and computation, grammatical and information-
theoretic approaches had moved far apart.

Today, after many years in the defensive, the information-theoretic approach
has gained new strength and achieved practical successes in speech recognition,
information retrieval, and, increasingly, in language analysis and machine transla-
tion. The exponential increase in the speed and storage capacity of computers is
the proximate cause of these engineering successes, allowing the automatic estima-
tion of the parameters of probabilistic models of language by counting occurrences
of linguistic events in very large bodies of text and speech. However, I will also
argue that information-theoretic and computational ideas are playing an increas-
ing role in the scientific understanding of language, and will help bring together
formal-linguistic and information-theoretic perspectives.
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1. The Great Divide

In the last forty years, research on models of spoken and written language has been
split between two seemingly irreconcilable points of view: formal linguistics in the
Chomsky tradition, and information theory in the Shannon tradition. Chomsky
(1957)’s famous quote signals the beginning of the split:

(1) Colorless green ideas sleep furiously.
(2) Furiously sleep ideas green colorless.
. . . It is fair to assume that neither sentence (1) nor (2) (nor indeed

any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical model for grammaticalness, these sentences will
be ruled out on identical grounds as equally ‘remote’ from English. Yet
(1), though nonsensical, is grammatical, while (2) is not.

Before and after the split, Zellig Harris had advocated a close alliance between
grammatical and information-theoretic principles in the analysis of natural lan-
guage (Harris, 1951, 1991). Early formal-language theory provided another strong
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link between information theory and linguistics. Nevertheless, in most research on
language and computation, those bridges were lost in an urge to take sides that
was as much personal and ideological as scientific.

Today, after many years in the defensive, the information-theoretic is again
thriving and has led to practical successes in speech recognition, information re-
trieval, and, increasingly, in language analysis and machine translation. The expo-
nential increase in the speed and storage capacity of computers is the proximate
cause of these successes, allowing the automatic estimation of the parameters of
computational models of language by counting occurrences of linguistic events in
very large bodies of text and speech. However, vastly increased computer power
would be irrelevant if automatically derived models or linguistic data were not able
to generalize to unseen data. I will argue below that progress in the design and anal-
ysis of such models is not only playing a central role in those practical advances
but also carry the promise of fundamentally deeper understanding of information-
theoretic and computational-complexity constraints on language acquisition.

2. Harris’s Program

The ascent of Chomskian generative linguistics in the early 1960’s swept the focus
of attention away from distributional views of language, especially those based on
the earlier structuralist tradition. In that tradition, Zellig Harris developed what is
probably the best articulated proposal for a marriage of linguistics and information
theory. This proposal involves four main so-called constraints (Harris, 1988):

Partial order “[ . . . ] for each word [ . . . ] there are zero or more classes of words,
called its arguments, such that the given word will not occur in a sentence
unless one word [ . . . ] of each of its argument classes is present.”

There’s a strong similarity between the argument class information for a word
as suggested by Harris and its type in categorial grammar, or subcatego-
rization frames in other linguistic formalisms. However, traditional categorial
grammar (Lambek, 1958) conflates function-argument relationships and lin-
ear order, whereas Harris factors out linear order explicitly. It is only more
recently that categorial grammar has acquired the technical means to inves-
tigate such factorizations (Morrill, 1994; Moortgat, 1995). It becomes then
clear that the Harris’s partial order may be formalized as the partial order
among set-theoretic function types. However, unlike modern categorial gram-
mar, Harris’s partial order constraint specifies only the basic configurations
corresponding to elementary clauses, while complex clauses are a result of
applying another constraint, reduction, to several elementary clauses.

Likelihood “[ . . . ] each word has a particular and roughly stable likelihood of
occurring as argument, or operator, with a given other word, though there are
many cases of uncertainty, disagreement among speakers, and change through
time.”

Using current terminology, one might interpret the likelihood constraint as
a probabilistic version of selectional restrictions. However, Harris makes a
sharp distinction between general language, in which likelihoods for fillers
of argument positions represent tendencies, and technical sublanguages, in
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which there are hard constraints on argument fillers, and thus correspond
more closely to the usual notion of selectional restriction.

Reduction “It consists, for each language, of a few specifiable types of reduction [
. . . ] what is reduced is the high-likelihood [ . . . ] material [ . . . ]; an example
is zeroing the repeated corresponding words under and.”
The reduction constraint tries to account both for morphological processes
like contraction, and for processes that combine elementary clauses into com-
plex clauses, such as relativization, subordination and coordination. In each
case, Harris claims that high-likelihood material may be elided, although is
would seem that additional constraints on reduction may be necessary. Fur-
thermore, connections between reduction-based and transformational analy-
ses (Harris, 1965; Chomsky, 1965) suggest the possibility of modeling string
distributions as the overt projection of a hidden generative process involv-
ing operator-argument structures subject to the likelihood constraint subject
to transformations. Recent work linking transformational and categorial ap-
proaches to syntax makes this possibility especially intriguing (Stabler, 1997;
Cornell, 1997).

Linearization “Since the relation that makes sentences out of words is a partial
order, while speech is linear, a linear projection is involved from the start.”
Harris’s theory left this step rather underspecified. Chomskian transforma-
tional grammar can be seen as an effort to fill in the gap with specific mech-
anisms of sentence generation that could be tested against native speaker
grammaticality judgments.

Thus, linguistic events involve the generation of basic configurations — unordered
simple clauses — whose structure is determined by the partial order constraint
and whose distribution follows the probabilities associated with the likelihood con-
straint. Those probabilities also govern the application of reduction — compression
— to individual configurations or sets of linked configurations. Finally, linearization
yields the observable aspects of the event. As I will discuss in Section 7, though,
the likelihood constraint as stated by Harris, or its current versions, leave out de-
pendencies on the broader discourse context that affect strongly the likelihoods of
linguistic events.

For the present discussion, the most important feature of Harris’s constraints is
how they explicitly link linguistic structure with distributional regularities involving
the relative frequencies of different structural configurations. In particular, Harris
suggested how the structural and distributional regularities could work together to
support language acquisition and use:

[ . . . ] when only a small percentage of all possible sound-sequences
actually occurs in utterances, one can identify the boundaries of words,
and their relative likelihoods, from their sentential environment [ . . . ]

3. Generalization

While Harris discussed the functional role of distributional regularities in language,
he proposed no specific mechanisms by which language users could take advantage
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of those regularities in language acquisition and use. In particular, it is not obvious
that language users can acquire stable distributional information, let alone the
lexical and grammatical information required by the partial-order, reduction and
linearization constraints, from the limited evidence that is available to them from
their linguistic environment. This question created a great opening for Chomsky’s
rationalist critique of empiricist and structuralist linguistics, of which the “green
ideas” quote above is an early instance.

Chomsky concluded that sentences (1) and (2) are equally unlikely from the
observation that neither sentence or ‘part’ thereof would have occurred previously
(Abney, 1996). From this observation, he argued that any statistical model based
on the frequencies of word sequences would have to assign equal, zero, probabilities
to both sentences. But this relies on the unstated assumption that any probabilistic
model necessarily assigns zero probability to unseen events. Indeed, this would be
the case if the model probability estimates were just the relative frequencies of
observed events (the maximum-likelihood estimator). But we now understand that
this näıve method badly overfits the training data.

The problem of overfitting is tightly connected with the question of how a learner
can generalize from a finite training sample. The canonical example is that of fitting
a polynomial to observations. Given a finite set of observed values of a dependent
random variable Y for distinct values of the independent variable X, we seek an
hypothesis for the functional dependency of Y on X. Now, any such set of observa-
tions can be fitted exactly by a polynomial of high-enough degree. But that curve
will typically be a poor predictor of a new observation because it matches exactly
the peculiarities of the training sample. To avoid this, one usually smoothes the
data, using a lower-degree polynomial that may not fit the training data exactly
but that will be less dependent on the vagaries of the sample. Similarly, smoothing
methods can be used in probability models to assign some probability mass to un-
seen events (Jelinek & Mercer, 1980). In fact, one of the earliest such methods, due
to Turing and Good (Good, 1953), had been published before Chomsky’s attack on
empiricism, and has since been used to good effect in statistical models of language
(Katz, 1987).

The use of smoothing and other forms of regularization to constrain the form
of statistical models and ensure better generalization to unseen data is an instance
of a central theme in statistical learning theory, that of the sample complexity
relationship between training sample size, model complexity and generalization
ability of the model. Typical theoretical results in this area give probabilistic bounds
on the generalization error of a model as a function of model error on training data,
sample size, model complexity, and margin of error (Vapnik, 1995). In qualitative
terms, the gap between test and training error — a measure of overfitting — grows
with model complexity for a fixed training sample size, and decreases with sample
size for a fixed model complexity.

To quantify the tradeoff between training set accuracy, generalization to new
data and constraints on the model, we need a rigorous measure of model complexity.
In the polynomial example, the usual intuition is that complexity is measured by
the degree of the polynomial (the number of tunable coefficients in the model), but
intuitions are harder to come by for model classes without a simple parametric form.
Furthermore, even in the polynomial case, the common-sense complexity measure
can be misleading, because certain approaches to polynomial fitting yield much
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smaller model complexity and thus better generalization ability (Vapnik, 1995).
The definition of model complexity is also intimately tied to the learning setting,
for instance whether one assumes that the data has a distribution of known form but
unknown parameters (as is usually done in statistics), or one takes a distribution-
free view in which the data is distributed according to an unknown (but fixed
between training and test) distribution (Valiant, 1984), or even one assumes an
on-line setting in which the goal is to do the best possible prediction on a fixed
sequence incrementally generated by the environment (Littlestone & Warmuth,
1994; Freund & Schapire, 1997). A crucial idea from the distribution-free setting
is that model complexity can be measured, even for an infinite model class, by
combinatorial quantities such as the Vapnik-Chervonenkis (VC) dimension (Vapnik
& Chervonenkis, 1971), which roughly speaking gives the order of a polynomial
bounding how many distinctions can be made between samples by models in the
class, as a function of sample size.

Returning to the debate between empiricism and rationalism, the relationships
between model complexity, sample size and overfitting developed in learning theory
may help clarify the famous argument from poverty of the stimulus (APS). Re-
acting to empiricist and especially behaviorist theories, Chomsky and others have
argued that general-purpose learning abilities are not sufficient to explain children’s
acquisition of their native language from the (according to them) very limited lin-
guistic experience that is available to the learner. In particular, they claimed that
linguistic experience does not provide negative examples of grammaticality, making
the learner’s task that much harder. Therefore, they conclude, a specialized innate
language faculty must be involved. The “green ideas” is an early instance of the
same argument, asserting that statistical procedures alone cannot acquire a model
of grammaticality from the data available to the learner.

The APS does not just require restrictions on model classes to ensure effective
generalization from finite data, which would be unobjectionable from a learning-
theoretic viewpoint. In its usual form, the APS also claims that only a learn-
ing mechanism developed specifically for language could generalize well from lim-
ited linguistic experience. The flaw in this argument is that it assumes implic-
itly that the only constraints on a learner are those arising from particular rep-
resentations of the learner’s knowledge, whereas we now know that the informa-
tional difficulty of learning problems can be charaterized by purely combinatorial,
representation-independent, means. Statistical learning theory gives us the tools to
compute empirically-testable lower bounds on sample sizes that would guarantee
learnability for given model classes, although such bounds can be very pessimistic
unless they take into account constraints on the model search procedure as well.
Nevertheless, it is unlikely that the debate over the APS can become empirically
grounded without taking into account such calculations, since the stimuli that APS
supporters claimed to be missing are actually present with significant frequency
(Pullum, 1996).

The APS reached an extreme form with Chomsky’s principles-and-parameters
theory, according to which learnability requires that the set of possible natural
languages be generated by the settings of a finite set of finitely-valued parameters
(Chomsky, 1986, p. 149). But this extreme constraint is neither necessary, since
infinite model classes of finite VC dimension are learnable from an information-
theoretic point of view, nor sufficient, because even finite classes may not be effi-
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ciently learnable, that is, the search for a model with good generalization may be
computationally intractable† even though the information is in principle available
(Kearns & Valiant, 1994).

4. Hidden Variables

Early empiricist theories of linguistic behavior made themselves easy targets of
critiques like that of Chomsky (1959) by denying a significant role for the internal,
unobservable, state of the language user. Thus, in a Markov model of language, all
the state information would be represented by the externally observable sequence
of past linguistic behavior. However, even in this case the empiricist position was
being somewhat oversimplified. If we consider a language user that updates its
expectations and probable responses according to statistics collected from its past
experience, those expectations and response propensities, however represented, are
a part of the user state that is not directly available to observation. Furthermore,
the behavior of language users may give valuable information about the power of
their experience-encoding mechanisms. For instance, a language user that maintains
statistics over pairs of consecutive words only (bigram statistics) might be less
effective in anticipating and reacting appropriately to the next word than a user
that keeps statistics over longer word sequences; in other words, the bigram model
may have higher entropy. This example, related to finite-state text compression,
may seem simplistic from the point of view of linguistics, but it is a convenient
testbed for ideas in statistical modeling and constraints on model structure, and
introduces the idea of a hidden modeling state in a very simple form.

Hidden random variables in a language user’s state, or rather statistics involving
their joint values, represent the user’s uncertainty about the interpretation, and
best response to, events observed so far. Such uncertainty may not be just over
the interpretation of a particular course of events, but also over which particular
model in a class of models is a best compromise between fitting the experience so
far and generalizing to new experience. When the best choice of model is uncertain,
Bayesian model averaging (Willems, Shtarkov, & Tjalkens, 1995) can be used to
combine the predictions of different candidate models according to the language
user’s degree of belief in them, as measured by their past success. Model averaging
is thus a way for learners to hedge their bets on particular grammars, in which
the initial bets represent a prior belief on particular grammars and are updated
according to a regularizing procedure that balances fit to immediate experience with
predictive power over to new experience. The prior distribution on grammars can
be seen as a form of innate knowledge that implicitly biases the learner towards
“better” — in particular, less complex — grammars. In particular, any infinite
class of grammars can be given a universal prior based on the number of bits
needed to encode members of the class, which favors the least complex grammars
compatible with the data (Solomonoff, 1964; Horning, 1969). However, those results
did not provide a way of quantifying the relationship between a prior over grammars,
training sample size and generalization power, and in any case seems to have been
ignored by those interested in language acquisition and the APS. Recent advances in

† I use “intractable” in this paper in the usual sense from theory of computation of a problem
that has been proven to belong to one of the standard classes believed to require more than
polynomial time on a deterministic sequential computer, for instance the NP-hard problems.
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statistical learning theory (McAllester, 1999) may provide new theoretical impetus
to that research direction, since they show that a prior over models can play a
similar regularizing role to a combinatorial complexity measure.

The other role for hidden variables, capturing uncertainty in the interpreta-
tion of particular experience, becomes especially interesting in modeling ambiguity.
For example, going back to Harris’s theory, each of the constraints involves covert
choices by the language user: assignment of types — positions in the partial or-
der — to lexical items, lexical choice according to selection probabilities, reduction
choices according to the distributional statistics of predictability, and linearization
choices. More generally, any model of language that appeals to non-observables, for
instance any model that assigns syntactic analyses, will require hidden variables.

Hidden variables representing uncertainty of interpretation can also be used
to create factored models of joint distributions that have far fewer parameters to
estimate, and are thus easier to learn, than models of the full joint distribution. As
a very simple but useful example, we may approximate the conditional probability
p(x, y) of occurrence of two words x and y in a given configuration as

p(x, y) = p(x)
∑

c

p(y|c)p(c|x) ,

where c a hidden “class” variable for the associations between x and y in the
configuration under study. For a vocabulary of size V and C classes, this model
uses O(CV ) parameters rather than the O(N2) parameters of the direct model for
the joint distribution and is thus less prone to overfitting if C ! V . In particular,
when (x, y) = (vi, vi+1) we have an aggregate bigram model (Saul & Pereira, 1997),
which is useful for modeling word sequences that include unseen bigrams. With
such a model, we can approximate the probability or a string p(w1 · · ·wn) by

p(w1 · · ·wn) = p(w1)
n∏

i=2

p(wi|wi−1) .

Using this estimate for the probability of a string and an aggregate model with C =
16 trained on newspaper text using the expectation-maximization (EM) method
(Dempster, Laird, & Rubin, 1977), we find that

p(Colorless green ideas sleep furiously)
p(Furiously sleep ideas green colorless)

≈ 2 × 105 .

Thus, a suitably constrained statistical model, even a very simple one, can meet
Chomsky’s particular challenge.

A plausible and well-defined model of the statistical dependencies among the
hidden variables is however not in general sufficient, since the problem of setting
the corresponding conditional probabilities from observable linguistic material is
in most cases computationally intractable (Abe & Warmuth, 1992). Nevertheless,
those intractability results have not precluded significant algorithmic and experi-
mental progress with carefully designed model classes and learning methods such
as EM and variants, especially in speech processing (Baum & Petrie, 1966; Baker,
1979). In particular, the learning problem is easier in practice it interactions be-
tween hidden variables tend to factor via the observed variables.
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5. Lexicalized Models

Harris’s model of dependency and selection is lexicalized in the sense that all pos-
tulated relationships are between the words in (precursors for) sentences, rather
than the relationships between structures in generative grammar. From the points
of view of distributional modeling and machine learning, an important property of
lexicalized models is that they anchor analyses in observable cooccurrences between
words, rather than in unobservable relationships among hypothetical grammatical
structures. † In a probabilistic setting, a way to state this more precisely is that
lexicalization makes it easier to factor the interactions between the hidden variables
by conditioning on the observed sentence.

Even lexicalized models will involve hidden decisions if they allow ambiguous
interpretations. As noted in the previous section, hidden-variable models are com-
putationally difficult to learn from evidence involving the observable variables alone.
An alternative strategy is to constrain the hidden variables by associating sentences
with disambiguating information. At one extreme, that information might be a full
analysis. In this case, which is very interesting from computational and applica-
tions perspectives, recent work has shown that lexicalized probabilistic context-free
grammars can be learned automatically that perform with remarkable accuracy on
novel material (Charniak, 1997; Collins, 1998). Besides lexicalization, these models
factor the sentence generation process into a sequence of conditionally indepen-
dent events that reflect such linguistic distinctions as those of head and dependent
and of argument and adjunct. That is, the models are in effect lexically-based
stochastic generative grammars, and the conditional independence assumptions on
the generation process are a particular kind of Markovian assumption. Crucially,
these assumptions apply to the hidden generative decisions, not to the observable
utterance, and thus allow for analysis ambiguity.

The learning algorithms just discussed need to be given the full correct syntac-
tic analysis of each training example, and are thus not realistic models of human
language acquisition. One possible direction for reducing the unrealistic amount of
supervision required would be to use instead additional observables correlated with
the hidden variables, such as prosodic information or perceptual input associated
with the content of the linguistic input (Siskind, 1996; Roy & Pentland, 1999). More
generally, we may be able to replace direct supervision by indirect correlations, as
I now discuss.

6. The Power of Correlations

How poor is the stimulus that the language learner exploits to acquire its native
language? As I just observed, linguistic experience is not just a string of words, but
it is grounded in a rich perceptual and motor environment that is likely to provide
crucial clues to the acquisition, interpretation and production processes, if for no

† This property could well make lexicalized models less rather than more palatable to Chom-
skian linguists, for whom structural relationships are the prime subject of theory. But notice that
Chomsky’s more recent “minimalist program” (Chomsky, 1995) is much more lexically-based than
any of his theories since “Aspects” (Chomsky, 1965), in ways that reminiscent of other lexicalized
multistratal theories, in particular lexical-functional grammar (Bresnan, 1982), HPSG (Pollard &
Sag, 1994), and certain varieties of categorial grammar (Morrill, 1994; Moortgat, 1995; Cornell,
1997).
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other reason than for the functional one that much of the linguistic experience is
about that non-linguistic environment. But this points to a fundamental weakness
in much of the work discussed so far: both in formal grammar and in most compu-
tational models of language, language is taken as a completely autonomous process
that can be independently analyzed. † Indeed, a simplistic use of information theory
suffers from the same problem, in that the basic measures of information content
of a signal are intrinsic, rather than relative to the correlations between a signal
and events of interest (the meaning(s) of the signal). In particular, Harris’s likeli-
hood and reduction constraints appear to ignore the content-carrying function of
utterances. Fortunately, information theory provides a ready tool for quantifying
information about with the notion of mutual information (Cover & Thomas, 1991),
from which a suitable notion of compression relative to side variables of interest
can be defined (Tishby, Pereira, & Bialek, 1999).

Given the enormous conceptual and technical difficulties of building a com-
prehensive theory of grounded language processing, treating language as an au-
tonomous system is very tempting. However, there is a weaker form of grounding
that can be exploited more readily than physical grounding, namely grounding in
a linguistic context. Following this path, sentences can be viewed as evidence for
other sentences through inference, and the effectiveness of a language processor
may be measured by its accuracy in deciding whether a sentence entails another,
or whether an answer is appropriate for a question.

Furthermore, there is much empirical evidence that linguistic grounding carries
more information than it might seem at first sight. For instance, all of the most
successful information retrieval systems ignore the order of words and just use
the frequencies of words in documents (Salton, 1989) in the so-called bag-of-words
approach. Since similar situations are described in similar ways, simple statistical
similarity measures between the word distributions in documents and queries are
effective in retrieving documents relevant to a given query. In the same way, word
senses can be automatically disambiguated by measuring the statistical similarity
between the bag of words surrounding an occurrence of the ambiguous word and
the bags of words associated to definitions or examples of the different senses of the
word (Schütze, 1997).

In both information retrieval and sense disambiguation, bag-of-words techniques
are successful because of the underlying coherence of purposeful language, at syn-
tactic, semantic, and discourse levels. The one sense per discourse principle (Gale,
Church, & Yarowsky, 1992) captures a particular form of this coherence. For ex-
ample, the cooccurrence of the words “stocks”, “bonds” and “bank” in the same
passage is potentially indicative of a financial subject matter, and thus tends to
disambiguate those word occurrences, reducing the likelihood that the “bank” is a
river bank, that the “bonds” are chemical bonds, or that the “stocks” are an ancient
punishment device. These correlations, like the correlations between utterances and
their physical context, allow a language processor to learn from its linguistic envi-
ronment with very little or no supervision (Yarowsky, 1995), and have suggested
new machine-learning settings such as co-training (Blum & Mitchell, 1998).

† I include under this description all the work on formal semantics of natural language, since
logical representations of the meanings of sentences are as unobservable as syntactic analyses, and
thus equally artificial as inputs to a language acquisition process.
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Both lexicalized grammars and bag-of-words models represent statistical associ-
ations between words in certain configurations. However, the kinds of associations
represented are rather different. The associations in lexicalized grammars are me-
diated by a hidden assignment of dependency relationships to pairs of word occur-
rences in an utterance. Many such assignments are potentially available, leading
to great structural ambiguity, as discussed in Section 5. In contrast, the associ-
ations in bag-of-words models and many other statistical models (for instance,
Markov models) are defined over very impoverished but unambiguous overt struc-
tures. Furthermore, effective lexicalized models must make very strong statistical
independence assumptions between parts of the underlying structure, thus missing
the global coherence correlations that bag-of-words models capture.

7. Local Structure and Global Distribution

Current stochastic lexicalized models, with their lexically-determined local correla-
tions, capture much of the information relevant to Harris’s partial-order and likeli-
hood constraints. However, unlike Harris but like dependency grammar and other
monostratal grammatical formalisms, they conflate linearization with the argument
structure given by the partial-order constraint.

In asserting the “rough stability” of the likelihood of a given argument of a
given operator, Harris assumed implicitly a generative model in which dependents
are conditionally independent of the rest of an analysis given the head they de-
pend on. Existing lexicalized models use similar Markovian assumptions, although
they typically extend lexical items with additional features, for instance syntactic
category (Charniak, 1997; Collins, 1998). However, Harris’s information-theoretic
arguments, especially those on reduction, refer to the overall likelihood of a string,
which involves the global correlations discussed in the last section. But such global
correlations are precisely what the Markovian assumptions in generative models
leave out.

Thus Markovian generative models are not able to model the potential correla-
tions between the senses assigned to occurrences of “stocks” and “bonds” in differ-
ent parts of a paragraph, for example. This problem may be addressed in two main
ways. The first is to preserve Markovian assumptions, but to enrich lexical items
with features representing alternative global coherence states. For instance, lexical
items might be decorated with sense features, and local correlations between those
would be used to enforce global coherence. Those features might even be other lex-
ical items, whose cooccurrence with the given items as operators or arguments may
disambiguate them. The difficulty with this approach is that it introduces a plethora
of hidden variables, leading to a correspondingly harder learning problem. Further-
more, it relies on careful crafting of the hidden variables, for instance in choosing
informative sense distinctions. The second approach is to adopt ideas from random
fields and factor probabilities instead as products of exponentials of indicator func-
tions for significant local or global features (events) (Della Pietra, Della Pietra, &
Lafferty, 1997; Ratnaparkhi, 1997; Abney, 1997), which can be built incrementally
with “greedy” algorithms that select at each step the most informative feature.
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8. From Deciding to Understanding

Models based on information-theoretic and machine-learning ideas have been suc-
cessful in a variety of language processing tasks, such as speech recognition and
information retrieval. A common characteristic of most of those tasks is that what
is sought is a decision among a finite set of alternatives, or a ranking of alternatives.
For example:

1. A newswire filter classifies news stories into topics specified by training ex-
amples.

2. A part-of-speech tagger assigns the most likely tags to the words in a docu-
ment.

3. A Web search engine ranks a set of Web pages according to their relevance
to a natural-language query.

4. A speech recognizer decides among the possible transcriptions of a spoken
utterance.

In each case, the task can be formalized as that of learning a mapping from spoken
or written material to a choice or ranking among alternatives. As we know from the
earlier discussion of generalization, we need to restrict our attention to a class of
mappings that can be actually be learned from the available data. Computational
considerations and experimental evaluation will narrow further the mapping classes
under consideration. Finally, a suitable optimization procedure is employed to select
from the class a mapping that minimizes some measure of the error on the training
set.

A potential weakness of such task-directed learning procedures is that they
ignore regularities that are not relevant to the task. Yet, those regularities may
be highly informative about other questions. While language may be redundant
with respect to any particular question, and a task-oriented learner may benefit
greatly from that redundancy as discussed earlier, it does not follow that language
is redundant with respect to the set of all questions that a language user may need
to decide. Furthermore, one may reasonably argue that a task-oriented learner does
not really “understand” language, since it can decide accurately just one question,
while our intuitions about understanding suggest that a competent language user
can decide accurately many questions pertaining to any discourse it processes. For
instance, a competent language user should be able to answer reliably “who did
what to whom” questions pertaining to each clause in the discourse.

We are drawn thus to the question of what kinds of learning tasks may involve
“understanding” but do not force us to attack frontally the immense challenges of
grounded language processing. Automatically-trained machine translation (Brown
et al., 1990; Alshawi & Douglas, 1999) may be such a task, since translation requires
that many questions about a text to be answered accurately to produce a correct
output. Nevertheless, it is easy to find many other reasonable questions that can
be left unanswered while still performing creditably on the task. Indeed, there is
no single “understanding” task, but rather a range of tasks whose difficulty can
be measured by the uncertainty — information-theoretically, the entropy — of
the output in the absence of any information about the input. The objective of a
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learner is then to acquire a function that can reduce that uncertainty by exploiting
the mutual information between inputs and outputs (Tishby & Gorin, 1994). Tasks
(1-4) above are listed roughly in order of increasing output entropy, with machine
translation being possibly even more difficult.

The theoretical representations postulated by formal linguistics — constituent
structure, functional and dependency structures, logical form — can also be under-
stood as codified answers to particular kinds of questions pertaining to the text,
with their own degrees of information-theoretic difficulty. For instance, different as-
signments of arguments to thematic roles lead to different different correct answers
to “who did what to whom” questions. From this point of view, the task of the
learner is to acquire an accurate procedure for deciding whether a simple sentence
follows from a discourse, rather than the more traditional tasks of deciding gram-
maticality or assigning structural descriptions. Structural descriptions will still play
an important role in such a theory, but now as proxies for informational relation-
ships between external linguistic events instead of end-products of the theory.

9. Summary

While researchers in information retrieval, statistical pattern recognition, and neu-
ral networks kept developing theoretical and experimental approaches to the prob-
lem of generalization, that work was ignored by formal linguistics for both cultural
and substantive reasons. Among the substantive reasons, possibly the most impor-
tant was that the models proposed, even if successful in practice, failed to capture
the productive, recursive nature of linguistic events.

Recent advances in machine learning and statistical models are starting to sup-
ply the missing ingredients. Lexicalized statistical models informed by linguistic
notions such as phrase head, argument and adjunct specify how complex linguistic
events can be generated and analyzed as sequences of elementary decisions. Ma-
chine learning suggests how rules for the elementary decisions can be learned from
examples of behavior, and how the learned decision rules generalize to novel lin-
guistic situations. Probabilities can be assigned to complex linguistic events, even
novel ones, by using the causal structure of the underlying models to propagate the
uncertainty in the elementary decisions.

Such statistical models of local structure are complemented by the models of
larger-scale correlations that have been developed in information retrieval and
speech recognition. These models have proven quite successful in learning auto-
matically how to rank possible answers to a given question, but it is still unclear
how they may combine with lexical models in a unified account of the relationship
between linguistic structure and statistical distribution.

Furthermore, we have barely touched the question of what such models may
say about human language acquisition. Although statistical learning theory and its
computational extensions can help us ask better questions and rule out seductive
non sequiturs, their quantitative results are still too coarse to narrow significantly
the field of possible acquisition mechanisms. However, some of the most success-
ful recent advances in machine learning arose from theoretical analysis (Cortes &
Vapnik, 1995; Freund & Schapire, 1997), and theory is also helping to sharpen our
understanding of the power and limitations of informally-designed learning algo-
rithms.
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All in all, while much remains to be done, we may well be seeing the begin-
ning of a new version of the Harris program, in which computational models con-
strained by grammatical considerations define broad classes of possible grammars,
and information-theoretic principles specify how those models are fitted to actual
linguistic data.
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