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Abstract

Human communication is unparalleled in the animal kingdom. The key distinctive feature of our language is

productivity: we are able to express an infinite number of ideas using a limited set of words. Traditionally, it

has been argued or assumed that productivity emerged as a consequence of very specific, innate grammat-

ical systems. Here we formally develop an alternative hypothesis: productivity may have rather solely arisen

as a consequence of increasing the number of signals (e.g. sentences) in a communication system, under the

additional assumption that the processing mechanisms are algorithmically unconstrained. Using tools from

algorithmic information theory, we examine the consequences of two intuitive constraints on the probability

that a language will be infinitely productive. We prove that under maximum entropy assumptions, increasing

the complexity of a language will not strongly pressure it to be finite or infinite. In contrast, increasing the

number of signals in a language increases the probability of languages that have—in fact—infinite cardinality.

Thus, across evolutionary time, the productivity of human language could have arisen solely from algorithmic

randomness combined with a communicative pressure for a large number of signals.
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1. Introduction

A remarkable feature of human cognition is that we are

productive thinkers (Fodor and Pylyshyn 1988;

Corballis 1991), able to represent in essence an infinite

number of ideas. This generative capacity is reflected in

human language, which permits construction of novel

phrases and sentences, argued to be infinite by Chomsky

(1957, 1969).1 Wilhelm von Humbolt famously noted

that language makes ‘infinite use of finite means’, mean-

ing that a limited set of words and rules give rise to a

seemingly unbounded variety of linguistic expressions.

Although the productivity of human minds has long

been celebrated in cognitive science, little or no work

has attempted to examine the fundamental formal prop-

erties that might lead to such unbounded capacity.

In particular, what kinds of pressures would lead

naturally-occurring computational systems to develop

representations supporting infinitely many concepts?

We present a theoretical analysis of productivity that

explores the effects of two kinds of constraints—the com-

plexity of a language or grammar, and the number of sig-

nals in a language—on the probability that a linguistic

system will be infinitely productive, meaning that it gram-

matically admits an infinite number of sentences. To do

this, we develop a new approach to thinking about the

origins of language and cognition: we consider computa-

tional systems that are constrained in some dimensions,

but subject to random chance in others. The consequences

1 See Pullum and Scholz (2010) for critiques of the formal

arguments supporting this view.
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of this kind of constrained randomness may be important

for understanding biological systems like those supporting

thinking, which have been shaped in some ways—but

probably not all ways—by evolutionary pressures. We

formalize productivity using tools from formal language

theory (Hopcroft et al. 1979), Kolmogorov complexity

(Li and Vit�anyi 2008), and algorithmic information the-

ory (Solomonoff 1964a,b; Chaitin 1982). These tools

have been used recently to resolve questions of ideal learn-

ing of natural language (Chater and Vit�anyi 2007), estab-

lishing broad conditions (contra (Gold 1967)) under

which learners could identify the right natural language

out of the space of all computable languages.

Our approach is to consider constraining a formal lan-

guage L in some way and examining what the constraint

naturally leads to under an assumption of randomness for

the aspects which are unconstrained. Most critically to

our results, the sense of randomness that we assume is one

where the language is algorithmically random meaning

that it is generated by a computer program whose bits—

other than those enforced by the constraint—are deter-

mined by coin flips. This type of randomness provides a

reasonable default expectation for understanding what be-

havior should be expected from the unconstrained parts of

a complex system; properties of algorithmically random

devices should be considered unsurprising and unremark-

able. The most critical assumption implicit in algorithmic-

ally random is the ‘algorithmic’ part, that people’s brains

are in principle capable of any computation, and therefore

it is sensible to explain phenomena about brains by com-

paring them to a formal computational system. This as-

sumption is made either implicitly or explicitly by all

computational theories in cognitive science.

Our analysis will seek to understand how an algorith-

mically random distribution on L changes as we alter con-

straints C on the system. For instance, if evolution has

increased the complexity of L (through e.g. increasing

brain size), we can look to see what properties otherwise

random processes that have at least a given complexity will

possess. This general philosophy of examining the proper-

ties of constrained computational devices is a new ap-

proach to explaining cognitive phenomena and linguistic

evolution. However, outside of cognitive science, the im-

portance of understanding constrained randomness is well

appreciated. In maximum entropy (Jaynes 1957a,b),

approaches to statistics models can be derived from for-

malized constraints with the additional assumption of ran-

domness for the unconstrained components. This

represents a philosophy for how uncertainty should be

handled in model formulation. The approach is illustrated

by a recent debate about the origins of the normal distribu-

tion. Lyon (2014) argues that many instances where the

normal distribution occurs cannot be explained by the

Central Limit Theorem as the underlying dynamics do not

obviously have additive effects—for instance, in the case of

human heights, where genetic effects may not be additive.

Instead, the normal distribution can arise from systems

that are constrained (in the case of heights, perhaps evolu-

tionarily) to have a given mean and variance, and all other

factors fluctuate at chance. This type of constrained ran-

domness (via maximal entropy) gives rise to normal distri-

butions, a finding of Shannon (1948). Similar surprising

influences of constraints can be seen in physics. Water that

is constrained to a sufficiently narrow vertical column, for

instance, will flow upwards through capillary action. This

behavior was puzzling to early physicists, yet can be under-

stood as a natural consequence of fluid behavior in the

presence of a constraints (adhesion at physical boundaries).

Analogously, we seek to understand if productivity in

language is a natural consequence of combining formal sys-

tems (in particular, decidable sets) and constraints (e.g.

bounded computational complexity). In our case, we im-

agine that some evolutionary or cultural force has shaped

language in one direction, but has left other factors to

chance. When this happens, observed languages may be

just a sample from a maximum entropy conditional distri-

bution P½LjC � where C is a constraint. We present two

proofs that respectively examine two different constraints

C: either the complexity of the processing mechanisms in a

language is above a threshold (Theorem 1) or the number

of valid strings in a language is above a threshold (Theorem

2). The first constraint can be thought of as a lower-bound

on the complexity of the grammatical system underlying

language, a cognitive or computational constraint. The se-

cond constraint corresponds to lower-bounding the number

of signals or sentences permitted in a language, a communi-

cative pressure. Surprisingly, these two constraints give rise

to very different kinds of languages. If independent factors

have increased the complexity of our grammatical system,

samples from P½LjC � will not tend very strongly to have in-

finite or finite languages. In contrast, if humans evolved to

have large-enough sets of signals in their communication

system, such languages will then have a high probability of

having an infinite cardinality.

While most computational work in cognitive science

uses simulations in order to establish the consequences

of formal theories, the system here is simple enough that

we are able to mathematically prove these properties

from the starting assumptions. We view the proofs only

as ways of understanding the computational system—in

spirit much like simulations or model fits—but with the

advantage that we know the behavior of the assumed

computational system with certainty and without

requiring additional implementational assumptions.
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Our proofs then provide strict if-then rules about com-

putational communication systems that may make theo-

rizing additional factors beyond communication and

randomness unparsimonious in understanding linguistic

and cognitive evolution.

2. Formalization and notation

We will consider a language L to be a set of strings

(Hopcroft et al. 1979). This setting is very general: for in-

stance, a language might be the set of strings of valid

English sentences, strings of valid English words, or the

set of binary strings describing images of accordions.

Here, we consider only languages L that are decidable (re-

cursive), meaning that a computer can definitely answer

yes or no as to whether a given string is in L. We will

write the cardinality of a language L as crdðLÞ , which

may be finite (crdðLÞ<1) or infinite (crdðLÞ¼1).

As in the theory of Kolmogorov complexity (Li and

Vit�anyi 2008), we are primarily concerned with the length

of programs (for any fixed Universal Turing Machine)

that decide a language L. We will use Lp to denote the

language decided by a program p, and l(p) to denote the

length in bits of p in a prefix code. While we formally con-

sider p to be a program, p may also be thought of more

traditionally in linguistics as a grammar or any cognitive

system which is relevant to the set of sentences humans

can comprehend and produce. We will consider Lp to be

infinitely productive if its cardinality is infinite

(crdðLpÞ ¼ 1) even though p is finite (lðpÞ < 1).

We seek to study the behavior of P½LpjC � under only a

constraint C, meaning that we should have maximal uncer-

tainty about what p is otherwise (i.e. maximum entropy).

Such uncertainty about a computational system is formalized

in algorithmic information theory (Solomonoff 1964a,b;

Chaitin 1982) and universal artificial intelligence (Hutter

2003, 2005) by imagining that each program p is generated

by flipping a fair coin to determine each of its bits.2 This

means that the probability of any particular program p is

P½p � / 2�lðpÞ: (1)

Note that this in one sense assumes maximum uncer-

tainty about the program, as it is generated by flipping

a coin. However, this framework does ‘build in’ a sim-

plicity bias—a necessity for any distribution on

programs—so that shorter programs have a higher

probability of being generated. As an example of how to

use (1), the probability of generating an infinite lan-

guage (here denoted P½ crdðLÞ ¼ 1 �) is a sum of this

probability over all infinite languages:

P½ crdðLÞ ¼ 1 � /
X

p: crdðLpÞ¼1
2�lðpÞ: (2)

Even though sums like (2) cannot be effectively com-

puted, we are surprisingly still able to study their general

properties and relationships.

3. Results

The first theorem shows that if we force the program p

to be above a certain length k, we cannot conclude any-

thing about the cardinality of Lp. In other words, the

conditional probability that Lp is infinite stays away

from both 0 and 1 if all we know is that l(p) > k. Thus,

a complex computational or grammatical system p will

not guarantee infinite productivity.

Theorem 1. For the probability model in (1), there

exists an � 2 ð0; 1
2Þ such that for all k,

� < P½ crdðLpÞ ¼ 1jlðpÞ > k � < 1� �:

Proof. The proof works by showing that for any infinite

language, there is a finite language close in length, and

vice versa, thus keeping the relative probabilities close as

well. To show this, we show that any infinite language

can be mapped injectively to a finite language by

increasing its length by a bounded amount, and vice

versa. These two facts imply that the relative probabil-

ities cannot be arbitrarily far apart.

For any p with crdðLpÞ ¼ 1, there must exist at least

one p0 with crdðLp0 Þ < 1 and lðpÞ < lðp0Þ < lðpÞ þM

for a fixed bound M which is constant over all p and k.

M is simply the length of a program that given a pro-

gram p, enumerates Lp and accepts only a finite number

of its elements. Moreover, the pairing of p to p0 can be

done injectively if p0 simulates p (thus containing p as a

subprogram). This means that

P½ crdðLp0 Þ < 1^ lðp0Þ > k �

¼ z �
X

p0 : crdðLp0 Þ<1^ lðp0Þ>k

2�lðp0Þ

> z �
X

p: crdðLpÞ¼1^ lðpÞ>k

2�lðpÞ�M

¼ z � 2�M �
X

p: crdðLpÞ¼1^ lðpÞ>k

2�lðpÞ

¼ 2�M � P½ crdðLpÞ ¼ 1 ^ lðpÞ > k �:

(3)2 We note that a random language generated this way

will, with high probability, have a Kolmogorov

Complexity K (p) close to its length l (p) (Li and Vit�anyi

2008), meaning that most languages generated this way

will be closest to their shortest description possible.
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where z is a normalizing constant. Note that the distinc-

tion between p and p0 here is just notational conveni-

ence, to keep this equation aligned with the above. In

particular, P½ crdðLpÞ ¼ 1 ^ lðpÞ > k � and P½ crdðLp0 Þ
¼ 1 ^ lðp0Þ > k � are just notational variants. Equation

(3) therefore shows that the ratio

R ¼ P½ crdðLpÞ ¼ 1 ^ lðpÞ > k �
P½ crdðLpÞ < 1^ lðpÞ > k �

¼ P½ crdðLpÞ ¼ 1jlðpÞ > k �
P½ crdðLpÞ < 1jlðpÞ > k � < 2M: (4)

The conditional probability P½ crdðLÞ ¼ 1jlðpÞ > k � ¼
R=ð1þ RÞ is therefore also bounded away from 1.

Similarly, there is a bound N such that when

crdðLpÞ <1, we can find p0 such that lðpÞ< lðp0Þ< lðpÞ
þ N where crdðLp0 Þ ¼1. N is simply the length of a

program that simulates any other program p and inverts

its yes/no answers (using the decidability of Lp), thus

converting a finite language (Lp) to an infinite one (Lp0 ).

Following same general logic as the above then shows

that

P½ crdðLp0 Þ ¼ 1 ^ lðp0Þ > k � >
2�N � P½ crdðLpÞ < 1^ lðpÞ > k �: ð5Þ

As a result, R in (4) can never be less than 2�N, meaning

that R=ð1þ RÞ is bounded away from zero. h

This theorem says that if evolutionary constraints

have pushed language to have a long or complex algo-

rithmic description p, decidable systems satisfying only

that constraint will not tend very strongly to be infinite

or finite.3 Infinite productivity cannot solely be the re-

sult of an increasingly complex grammar or cognitive

system.

The first theorem studied what happens when we re-

quire that p is at least as long (i.e. complex) as a bound

k. Our next result examines what happens if we know

that a language L has at least a certain cardinality. This

result is very simple and shows that if L is constrained to

contain at least B strings, L will be infinitely productive

with increasing probability as B gets large.

Theorem 2. If at least one infinite language has non-

zero probability (e.g. P½ crdðLÞ ¼ 1 � > 0), then

P½ crdðLpÞ ¼ 1jcrdðLpÞ > B � ! 1

as B!1.

Proof. This theorem results very directly from the defin-

ition of conditional probability PðXjYÞ ¼ PðX \ YÞ=
PðYÞ. Here,

P½ crdðLpÞ ¼ 1jcrdðLÞ > B �

¼ P½ crdðLpÞ ¼ 1 ^ crdðLpÞ > B �
P½ crdðLpÞ > B �

¼ P½ crdðLpÞ ¼ 1 �
P½ crdðLpÞ > B �

¼ P½ crdðLpÞ ¼ 1 �
P½ crdðLpÞ ¼ 1 � þ P½B < crdðLpÞ < 1�:

(6)

As B increases, the second term in the denominator must

approach zero, meaning that the fraction goes to 1. h

We note that this second result holds for a huge range

of possible distributions P½ � �, including the one defined

by (1). We find this result bistable in its intuitive obvious-

ness. Of course as you increase a lower bound B on crdð
LÞ then crdðLÞ will grow toward infinity. But the the-

orem says something a little less obvious: the probability

that crdðLÞ is infinite will approach 1. Intuitively, as B is

increased, the infinite languages will never be ‘excluded’

and so their probability mass will come to dominate.

This means that if an evolutionary or cultural pres-

sure only increases the number of signals in a language

(crdðLÞ )—and the processing mechanisms of the lan-

guage are Turing-complete—the language will naturally

tend to be infinitely productive in the absence of other

constraints. It would be very surprising to meet another

species with rich computational abilities and who com-

municated with many signals, but only finitely many.

4. Discussion and conclusion

We have examined the question of language productiv-

ity very abstractly: what properties of language should

be expected given some simple constraints. We showed

that an infinite language should not be very strongly ex-

pected or unexpected through diachronic forces that cre-

ate only complex processing mechanisms or grammars.

In contrast, a pressure for a language to contain many

strings will, under randomness of the particular algo-

rithm, lead to infinitely productive languages.

Much theorizing in cognitive science and neurosci-

ence has focused on the emergence of syntax as the driv-

ing force in making human language infinite (Chomsky

and DiNozzi 1972; Pinker 1995; Hauser et al. 2002;

Berwick et al. 2013). Some have even argued that a spe-

cific brain region emerged in humans that enabled syn-

tactic computations (Friederici et al. 2006; Friederici

2011). In contrast, use of a variety of communicative

3 Note that the strength of this trend depends on M and

N, but these may be quite small for real computational

systems. For instance, only a few bits may be sufficient

to invert the value of a boolean output.
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signals is typically not treated as a particularly notable

achievement of humans. Indeed, a wide variety of non-

human animals can acquire meanings of hundreds of

words, including chimpanzees and bonobos (Kellogg

and Kellogg 1933; Gardner and Gardner 1969; Savage-

Rumbaugh 1986), dogs (Kaminski et al. 2004), and par-

rots (Pepperberg 2006). Furthermore, even basic compo-

sitionality has been argued to exist in some nonhuman

communication systems (Von Frisch 1974; Zuberbühler

2002) and thought processes (Huber and Gajdon 2006;

Taylor et al. 2007). However, the number of words that

even a four-year old child knows—estimated to be

around 5,000—vastly surpasses the numbers of words

that any nonhuman animal has ever been able to acquire

or the number of signals they naturally possess. By

adulthood, an average human has a vocabulary of some-

where between 10,000 and 20,000 (Kirkpatrick 1891;

D’Anna et al. 1991). Even more remarkably, human lan-

guages allow words to be flexibly combined in sentences

to create new and complex meanings. The number of

signals used in human language is unprecedented in ani-

mal cognition.

A pressure to expand the number of signals—rather

than select for the particular computational

machinery—is consistent with the literature on brain

scaling throughout hominid evolution. Accumulating

evidence indicates that human brains are largely scaled-

up versions of primate brains (Azevedo et al. 2009;

Herculano-Houzel 2012). Our results fit well within this

framework: once animals are capable of rich computa-

tions, there may be no need to postulate new brain re-

gions (that can e.g. perform syntactic computations) or

qualitative changes in some brain circuits. Under algo-

rithmic randomness, expanding the capacity to process

communicative signals—an ability we share with other

animals—may suffice in giving rise to this core property

of human language. Linguistic knowledge is most likely

stored within the fronto-temporal language network

(Fedorenko et al. 2011), and these are exactly the re-

gions that became massively expanded in humans, along

with some additional association zones in the parietal

lobes (Buckner and Krienen 2013). Moreover, evidence

from both brain imaging studies (Fedorenko et al. 2012)

and neuropsychological investigations of patients with

brain damage (Bates and Wulfeck 1989; Menn and

Obler 1990) suggests that the very same regions store

and process meanings of individual words and engage in

combinatorial processing, in line with many modern

grammatical frameworks that do not draw a sharp

boundary between the lexicon and grammar (Bresnan

1982; Pollard and Sag 1994; Goldberg 1994; Jackendoff

2003). This accords with the general notion that the

algorithmic processes of language are deeply connected

to the stored symbols of communicative use.

It is important to point out that our results speak

only to the cardinality of L, not about whether L is com-

municatively or evolutionarily useful. In particular, L

may contain many strings that do not serve a useful

function, even though they are considered ‘grammatical’

(e.g. in L). The inability to explain which strings in L

are useful—as opposed to merely acceptable—represents

a limitation of our current analysis. However, it may be

possible that similar techniques with more substantial

assumptions about the nature of representations, com-

municative scenario, and constraints could explain the

communicative role of elements in L. We believe that

similar types of elaborations could explain factors like

compositionality—for instance, a constraint for many

signals while keeping the total complexity of the compu-

tational device low.

Finally, our results bear an interesting relationship

to the theory of Universal Grammar and standard

approaches in linguistics. A property like productivity

might typically be explained in linguistics by positing

particular innate representations that are infinitely gen-

erative, like grammars or principles (Chomsky 1995).

Our results explain productivity too, but have the ad-

vantage of not requiring us to theorize which specific

representation people use. This is preferable because

modern linguistics has so far failed to behaviorally or

neuroscientifically justify any of its representational

theories. In contrast, our approach shows that product-

ivity may result from virtually any algorithmically

sophisticated processing mechanism which produces

enough signals—itself, a communicative pressure.

Other components of language usually attributed to

Universal Grammar might be derivable from even more

basic computational assumptions, rather than so far

hypothetical cognitive representations and processes.

Compositionality might, for instance, be derivable by

constraining languages to be large but programs small

and efficient. Hierarchical structure, incrementality in

processing, or the arbitrariness of sign could be deriv-

able from communicative pressures (Hockett 1960)

combined with algorithmic considerations as well.

Overall, our results derive the consequences of two

different constraints under the assumption that the un-

constrained aspects of cognition are algorithmically ran-

dom. This provides a useful benchmark for considering

whether the productivity of thought is evolutionarily or

computationally remarkable. So long as evolution

makes a computationally-sophisticated species process

with many signals, we can expect that the communica-

tion of that species will be an infinite formal language.
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The rich productivity and generativity of human lan-

guage and thought is not mysterious or unexpected if

communicative pressures have increased the number of

signals we process and all else has been left to chance.
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