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Efficient coding explains the
universal law of generalization
in human perception
Chris R. Sims*

Perceptual generalization and discrimination are fundamental cognitive abilities. For
example, if a bird eats a poisonous butterfly, it will learn to avoid preying on that species
again by generalizing its past experience to new perceptual stimuli. In cognitive science,
the “universal law of generalization” seeks to explain this ability and states that
generalization between stimuli will follow an exponential function of their distance in
“psychological space.” Here, I challenge existing theoretical explanations for the universal
law and offer an alternative account based on the principle of efficient coding. I show
that the universal law emerges inevitably from any information processing system
(whether biological or artificial) that minimizes the cost of perceptual error subject to
constraints on the ability to process or transmit information.

I
f a bird eats a poisonous or unpalatable spe-
cies of butterfly, it will quickly learn to avoid
preying on that species again in the future,
by avoiding butterflies that look visually sim-
ilar (1). This requires perceptual generaliza-

tion, as no two butterflies look exactly alike. If
generalization is too narrow—it learns to avoid
one specific butterfly, but not others of the same
species—the bird will continue tomistakenly con-
sume toxic butterflies. However, if generalization
is too broad—it avoids all butterflies—it will un-
necessarily exclude edible food sources and con-
sequently limit its fitness. A closely related ability
is perceptual discrimination: If an edible species

of butterfly closely resembles a different, toxic
species (Batesian mimicry), the failure to percep-
tually discriminate between the two will also
lead to negative consequences.
These examples demonstrate that adaptive be-

havior requires perceptual generalization and dis-
crimination abilities that are finely calibrated to
the costs of perceptual error. This is true not just
for predator–prey relationships, but is equally
important for expert-level human performance
in domains such as medicine (2). Not surpris-
ingly, the theoretical study of generalization is
also central to progress in artificial intelligence
and machine learning (3–5).

Just over 30 years ago, cognitive scientist Roger
Shepard suggested that perceptual generaliza-
tion was a suitable candidate for the first “uni-
versal law” in psychological science (6). Shepard’s
universal law of generalization states that the
generalization between two stimuli (essentially,
the probability of confusion) decreases as an ex-
ponential function of their distance within an
appropriate metric “psychological space.” This
exponential generalization pattern has indeed
proved to be near-universal, and the success of the
empirical law has been impressive, accounting for
data spanning a wide range of domains, sensory
modalities, and across multiple species (6–8).
Shepard’s explanation for this phenomenon

revolves around the concept of a “consequential
region” within psychological space that corre-
sponds to a concept. For example, the concept
of poisonous butterflies encompasses some set
of stimuli in psychological space. Given one stim-
ulus known to be an element of this set, the task
facing the organism is to infer whether a novel
stimulus will also fall in the same region; this
task can be framed as one of probabilistic infer-
ence. Subsequent work (9, 10) expanded on the
idea of generalization as probabilistic inference,
to include extrapolating from multiple exemplars
and exploring alternative measures of perceptual
distance or dissimilarity.
Here, I offer a qualitatively different explana-

tion for the origins of the universal law in human
perception, based on the principle of efficient
coding (11), or the idea that biological information
processing should seek to maximize performance
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Fig. 1. Perception is modeled as efficient coding. (A) Sensory signals
are samples from a probability distribution pðxÞ (shown in blue) and
transmitted through a capacity-limited information channel, resulting in
a conditional probability distribution, pðx̂∣xÞ (shown in orange), over
perceived signals x̂ for a given input x ¼ x0. The assumed loss function,
Lðx; x̂Þ, in this example is squared error. Rate-distortion theory provides
the form of the optimal channel pðx̂∣xÞ; see (14). (B) The precision
and bias of the perceptual channel depend on the available capacity;
higher channel capacity enables lower perceptual error and hence
lower expected cost. (C) The optimal pattern of perceptual general-
ization depends on the particular loss function that the channel seeks
to minimize; this example illustrates an asymmetric loss function
in which Lðx; x̂Þ 6¼Lðx̂; xÞ. (D) In rate-distortion theory, optimal
achievable performance is dictated by a “rate-distortion curve,” which plots the minimum information rate (bits per transmission) necessary to achieve a
given level of expected cost. The slope at any point along this curve is mathematically related to the steepness of the generalization gradient. This
example illustrates the rate-distortion curve for a Gaussian information source with squared error cost function. (E) Without further assumptions, rate-
distortion theory directly predicts an exponential generalization gradient as a function of the cost of perceptual error.
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subject to constraints on information processing
capacity.
Critically, the proposed approach also gen-

erates unique predictions that distinguish it
from competing explanations for the universal
law. These include predictions that relate the
slope of the generalization gradient to information-
theoretic quantities, asymmetric generalization
gradients in situations where there are asym-
metric costs for perceptual error, and the finding
that artificial systems (such as the JPEG image
compression algorithm) can also produce an ex-
ponential generalization gradient. The result is a
revised universal law of perceptual generaliza-
tion, which subsumes Shepard’s statement of the
law as a special case.
The approach uses results from the field of

rate-distortion theory, a subdiscipline within in-
formation theory concerned with the design and
analysis of optimal, but capacity-limited, infor-
mation channels (12–14). Previous work has shown
that rate-distortion theory offers a compelling
account of human visual working memory lim-
itations (15, 16).
The current results can be concisely stated

as follows: Perceptual generalization in any ef-
ficient communication system will necessarily
follow an exponential function of the cost of
perceptual error. In this framework, the emer-
gence of the universal law is the signature of an
organism that seeks to perceive the world as best
as possible, according to some utility measure,
subject to available resource limitations.
Figure 1 shows the theoretical framework

and its properties. Perception is modeled as a
capacity-limited information channel in which
afferent sensory signals (x ) are distributed ac-
cording to the distribution pðxÞ . The perceived
signal (x̂Þ is related to its veridical value by a

conditional probability distribution pðx̂∣xÞ. Ca-
pacity limits in the channel prevent transmit-
ting sensory signals with perfect fidelity, and
hence in general, x̂ ≠ x. Instead, the goal of the
channel is to minimize a given loss function,
specified by Lðx; x̂Þ, subject to the constraint
that the amount of information transmitted
by the channel, measured by the mutual infor-
mation Iðx; x̂Þ, is at or below a capacity limit
C. Rate-distortion theory provides analytical
and numerical tools for solving such constrained
optimization problems (12–14).
Notably, several of the properties illustrated

in Fig. 1 (such as a “bias to the mean effect,”
Fig. 1A) are also predicted by Bayesianmodels of
perception. As both are rational or optimal mod-
els of cognition, this is not surprising. Whereas
Bayesianmodels of perception oftenmake atheo-
retic assumptions about the nature of “internal
noise” within a perceptual channel [e.g., (17)],
rate-distortion theory instead gives sensory pro-
cessing limitations a strong theoretical interpre-
tation in terms of constructs from information
theory. Hence, rate-distortion theory can be
viewed as a special case of the more general
class of Bayesianmodels of perception. As will be
shown presently, this also allows the framework
to generate unique predictions.
To connect rate-distortion theory to percep-

tual generalization, one needs a measure of
the strength of generalization from one stim-
ulus to another. Shepard (6) defined the follow-
ing measure:

Gxx̂≜
pxx̂ � px̂x
px̂x̂ � pxx

� �1

2 ð1Þ

where pxx̂ indicates the probability that a re-
sponse associated with stimulus x̂ is made to

stimulusx. According to Shepard’s universal law,
generalization will follow an exponential func-
tion of the distance between x and x̂ in an ap-
propriate psychological space, where the distance
is assumed to obey the basicmetric axioms. Rate-
distortion theory suggests amore general formu-
lation for this law. Using Shepard’s measure of
generalization, rate-distortion theory directly pre-
dicts that generalization should follow

Gxx̂ ¼ exp s
1

2

�
Lðx; x̂Þ þ Lðx̂ ; xÞ �

�

Lðx; xÞ � Lðx̂ ; x̂Þ
�� ð2Þ

where the constant parameter s < 0 is mono-
tonically related to the capacity of the channel.
Note that this includes Shepard’s original uni-
versal law as a special case. If the loss function
satisfies two of the axioms of distance metrics,
namely symmetry ½Lðx; x̂Þ ¼ Lðx̂ ; xÞ� and iden-
tity ½Lðx; xÞ ¼ Lðx̂ ; x̂Þ ¼ 0�, then one can easily
verify that the generalization function reduces to

Gxx̂ ¼ exp½s Lðx; x̂Þ� ð3Þ

Consequently, when the loss function is taken
to be distance in a psychological space, Shepard’s
original universal law emerges from rate-distortion
theory exactly. However, the result in Eq. 2 holds
true under very general conditions, even when
the psychological representation does not corre-
spond to a metric space. As one example, if the
mental representation of complex stimuli consists
of a taxonomy of nested categories (18), the loss
function may be defined in terms of tree dis-
tance between exemplars.
Rate-distortion theory was applied to the re-

sults of several publishedperceptual identification
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Fig. 2. Rate-distortion theory
applied to a range of perceptual
identification experiments.
(A to I) Each panel plots the
strength of generalization against
the inferred cost of perceptual
error. Cost functions were esti-
mated by using Bayesian inference.
Sources of empirical data are as
follows: (A) (27); (B) (28) veteri-
narian data; (C) (29) data from
block 3; (D) (30) experiment 1;
(E) (23) unbiased condition;
(F) (21) signal-to-noise = 0 dB
condition; (G) (31) combined
data from finger and forearm;
(H) (32); (I) (33) subject MP, set
size = 13 condition. (J) Goodness of
fit to the empirical confusion
matrices across all experiments, in
terms of root mean squared error
(RMSE). (K) Deviation between
empirical generalization and the
exponential generalization gradient
predicted by rate-distortion
theory across all experiments.
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experiments (Fig. 2) that use a range of perceptual
modalities (visual, haptic, auditory, gustatory).
Archives of these data, along with model code,
are provided online (19). On each trial of an iden-
tification experiment, a stimulus is randomly
selected from a set, and the observer must iden-
tify it with a unique response. The resulting
data consist of a perceptual confusion matrix,
which gives the empirical frequency that stimu-
lus x produced response x̂. The perceptual loss
function, Lðx; x̂Þ , is estimated from this con-
fusion matrix by means of Bayesian inference.
As shown in Fig. 2, the observed relationship

between the inferred cost of perceptual error (the
estimated loss function L) and the empirical gen-
eralization strength (Gxx̂, given by Eq. 1) follows
an exponential gradient nearly exactly. Nota-
bly, this is not a consequence of a model that
fits the data poorly but forces an exponential
gradient. Rather, as shown in Fig. 2, J and K,
rate-distortion theory simultaneously produces
a precise model of the full probability distrib-
ution over perceptual confusion, as well as ac-
curately predicts the exponential form of the

generalization gradient. The supplementarymate-
rials also include a comparison of rate-distortion
theory to an alternative existing model of per-
ceptual identification, known as the Luce–Shepard
choice model (20).
The key test, however, is whether rate-distortion

theory generates predictions that distinguish it
from competing explanations. The remainder
of the paper focuses on three such predictions.
The first is that the steepness of the general-
ization gradient should bemonotonically related
to the information rate of the perceptual chan-
nel. Specifically, when plotted on a logarithmic
axis, exponential curves such as those shown in
Fig. 2 will appear as straight lines with slope s.
Whereas prior work has treated the slope of gen-
eralization as a free parameter, rate-distortion
theory uniquely provides a strong theoretical in-
terpretation for this quantity. In particular, for
an optimal communication channel, the slope
satisfies

s ¼ dR

dD
ð4Þ

where the term on the right-hand side of this
equation is the slope of the rate-distortion curve
for the channel (12), as illustrated in Fig. 1D. Con-
sequently, experimental manipulations designed
to influence the information rate of the percep-
tual channel (the numerator of this equation)
should have a direct and predictable impact on
the slope of the generalization gradient.
A test of this prediction is provided by the

classic experiments reported in (21). In these ex-
periments, subjects were asked to identify vocal
consonants embedded in six different levels of
white noise (signal-to-noise ratio ranging from
12 to −18 dB). Intuitively, increasing the amount
of noise will decrease the amount of information
about the signal that the observer can process.
Under the assumption that the stimulus noise
influences the information rate of the channel
(the numerator of Eq. 4), but not the cost func-
tion for perceptual error (the denominator), it
is possible to predict the slope of the general-
ization gradient in a parameter-free manner.
The results are shown in Fig. 3A. In this plot, the
generalization curves are shown on a logarithmic
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Fig. 3. Unique predictions of rate-distortion theory.
(A) Rate-distortion theory predicts that the slope of
the generalization gradient depends on the information
rate of the perceptual channel. In this experiment
(21), observers must identify vocal consonants
embedded in varying levels of white noise. When
plotted on a logarithmic axis, an exponential
generalization gradient appears as a straight line.
Rate-distortion theory is used to predict the slope
of the generalization gradient for each condition.
(B) Left and right panels show the inferred loss
functions for the unbiased payoff condition, and
biased payoff condition of the experiment reported
in (23). (C) Asymmetry in the loss function is
revealed by plotting the average cost for an
overestimation error relative to the cost for an
underestimation error of the same magnitude.
The solid line indicates the maximum a posteriori
estimate. The shaded region indicates the
estimated 95% highest-density Bayesian credible
interval. The figure demonstrates that asymmetry
in the cost function appears only when there
are task-defined asymmetries in the cost of
perceptual error.
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axis to illustrate the change in slope across stim-
ulus noise conditions. The empirical slope of the
generalization gradient closely follows the pre-
dictions of rate-distortion theory.
A second prediction of rate-distortion stems

from the fact that unlike in Shepard’s theoretical
account, there is no requirement that perceptual
generalization must be symmetric. Empirical
asymmetries in generalization have previously
been raised as an argument against a metric
representation of perceptual similarity (22). In
the present case, a different theoretical origin
for asymmetry is predicted in terms of asym-
metric costs of perceptual error. An empirical
test of this prediction is found in an experiment
reported in (23). In this experiment, subjects were
tasked with identifying pure tones of varying
loudness. Subjects were motivated to perform
accurately by awarding points for correct re-
sponses and deducting points for errors; points
were exchanged for a monetary bonus at the
end of the experiment. Each subject completed
two experimental conditions. In the neutral con-
dition, payoffs were symmetric for all types of
errors, whereas in the biased condition, over-
estimate errors were more costly than under-
estimate errors.
The inferred loss functions are illustrated in

Fig. 3B for both the neutral and biased condi-
tion. Inferred costs for perceptual error are sym-
metric in the unbiased penalty condition, but
substantially asymmetric in the biased penalty
condition. Formal model comparisons (reported
in the supplementary materials) reveal that the
data are better explained by rate-distortion theory
with an asymmetric cost function, compared to
an alternative model that assumes symmetric
perceptual distance.
Lastly, rate-distortion theory predicts that ex-

ponential generalization gradients should not
be limited to biological information processing,
but rather should be exhibited by any communi-

cation system that operates efficiently in the rate-
distortion sense, whether natural or artificial.
Figure 4 illustrates an identification “experi-
ment” conducted on the JPEG image compres-
sion algorithm. The experiment was performed
by taking grayscale photographs from a natural
scene database (24) and encoding them using
the JPEG algorithm. As JPEG is a form of lossy
compression, the encoded images will almost
certainly introduce perceptual “confusions”—an
input pixel replaced by a somewhat different pixel
at the output stage (Fig. 4A). A confusion matrix
is obtained by collecting the joint statistics of in-
put andJPEG-encodedpixels. Compared tohuman
participants, JPEG has the useful feature that the
objective for perceptual coding is obtainable by
inspection of its algorithm. In brief, JPEG per-
forms a discrete cosine transform (DCT) on an
input image and scales the coefficients by a
weight matrix that emphasizes coding accu-
racy for low spatial frequencies. This weighted
DCT representation is essentially the “psycho-
logical space” for JPEG encoding. Figure 4C plots
the strength of generalization between pixel
values against the average squared error distance
in quantizedDCT space. The results illustrate that
JPEG image coding also conforms to the universal
law of generalization. Although this finding is
consistent with rate-distortion theory, it is dif-
ficult to reconcile with alternative explanations
for the universal law.
The current work is only part of a growing

body of literature showing the broad applica-
bility of efficient coding as a means of under-
standingbiological information processing (25, 26).
As a theoretical framework, efficient coding is
not an alternative to the popular Bayesian per-
ception framework, but rather is an extension in
which sensory limitations are attributed to in-
formation processing capacity limitations. As
perception exists to maximize the utility of be-
havior, it is a compelling idea that evolution

drives perceptual systems toward the regime of
rate-distortion efficiency: optimizing performance
subject to information processing constraints.
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Fig. 4. Investigating perceptual generalization
in the JPEG image compression algorithm.
(A) An image patch encoded by JPEG will
typically introduce pixel-level deviations. In
particular, JPEG optimizes the transmission of
low–spatial frequency components at the
expense of introducing larger errors in coding
higher spatial frequencies. Squared error
within this scaled frequency domain closely
approximates the “cost function” for JPEG
image coding. (B) Conditional probability
distribution over JPEG encoding of a particular
pixel intensity, averaged over a large number
of image patches drawn from a natural scene
image. The behavior of the channel closely
mirrors the predictions of rate-distortion
theory (compare to Fig. 1A). (C) Deviations
between an input and JPEG-encoded grayscale
image of a natural scene conform to the
universal law of generalization.

RESEARCH | REPORT
on A

pril 15, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


30. F. G. Ashby, W. W. Lee, J. Exp. Psychol. Gen. 120, 150–172
(1991).

31. M. Azadi, L. Jones, in World Haptics Conference (WHC), IEEE,
pp. 347–352 (2013).

32. J. M. Grey, J. Acoust. Soc. Am. 61, 1270–1277 (1977).
33. J. N. Rouder, R. D. Morey, N. Cowan, M. Pfaltz, Psychon. Bull.

Rev. 11, 938–944 (2004).

ACKNOWLEDGMENTS

Funding: This research was supported by NSF grant DRL-1560829.
Author contributions: C.R.S. conducted the research and
wrote the manuscript. Competing interests: None declared.
Data and materials availability: Online data archives associated
with this paper are provided via the Open Science Framework,
at https://osf.io/x5ckn/.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/360/6389/652/suppl/DC1
Materials and Methods
Fig. S1

2 October 2017; accepted 3 April 2018
10.1126/science.aaq1118

Sims, Science 360, 652–656 (2018) 11 May 2018 5 of 5

RESEARCH | REPORT
on A

pril 15, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


Efficient coding explains the universal law of generalization in human perception
Chris R. Sims

DOI: 10.1126/science.aaq1118
 (6389), 652-656.360Science 

, this issue p. 652Science
that this relationship can be derived from a consideration of the costs of optimal information coding.
established an exponential relationship between the generalization gradient and interstimuli distance. Sims now shows
different is an easily solved problem. Empirical mapping of human performance across a wide range of domains has 

Deciding whether a novel object is another instance of something already known or an example of something
Balancing costs and performance

ARTICLE TOOLS http://science.sciencemag.org/content/360/6389/652

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2018/05/09/360.6389.652.DC1

REFERENCES

http://science.sciencemag.org/content/360/6389/652#BIBL
This article cites 28 articles, 6 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive 

(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on A
pril 15, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/content/360/6389/652
http://science.sciencemag.org/content/suppl/2018/05/09/360.6389.652.DC1
http://science.sciencemag.org/content/360/6389/652#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

