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It is well known that real-time human language processing is highly incremental and con-
text-driven, and that the strength of a comprehender’s expectation for each word encoun-
tered is a key determinant of the difficulty of integrating that word into the preceding
context. In reading, this differential difficulty is largely manifested in the amount of time
taken to read each word. While numerous studies over the past thirty years have shown
expectation-based effects on reading times driven by lexical, syntactic, semantic, prag-
matic, and other information sources, there has been little progress in establishing the
quantitative relationship between expectation (or prediction) and reading times. Here,
by combining a state-of-the-art computational language model, two large behavioral
data-sets, and non-parametric statistical techniques, we establish for the first time the
quantitative form of this relationship, finding that it is logarithmic over six orders of mag-
nitude in estimated predictability. This result is problematic for a number of established
models of eye movement control in reading, but lends partial support to an optimal per-
ceptual discrimination account of word recognition. We also present a novel model in
which language processing is highly incremental well below the level of the individual
word, and show that it predicts both the shape and time-course of this effect. At a more
general level, this result provides challenges for both anticipatory processing and semantic
integration accounts of lexical predictability effects. And finally, this result provides evi-
dence that comprehenders are highly sensitive to relative differences in predictability –
even for differences between highly unpredictable words – and thus helps bring theoretical
unity to our understanding of the role of prediction at multiple levels of linguistic structure
in real-time language comprehension.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Making probabilistic predictions about the future is a
necessary component of essentially every task that the
brain performs, to the point that it has been proposed as
a fundamental principle underlying its operation (Bar,
2009). One example of this is in language comprehension:
As you read this text, you are unconsciously anticipating
upcoming words based on the constantly-evolving context.
For example, the sentence.
(1)
 My brother came inside to. . .
may well continue any number of ways, but native English
speakers are in general agreement—and you will likely
immediately recognize—that the sentence
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(2)
 The children went outside to. . . likely given the grammatical cont
is almost certain to continue with the word play.

Although play is perfectly reasonable as a continuation
of (1), in (2) it is read more quickly on average (Ehrlich
& Rayner, 1981; Kliegl, Nuthmann, & Engbert, 2006;
McDonald & Shillcock, 2003a; Rayner & Well, 1996). A
wide range of studies have shown that such effects of
predictability or expectation for specific words affect
not only reading times but also neural responses
(DeLong, Urbach, & Kutas, 2005; Kutas & Hillyard,
1984; Kutas & Federmeier, 2011; Van Berkum, Brown,
Zwitserlood, Kooijman, & Hagoort, 2005; Wicha, Bates,
Moreno, & Kutas, 2003) and interpretation of temporarily
ambiguous input (Altmann & Kamide, 1999; Dahan &
Tanenhaus, 2004; Kamide, Altmann, & Haywood, 2003;
Knoeferle, Crocker, Scheepers, & Pickering, 2005; Tanenhaus,
Spivey-Knowlton, Eberhard, & Sedivy, 1995).

A second, related strand of research has shown that
incremental processing difficulty is also affected by expecta-
tions for more abstract levels of linguistic content, including
the predictability of different syntactic (Demberg & Keller,
2008; Ferreira et al., 1986; McRae, Spivey-Knowlton, &
Tanenhaus, 1998), semantic (Federmeier & Kutas, 1999),
and pragmatic (Ni, Crain, & Shankweiler, 1996) structures.
However, the relationship between the effects of expecta-
tions for specific-words and expectations for more abstract
structures remains poorly understood. The most wide-
spread method for assessing expectations for specific
words is the cloze task (Taylor, 1953), in which native
speakers are asked to write continuations of an incomplete
sentence; in the examples above, play is the first word in
over 90% of continuations of (2) but almost never appears
as the first word of continuations of (1). However, the cloze
task makes it quite difficult to precisely measure predicta-
bilities <5–10%, and it is commonly assumed that differ-
ences in lexical expectation between items in this range
do not produce behavioral effects. This contrasts with
studies involving more abstract levels of linguistic struc-
ture, where expectation-based effects are observed even
though the specific word instantiating the structure may
rarely or never be produced in a cloze task. To take one re-
cent example, Levy, Fedorenko, Breen, & Gibson, (2012)
showed that the word who and the immediately following
region of the sentence were read more quickly in sentences
like (3) than in sentences like (4):
(3)
 After the show, a performer who had really
impressed the audience bowed.
(4)
 After the show, a performer bowed who had really
impressed the audience.
1 Note that in psycholinguistics, the term frequency refers specifically to a
word’s unconditional probability of occurrence without regard to context,
P(w), making it quite distinct from context-dependent predictability.
The word who never occurs in practice as a cloze contin-
uation in either context (unpublished data), and so this re-
sult would conventionally be interpreted as arising from
syntactic expectations (Hale, 2001; Ilkin & Sturt, 2011;
Levy, 2008; Levy et al., 2012; Lau, Stroud, Plesch, & Phillips,
2006; Staub & Clifton, 2006): In (4) who is introduced by a
grammatical construction (relative-clause extraposition)
that corpus data indicate is both lower frequency and less
ext than the construction
in (3) (ordinary postmodification by a relative clause), even
though both are infrequent and unlikely in absolute terms.

Probability theory, however, tells us that such differ-
ences in syntactic expectation should also produce differ-
ences in lexical expectation, even if these latter
differences are too small to measure via the cloze task.
We can quantify the predictability of a word w in context
C as its conditional probability of occurrence in that con-
text, P(wjC). Similarly, we write the predictability of a syn-
tactic construction S as P(SjC). In these particular contexts,
w = who can only occur if S = relative clause. The laws of
conditional probability then let us decompose the lexical
predictability as the product of two terms (Demberg & Kel-
ler, 2008; Fossum & Levy, 2012; Roark, Bachrach, Cardenas,
& Pallier, 2009):

PðwhojCÞ ¼ Pðrel: clausejCÞ � Pðwhojrel: clause;CÞ

The first term is the syntactic predictability, and the sec-
ond measures the likelihood that this relative clause will
begin with the word who (as opposed to, say, that). The lat-
ter is presumably roughly constant between these two
contexts, which means that while the precise lexical pre-
dictabilities in (3) and (4) are too small to measure directly,
the ratio between them should be similar to the ratio be-
tween their syntactic predictabilities.

Motivated by such considerations, Hale has suggested
that syntactic and other types of abstract expectations
may affect processing difficulty purely by modulating lex-
ical predictability, which under the surprisal theory of
incremental language processing is measured as log-prob-
ability (Hale, 2001; Levy, 2008). Within surprisal theory,
lexical predictability forms a ‘‘causal bottleneck’’ through
which the many different kinds of more abstract expecta-
tion discussed above must act. But as the above example
shows, an essential requirement for this theory is that
small absolute differences in expectation for low-predict-
ability words must be capable of producing relatively large
effects on processing difficulty, and it is not known
whether this is the case. In fact, almost nothing is known
about the quantitative form of the relationship between
word predictability and the measurable correlates of pro-
cessing difficulty such as reading time. This is in striking
contrast to the study of isolated word recognition, where
it has been known since the 1950s that recognition time
varies almost exactly as a logarithmic function of fre-
quency1 (Howes & Solomon, 1951), and the need to explain
this pattern has motivated a wide range of theories (Adel-
man, Brown, & Quesada, 2006; Baayen, 2010a; Murray &
Forster, 2004; Morrison, Hirsh, & Duggan, 2003; Norris,
2006). But the few extant published studies (Kliegl et al.,
2006; Rayner & Well, 1996) that have investigated the
quantitive relationship between word predictability and
processing time have yielded only limited insights, particu-
larly regarding the shape of this relationship for highly
unpredictable words, partly because of the cloze method’s
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Fig. 1. Several hypothesized forms for the predictability effect, plotted in
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limitations at measuring small differences in absolute
predictability.

Here we overcome these limitations by combining two
large behavioral datasets of word-by-word reading times
with probabilistic language models from computational
linguistics (Chen & Goodman, 1998; Kneser & Ney, 1995;
Manning & Schütze, 1999) and nonparametric statistical
analysis. These methods allow us to establish for the first
time the functional form of the predictability/reading-time
relationship, and we do so over six orders of magnitude in
probability, from near-obligatory to one-in-a-million
events. (Due to the Zipfian distribution of language we
encounter instances of the latter class of events relatively
often, even though each individual such event is extremely
rare.) We first describe a number of potential functional
forms which have been hypothesized in the literature
(see also Fig. 1)—as well as giving a new theoretical moti-
vation for a previously-hypothesized functional form—and
then proceed to our empirical analysis.
2. Theories relating word predictability and reading
time

2.1. Simple guessing (prediction: linear)

The simplest possible curve that might relate predict-
ability and processing time is a straight line; indeed, sev-
eral modern models of eye movement control in reading
apply a logarithmic transformation to frequency, but enter
predictability linearly (Engbert, Nuthmann, Richter, &
Kliegl, 2005; Reichle, Pollatsek, Fisher, & Rayner, 1998).
While we are not aware of any published justification for
this practice, it does arise naturally from a simple and intu-
itive theory: Suppose that before reading each word, com-
prehenders make a guess at its identity by sampling from
the distribution P(wjC) (a probability matching strategy).
If their guess is correct, then they continue undisturbed
and can read the word in some baseline amount of time
tbaseline. Otherwise, they must spend some fixed additional
amount of time recovering from their error—call this time
tincorrect. If comprehenders’ estimates of this probability are
accurate, then they will guess correctly on P(wjC) propor-
tion of trials and incorrectly on (1 � P(wjC)) proportion.
Thus the average reading time will be (tbaseline)
+ (1 � P(wjC))tincorrect—i.e., reported reading time will vary
linearly with the word’s probability.

Other authors have proposed a reciprocal (Narayanan &
Jurafsky, 2004) or logarithmic (Hale, 2001; Levy, 2008)
relationship, but based more on principles of elegance than
any particular mechanism. There are, however, several
more detailed reasons we might expect some specific
non-linear relationship.

2.2. Analogy with frequency (prediction: none)

At first glance, we might expect a logarithmic relation-
ship for predictability because of an argument by analogy:
Predictability is conceptually similar to frequency, and fre-
quency has a logarithmic effect. However, the predictability
and frequency of any particular word vary on very different
time-scales: a word’s predictability may be radically differ-
ent every single time it is encountered, because it is
encountered in different contexts, but that same word’s
context-independent frequency will remain effectively
constant over a timescale of months at least. This presents
an obstacle to wholesale importing of theories designed to
explain the shape of the frequency effect. To illustrate this,
consider Forster’s serial-search model (Forster, 1976;
Murray & Forster, 2004), perhaps the most explicit extant
proposal for why frequency has a logarithmic effect. In es-
sence, this model assumes a frequency-sorted lexicon ac-
cessed by serial search; therefore accessing the 100th
most frequent word takes twice as long as accessing the
50th most frequent word. Then, by Zipf’s law, these rank
frequencies turn out to be approximately equal to the log
numerical frequencies. The fact that frequencies are rela-
tively stable over time makes a frequency-sorted lexicon
plausible. Predictabilities, though, are dependent on con-
text, and so change radically from one word to the next. A
serial search model of predictability effects would thus re-
quire us to accept a lexicon that is completely reordered be-
fore processing each word. This is difficult, given that such a
reordering would necessarily involve examining every
lexical item, which would seem to remove the need for a
second search step.

Similarly, connectionist models of the word frequency
effect explain it as arising from connection weights which
are determined solely by training, and do not vary between
contexts during the testing phase (Plaut, McClelland,
Seidenberg, & Patterson, 1996; Seidenberg & McClelland,
1989; Zevin & Seidenberg, 2002; Zorzi, Houghton, &
Butterworth, 1998). Other theories have attributed this ef-
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fect to, for example, the age at which the word was first
learned (Morrison & Ellis, 1995; Morrison et al., 2003), or
differences in the ease of memory retrieval as determined
by the number of previous exposures to the word, modu-
lated by recency (Morton, 1969) or the diversity of previ-
ous contexts (Adelman et al., 2006). What all of these
theories have in common is that they attribute the classic
word frequency effect to some property of the word itself,
while predictability is intrinsically a property of the inter-
action between a word token and its current context. We
are currently unaware of any theoretical mechanism which
would link the effects of long-term frequencies and local
predictabilities, or cause them to behave in similar quanti-
tative fashions—and the absence of such a mechanism
makes it difficult to accord any weight to the argument
by analogy.

2.3. Optimal visual discrimination (prediction: logarithmic)

Norris, in the tradition of previous work using the
Sequential Probability Ratio Test as a model of human
choice reaction time (Carpenter & Williams, 1995; Gold &
Shadlen, 2007; Laming, 1968; Stone, 1960), has proposed
a model of word recognition as optimal visual discrimina-
tion: The Bayesian Reader (Norris, 2006; Norris, 2009). In
this theory, the comprehender receives samples of noisy
visual information at a fixed rate from their perceptual sys-
tem, and their goal is to identify a word to some fixed de-
gree of certainty as quickly as possible. According to
Bayesian principles, the proper way to do this is to initially
set one’s belief in the word’s identity to match its prior
probability of occurrence—i.e., its predictability. Then, as
each input sample arrives, this belief is updated by multi-
plying in the likelihood of the new sample and renormaliz-
ing. When the belief reaches some threshold, the word is
declared to be identified. When transformed to log-proba-
bility space, this multiplication becomes addition, and thus
the belief update process becomes a random walk in which
each sample on average causes the log posterior probabil-
ity of the correct word to increase with a near-constant
step size. The expected number of steps—and thus the ex-
pected time—before reaching threshold for the word’s true
identity is thus linear in the log of the word’s prior proba-
bility, so that in this model, the amount of time required to
identify a word is proportional to its log-predictability
(Carpenter & Williams, 1995).

2.4. Highly incremental processing (prediction: logarithmic)

Here we introduce a second theory which predicts a
logarithmic relationship between word probability and
comprehension time. In fact, we show that if processing
is ‘‘incremental enough’’, then such a relationship will arise
almost inevitably.

We start from the observation that, so far as we can
determine, stimuli which have higher predictability are
processed more efficiently in every task and species where
this has been studied (e.g., Carpenter & Williams, 1995;
Froehlich, Herbranson, Loper, Wood, & Shimp, 2004; Jans-
sen & Shadlen, 2005; Pang, Merkel, Egeth, & Olton, 1992).
We take this as evidence that there are domain-indepen-
dent mechanisms by which predictability modulates the
efficiency of cognitive processing, and assume that the
relationship between word predictability and reading time
arises because of these mechanisms affecting linguistic
processing, rather than some mechanism specific to lan-
guage comprehension (Smith & Levy, 2008). (Of course,
the processes which produce expectancies for particular
words are themselves highly sensitive to linguistic struc-
ture and usage; here we’re speaking only of the mecha-
nisms that link expectancies to reading time.) This
assumption alone does not suggest any specific quantita-
tive relationship between predictability and reading time.
But if this is an instance of a more general predictability ef-
fect in which processing time for any stimulus is sensitive
to that stimulus’s predictability, P(stimulusjcontext), then
we need to ask what constitutes a linguistic ‘stimulus’.
Words are a privileged unit of linguistic representation,
and psycholinguistic theories therefore tend to assume
that cognitive mechanisms for manipulating linguistic rep-
resentations will be sensitive to the properties of individ-
ual words. But are words the units by which real-time
language comprehension proceeds?

Our theory’s second assumption is that they are not:
that instead, language comprehension proceeds incremen-
tally, by which we mean that processing a word involves
processing a sequence of sub-word fragments (Tanenhaus
et al., 1995). In auditory comprehension, this is well estab-
lished; speech unfolds over time, and if a speaker says can-
dy then the listener’s language processor will be quite
happy to start working on the initial /kæn-/ before they
hear /-di/ (Tanenhaus et al., 1995). In reading, incremental-
ity at the sub-word level is less well established, but might
involve this same process after phonological recoding
(Frost, 1998), or alternatively might involve multiple visual
features (Morton, 1969) which arrive with different laten-
cies and are processed in sequence. (Note that this does not
require that the order in which features arrive matches the
left-to-right order of letters within the word.)

Putting these two assumptions together, we have that
the processing time for each fragment depends on the pre-
dictability of that fragment. Furthermore, we assume that
prediction for each fragment takes into account the previ-
ous fragments, and that the total time required to process
two sequences of fragments is the sum of the time required
to process the first sequence plus the time required to pro-
cess the second. These conditions are trivially satisfied if
fragments are processed in a strictly serial manner, but this
is not a requirement; they are also satisfied by, e.g., models
in which the processing for adjacent fragments overlaps in
time, but uses a limited pool of shared computational re-
sources so that higher degrees of parallelism result in
slower overall processing. This is analogous to the observa-
tion that while there may be overlap in the processing of
adjacent words (i.e., spillover effects), nonetheless reading
multiple words takes longer than reading a single word.

In this model, the predictability of words per se has no
direct effect on their reading time; unpredictable words
take longer to process only because they contain unpre-
dictable fragments. This would seem to make it difficult
to test the theory, because experimentally we can only
measure word predictability and word reading time, not
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fragment predictability and fragment reading time. But
fortunately, effects at the fragment level turn out to pro-
duce characteristic patterns at the word level. This follows
from another difference between predictability and fre-
quency. With frequency, there is no necessary relationship
between fragment frequency and word frequency; e.g., a
word can be rare without containing any rare syllables.
True word frequency effects must therefore arise from
whole-word processing. By contrast, the axioms of proba-
bility dictate that the context-conditional predictability
of a word is the product of the context-conditional predict-
ability of its parts,

Pð=kæ=jcontextÞ ¼ Pð=kæn-=jcontextÞ
� Pð=-di=jcontext; =kæn-=Þ:

More formally, take a word with conditional probability
pword that is composed of k fragments with conditional
probabilities p1, . . . , pk respectively. (E.g., if candy is
processed as /kæn-/, /-di/ then k = 2; processing it as /k-/,
/-æ-/,/-n-/, /-d-/, /-i/ gives k = 5. Processing it truly contin-
uously gives k =1.) And, let f(x) be the function that gives
the processing time for a fragment that has probability x
(we assume that there is a single f for all fragment types).
Then looking only at the portion of processing time which
is dependent on predictability, we have two equalities:

pword ¼ p1 � � � � � pk

total processing time ¼ f ðp1Þ þ � � � þ f ðpkÞ:

These equations let us simulate the total processing time
that would result from different choices of
pword, k, f(x), and p1, . . . , pk. Fig. 2 shows the result of such
simulations, and reveals a regularity: As k increases, the
total processing time becomes a better and better approxi-
mation to a logarithmic function of word predictability pword:

total processing time � �h log pword

(Here h is an arbitrary scaling parameter). Ultimately, this
pattern is caused by the fact that in the equations above,
(a)

Whole−word probability (log scale)

W
ho

le
−w

or
d 

to
ta

l p
ro

ce
ss

in
g 

tim
e

k = 1

k = 10

k = 100

(

Fig. 2. These graphs show the whole-word processing times resulting from diffe
effect at the fragment level (a, f(x) = �x) versus a reciprocal effect (b, f(x) = 1/x), fo
for how probability is distributed among the fragments: Either uniformly (pi ¼
fragments (pi ¼ pðkþ1�iÞ2

k with pk chosen so that p1� � � � �pk = pword, dashed lines
logarithmic effect at the word level (f(p1)+ � � � +f(pk) � logpword).
probabilities multiply, while times add. If we set
f(x) = �hlogx, then the above approximation becomes ex-
act for all k, because logarithms convert products into
sums. This makes the logarithm the unique fixed point of
this process, which other choices of f(x) converge to as k in-
creases. (A proof is given in Appendix A.)

We do not, of course, suggest that the brain is actually
literally calculating any limits; presumably some specific
f(x) and k apply for each word that is read. What the above
analysis means, though, is that so long as k is large—that is,
processing is ‘highly incremental’—then we will be near
the limit, and the details of choice of f(x) or the distribution
of probability within the word will have only minimal ef-
fect on the observed whole-word reading time. A logarith-
mic reading time curve arises inevitably—and, perhaps,
epiphenomenally—from using a coarse whole-word mea-
sure to examine a collection of fine-grained sub-word pro-
cesses, each of which are sensitive to predictability.
2.5. Uniform information density (prediction: super-
logarithmic)

The uniform information density (UID) effect is that
speakers seem to use various strategies to lengthen or
shorten parts of their utterances so that the average pre-
dictability (as measured in bits) per unit time ends up
being roughly constant (Aylett & Turk, 2004; Genzel &
Charniak, 2002; Jaeger, 2010; Piantadosi, Tily, & Gibson,
2011). Levy and Jaeger (2007) proposed that one possible
source of this pattern is as an audience design strategy. If
comprehension difficulty induced by low-predictability
words grows more quickly than the logarithm, then out
of all ways of distributing a fixed amount of information
across an utterance, the one which adheres most closely
to the UID principle is also the one which will produce
the lowest total comprehension difficulty. Intuitively, this
occurs because for a super-logarithmic difficulty curve,
Fig. 1, peaks in unpredictability produce a disproportionate
amount of difficulty, which cannot be balanced out by an
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adjacent trough of similar size. So the logic of the proposed
mechanism is: if producers attempt to make their utter-
ances easy to comprehend, and if predictability has a
super-logarithmic effect on comprehension time, then pro-
ducers should adhere to the UID principle. The logic of
empirical inference then inverts this: producers in many
circumstances do adhere to the UID principle, and there
must be some reason for this, so we should be predisposed
to expect a super-logarithmic relationship between pre-
dictability and reading time; and, if one is found, that
would provide further support for this account of UID
effects.
3. Materials and methods

Accurately assessing the shape of the word predictabil-
ity effect requires a large number of data points distributed
evenly over a wide range of predictability values. The avail-
ability of such data has previously been restricted by the
difficulty and expense of gathering cloze data, and its anal-
ysis limited by the use of factorial designs. Three aspects of
our approach allow us to overcome these challenges. First,
instead of relying on cloze, we estimate word probabilities
using a state-of-the-art computational language model
trained on a large corpus. While undoubtedly more error-
ful than good cloze norming, this allows us to estimate pre-
dictability for relatively unexpected words and over very
large stimulus sets, which compensates for the increase
in noise. Other psycholinguistic studies have used such
computational methods (Boston, Hale, Kliegl, Patil, & Vas-
ishth, 2008; Demberg & Keller, 2008; Roark et al., 2009);
the primary difference is that our language model is cho-
sen to give best-effort broad-coverage word probability
estimates, not to proxy for any particular psycholinguistic
theory (Frank & Bod, 2011) or to give high-quality esti-
mates for specific grammatical structures (Levy, 2008).
Second, we avoid the factorial approach in favor of a
spline-based regression technique designed for measuring
non-linear curve shapes (Wood, 2006). (For a previous
application of this technique to psycholinguistic data, see
Baayen, 2010b.) This also enables us to control for con-
founds (e.g., word frequency) post hoc, which allows us
to analyze large stimuli sets using relatively natural texts
rather than carefully normed sentences. Finally, the use
of regression allows us to directly ask how the probability
of word n affects reading time for word n + 1, after control-
ling for the probability of word n + 1. This reduces con-
founding by controlling for word-to-word correlations in
frequency, predictability, etc. More importantly, it gives
us a new and powerful way to measure spill-over effects
(Mitchell, 1984; Rayner, 1998), letting us better capture
predictability’s full effect while additionally giving insight
into its time-course.
3.1. Eye-tracking

First pass gaze durations (Rayner, 1998) were extracted
from the English portion of the Dundee corpus (Kennedy,
Hill, & Pynte, 2003), which records eye movements of 10
native speakers each reading 51,502 words of British
newspaper text. Previous work (Demberg & Keller, 2008;
Frank & Bod, 2011; Kennedy, Pynte, Murray, & Paul, in
press) has reported predictability effects in this corpus,
but did not examine curve shape.

3.2. Self-paced reading

Moving-window self-paced reading times (Just, Carpen-
ter, & Woolley, 1982) were measured for 35 UCSD under-
graduate native speakers each reading short (292–902
word) passages drawn from the Brown corpus of American
English (2860–4999 total words per participant, mean
3912). In this paradigm, the participant must press a but-
ton to reveal each word in turn, and the time elapsed be-
tween button presses is recorded. Three participants with
comprehension–question performance at chance were
excluded.

3.3. Probability estimation

Interpolated modified Kneser–Ney trigram word proba-
bilities (Chen & Goodman, 1998; Kneser & Ney, 1995) were
estimated from the British National Corpus (BNC Consor-
tium, 2001) using SRILM v1.5.7 (Stolcke, 2002), and com-
bined with a conditional bigram cache (Goodman, 2001).
Self-paced reading analyses were adjusted for British/
American spelling differences using VARCON (Atkinson,
2004). Our primary consideration in selecting this model
was to maximize what Frank and Bod (2011) term ‘linguis-
tic accuracy’, i.e., the model’s ability to accurately predict
words in corpora (perplexity), without regard to behavioral
data. We certainly do not claim that this model is an appro-
priate theory of how the human comprehension system
goes about making predictions. But, to the extent that
our model and the brain are both attempting to achieve
linguistic accuracy, they should arrive at numerically sim-
ilar estimates (see also Fossum & Levy, 2012), and the anal-
yses we present here depend only on our estimated
probabilities acting as an accurate statistical proxy for
the true subjective probabilities.

One possible source of inaccuracy is that in practice, our
model relies primarily on local context for estimating pre-
dictabilities; in this respect it is similar to the transitional
probabilities used in previous research (Demberg & Keller,
2008; Frisson, Rayner, & Pickering, 2005; McDonald &
Shillcock, 2003a; McDonald & Shillcock, 2003b), though
we use a larger local context and a substantially more
sophisticated estimation procedure. In addition, the bi-
gram cache portion of our model reaches beyond local con-
text to create increased expectancies for repeated
mentions of words and short phrases across the entirety
of each stimulus text. Nonetheless, there remain a variety
of long-distance linguistic dependencies induced by syn-
tax, semantics, etc., which this model captures only imper-
fectly. This is in contrast to humans, who are generally
sensitive to such long-distance dependencies. While this
sensitivity is of great importance to theories about human
expectancy generation, it does not affect our analyses here
unless such dependencies have a large and systematic ef-
fect on the numerical magnitude of expectation for a large
proportion of the words in our stimuli, which seems unli-
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kely. Extensive experience in computational linguistics
confirms that local-context models empirically outperform
syntax-based models when it comes to achieving high lin-
guistic accuracy in unrestricted-domain texts like ours.
This suggests that while distant context can have large ef-
fects on the predictability of some words, in practice it usu-
ally does not; on average, local context is the most reliable
cue to word predictability. Our estimates, therefore, while
sometimes noisy, should serve as an accurate statistical
proxy overall. Most importantly, there is no clear reason
why this choice of language model would bias our results
regarding curve shape in any particular direction.
3.4. Curve estimation

We used mgcv v1.6–2 (Wood, 2004; Wood, 2006) to pre-
dict reading times using penalized cubic spline functions (20
d.f.) of word log-probability. As controls, we entered a spline
function of position in text, a two-dimensional tensor spline
interaction between orthographic word length and log-fre-
quency, and factors indicating participant identity and
(eye-tracking only) whether the previous word had been fix-
ated. (This was motivated by preliminary analyses which re-
vealed weak or non-existent interactions between
predictability and either frequency or word length, but a
substantial interaction between frequency and word length,
which is consistent with previous findings (Kliegl et al.,
2006; Pollatsek, Juhasz, Reichle, Machacek, & Rayner,
2008).) To capture spillover (Mitchell, 1984; Rayner,
1998), log-frequency/word-length interaction and proba-
bility terms were included for each word in an M-word win-
dow up to and including the current word, where M was
chosen empirically to capture the effect present in each data
set (eye-tracking: M = 2; self-paced reading: M = 4). All
words were analyzed except those at the beginning or end
of a line, or for which some word in the window did not ap-
pear in the British National Corpus, occurred adjacent to
punctuation, or contained numerals. Eye-tracking analyses
excluded unfixated words; self-paced reading analyses ex-
cluded outliers (reading times <80 ms, >1500 ms, or >4 sd
above participant-specific means). Eye-tracking:
N = 166,522; self-paced reading: N = 51,552. Fitting was by
(penalized) least squares; confidence intervals were esti-
mated by bootstrapping both participants and cases within
participants, using the mgcv fitter’s weights parameter to
avoid replicating data across folds in its internal cross-vali-
dation routine. (This method takes subject random effects
into account; for a discussion of item random effects in these
analyses, see Appendix B.) All reported results were robust
to choice of spline basis, use of least squares estimation ver-
sus maximum likelihood estimation with the assumption of
heavy-tailed (gamma-distributed) error, and the use of lar-
ger spillover windows (increased M); see Appendix C for fur-
ther validation of penalized spline regression in this setting.
4. Results

Fig. 3 shows how the probability of a word w affects the
reading time for w and the words immediately succeeding
it (the spillover region). Our two data-sets show marked
differences in time-course. For eye-tracking, the effect be-
gins immediately and extends onto the next word, but is
not seen on words further downstream. For self-paced
reading, the effect does not begin until the succeeding
word, and lasts through the third succeeding word. None-
theless, if we sum these curves to find the total slowdown
due to a particular unpredictable word (Fig. 4), then we
find nearly identical effect sizes. This suggests that these
tasks involve similar processing, though this processing is
differently distributed through time with respect to sac-
cades and button-presses respectively.

Crucially, Fig. 4 shows clearly that the relationship be-
tween word predictability and reading time is, in fact, log-
arithmic across at least six orders of magnitude in
probability. (Lower probability items occur, but not often
enough to reliably estimate curve shape without a larger
data set; see online supplementary information for graphs
with the full x-axis.)

Fig. 4 contains little visual evidence for super-loga-
rithmicity. To check this more formally, we re-ran the
above model fits, but now entering linear and quadratic
functions of log-probability instead of an arbitrary spline
(but keeping the same controls). A positive b coefficient
on the quadratic term would indicate a super-logarithmic
curve. We found no support for any quadratic component,
positive or otherwise (eye-tracking: total b = �0.05, 95%
CI = (�0.45,0.37), one-tailed p = 0.59; self-paced reading:
total b = 0.04, 95% CI = (�0.90,1.07), one-tailed p = 0.46;
statistics via bootstrap).

For the Dundee corpus, there were sufficient data to fit
participant-specific models; results from these analyses
are shown in Fig. 5. Nine out of ten participants showed
clear effects of log-probability, all of which are overall lin-
ear in shape. The individual-participant data for the Brown
self-paced reading corpus were not plentiful enough to
conduct participant-specific analyses.
5. Discussion

The predictability effect on word comprehension in
context takes a regular logarithmic form over at least six
orders of magnitude in estimated predictability. This find-
ing has both practical and theoretical consequences.

Practically speaking, predictability is potentially af-
fected by nearly any manipulation one can make to linguis-
tic structure. It is therefore a potential confound in most
psycholinguistic studies, and knowing the quantitative
form of this confound allows us to better control it. This
non-linearity is very severe—Fig. 6. When word predict-
ability is included as a covariate in regression analyses it
should be log transformed; in factorial designs where aver-
age predictability is matched between conditions, it should
be log-predictability rather than raw predictability that is
matched. Since the uncertainty in the estimate of a word’s
log-predictability for any given context will grow as the
word’s predictability decreases, this also implies that in
practice it is very difficult to assert with confidence from
cloze norms that two different sets of word/context pairs
are truly ‘‘equally’’ unpredictable in the sense that matters
for real-time comprehension behavior. For example, a
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Fig. 3. The effect of the probability of word n on reading time measured at word n and on successive words (the spill-over region). Curves are penalized
splines with point-wise 95% confidence intervals. To correct for inter-subject variability, we measure the effect of probability against the notional baseline
of a perfectly predictable word; zero on this graph does not indicate an instantaneous overall reading time. Confidence intervals do not include the
uncertainty induced by measurement error in probability estimation. Lower panels show the proportion of data available at each level of probability. (a)
First-pass gaze durations. (b) Self-paced reading times.
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word whose true probability is 10�2 will act more like a
word whose true probability is 1 than like one whose true
probability is 10�6—yet these will most likely be measured
as having 0%, 100%, and 0% cloze, respectively. Our results
suggest that there is no such thing as an unexpected word;
there are only words which are more or less expected.

5.1. Anticipation versus integration

Our results bear on the theoretical debate about
whether predictability effects in general arise from antici-
patory pre-activation of specific words, or from post hoc
effects that arise while integrating the word into some
kind of larger semantic context. The integration difficulty
account (Brown & Hagoort, 1993; Foss, 1982; Hagoort,
Baggio, & Willems, 2009; Hess, Foss, & Carroll, 1995; Trax-
ler & Foss, 2000) holds that predictability itself does not af-
fect comprehension difficulty, but rather that words which
have high predictability scores are also those which are
somehow more related to the prior context, and words
which are more related to the prior context are also easier
to integrate semantically. For example, processing the
word play in Examples (1) and (2) presumably requires
us to construct some representation of two different sce-
narios: one involving my brother playing inside, and an-
other involving children playing outside. If the latter
scenario is easier to construct, then we expect play to be
read more quickly in (2) than in (1). Crucially, under this
account, predictability effects do not arise until after the
comprehension system encounters the actual word; there
may appear to be effects of predictability, but they do not
result from any cognitive process of prediction. On the
other hand, the anticipatory processing account holds that
predictability effects do arise from some kind of processing
which is predictive in the sense that it is dependent on the
identity of the upcoming word, but occurs before this word
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identity is known (DeLong et al., 2005; Van Berkum et al.,
2005). Our results provide challenges for both of these
accounts.

It seems plausible that predictability will, in general, be
correlated with semantic integration difficulty, so perhaps
the apparent effects of predictability in empirical studies
are actually a result of this confounding. But, is this corre-
lation tight enough to explain our results? Intuitively, we
expect these measures to be similar in some cases, but to
diverge in others. For instance, producers avoid saying
things which are too obvious from context, and so state-
ments of obvious facts presumably have a simultaneously
low integration difficulty and a low predictability; simi-
larly, syntactic alternatives with similar semantic content
presumably produce similar degrees of integration diffi-
culty, but may have wildly different predictabilities. Our
results do not rule out an integration difficulty account,
but given the precise and law-like relationship we found,
the challenge for such accounts becomes to explain why
integration difficulty should vary in a quantitatively exact
way with the logarithm of predictability.

The anticipatory processing account avoids this diffi-
culty, because it is obvious why predictive processing
would be sensitive to predictability per se; if you want to
start processing words in some manner before you actually
encounter them, then a word’s probability of occurrence
given the available information, P(wjC), may be a useful
guide to decide which words should receive such process-
ing, and to what degree. (Compare this to the situation
after you have encountered the word, at which point it
would seem mostly irrelevant how predictable it used to
be when you had less information available.) And it has
other appealing properties. It is independently motivated:
there is ample independent evidence that the comprehen-
sion system anticipates upcoming material in at least some
situations (Altmann & Kamide, 1999; DeLong et al., 2005;
Kamide et al., 2003; Kamide, Scheepers, & Altmann,
2003; Knoeferle et al., 2005; Van Berkum et al., 2005; Wi-
cha et al., 2003). And, it provides an obvious reason why
predictability differences would produce differences in
reading time (as higher predictability words will receive
more anticipatory processing, and thus require less post
hoc processing).

However, the most straightforward instantiation of the
anticipatory processing idea is the ‘simple guessing’ model
we formalized above, which predicted a linear effect of
predictability. Our results clearly rule this out. More gener-
ally, and for the same reason, these results are incompati-
ble with any theory which assumes both that (a)
predictability effects on reading time arise from processing
which precedes the actual appearance of the word, and (b)
the comprehension system can only apply this processing
to a small number of words at any given moment (relative
to the size of the lexicon). When such a model encounters a
word with probability <10�5, it will almost never have
formed any expectation regarding it—yet the observed ef-
fect is just as strong in this region of word log-probability
as anywhere else. The reading time difference between
words with probability 10�6 and words with probability
10�5 is just as large as the difference between words with
probability 10�2 and those with probability 10�1. Thus, we
must reject either (a) or (b). Integration difficulty accounts
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reject (a). If we wish to preserve an anticipatory processing
account of these data, we must instead reject (b), and build
theories in which expectancies do not take the form of sim-
ple guesses; instead, the comprehension system must be
able to simultaneously pre-activate large portions of its
lexicon in a quantitatively graded fashion (Smith & Levy,
2008).

Yet another possibility would be for anticipatory pro-
cessing to be directed not at words, but at word fragments,
which would make this account consistent with the incre-
mental processing theory we propose here (which takes as
granted that there is some mechanism linking predictabil-
ity and processing time, and focuses on explaining the
resulting curve shape), while potentially reducing the de-
gree to which parallel pre-activation is necessary (as there
are e.g. far fewer potential upcoming phonemes than there
are potential upcoming words).
5.2. Consequences for UID

Our results lend no support to the audience-design ac-
count of uniform information density effects proposed by
Levy and Jaeger (2007), which required a super-linear rela-
tionship between log probability (surprisal) and processing
difficulty. We find no evidence for deviation from a pure
logarithmic curve, which under their analysis would sug-
gest that overall audience interpretation time is entirely
unaffected by the uniformity or non-uniformity of infor-
mation density. However, this need not be taken to rule
out the possibility that other forms of audience design
might motivate a UID principle. For example, if speech is
consistently produced more quickly than it can be compre-
hended then it will eventually become incomprehensible,
which gives producers an incentive to slow down on diffi-
cult content and let comprehenders catch up. In the case of
predictability-related difficulty, producers who follow this
strategy will end up following the UID principle, though
under this revised account more local variation in informa-
tion density would be acceptable. The original theory pre-
dicts that information density should be optimized on the
time scale of individual processing fragments; here, what
would matter is uniformity on a time-scale only fine-
grained enough to avoid overloading comprehenders’
working memory.
5.3. The Bayesian Reader versus the incremental processing
account

There are two theories which predict the precise loga-
rithmic effect we found: The Bayesian Reader (Norris,
2006; Norris, 2009) and the incremental processing ac-
count. Both find support in Fig. 4, but they make different
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predictions about the time-course of these effects, Fig. 3. In
the Bayesian Reader model as originally formulated, pre-
dictability affects how much visual information the eye
needs to gather from each word. This makes a clear predic-
tion in the case of self-paced reading, where only one word
is displayed at a time: Since you cannot gather perceptual
input from a word that is no longer visible, the model ex-
pects a word’s predictability to affect viewing time for that
word only, with no spillover effect. Fig. 3b, however, shows
the exact opposite pattern: There is little or no effect on the
word itself, with a large spillover effect. We can perhaps
overcome this difficulty at the cost of some theoretical ele-
gance, by postulating that the noise bottleneck occurs not
in visual perception per se, but at some later moment
where word identity must be communicated between
two internal processing stages connected by a noisy chan-
nel. Further analysis would be needed to determine
whether such a mechanism could produce slowdowns dis-
tributed over such a wide temporal span (2–3 words).

The incremental processing account, by contrast, is
based on the assumption that predictability affects not
perception, but the speed of cognitive processing generally.
Therefore, under this account we expect to see predictabil-
ity effects at every moment that lexically associated pro-
cessing occurs. Since spillover effects occur consistently
in the psycholinguistic literature, this model makes the
opposite prediction from the Bayesian Reader—that pre-
dictability effects should not be restricted to the period
when the word is actually visible, which is what we find.
While this prediction is not particularly surprising, it does
make this the only extant model which can directly explain
our full pattern of results. And this model, if correct, raises
a number of new questions. Most obviously, what is the
form of the true underlying function f(x) relating predict-
ability and processing time? Is it an arbitrary and idiosyn-
cratic function that, say, varies between individuals, or is
there some regularity to it, and if so, what? Answering this
would require some other methodology, as per-word read-
ing times are too coarse-grained a measurement to yield
much insight. Of even greater theoretical interest is the
question of the value of k, the grain-size of incremental
processing; larger k would correspond to the processor
operating on finer-grained or perhaps even truly continu-
ous chunks of input (McClelland & Elman, 1986; Spivey,
2007). Although these new results do not give direct
knowledge of k, consider that most possible functions are
not logarithms, and that Fig. 2 indicates that for some pos-
sible functions a rather large k (�10) is required to pro-
duce a near-logarithmic curve shape like the ones we
observe. Such a high degree of incrementality goes beyond
what has already been established in the visual world par-
adigm (Tanenhaus et al., 1995) for the incremental pro-
cessing of the speech signal, and certainly beyond what
has otherwise been observed in reading. These results
and model together, then, may provide an initial, tantaliz-
ing glimpse of a more fine-grained linguistic processor
than has so far been exposed to experimental view. Other
methods which allow more detailed measures of the
time-course of processing, such as EEG/MEG, mouse-track-
ing (Spivey, Grosjean, & Knoblich, 2005), or hazard func-
tion analysis of eye movements (Feng, 2009) may yield
further insights in this regard.
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5.4. Surprisal as a causal bottleneck

Finally, these results confirm that it is plausible that all
reading time predictability effects are mediated by lexical
predictability, in accordance with the causal bottleneck
hypothesis of surprisal theory. Since the seminal work of
Shannon on quantifying the bit rate of English (Shannon,
1951), information-theoretically informed work on lan-
guage has recognized that all types of hierarchical predic-
tive information present in language—syntactic, semantic,
pragmatic, and so forth—must inevitably bottom out in
predictions about what specific word will occur in a given
context, and that when measured in bits, expectations at
each successive level combine naturally in a simple addi-
tive fashion. This is illustrated by our example from the
introduction, where the total bits carried by the word
who is the sum of the bits associated with the fact of a rel-
ative clause’s appearance in context C and the bits associ-
ated with the fact that the particular word introducing
the relative clause is who:

log PðwhojCÞ ¼ log Pðrel: clausejCÞ
þ log Pðwhojrel: clause;CÞ

Our present results reveal that the bit is also the correct
unit for measuring the processing time needed in general
during incremental language comprehension by a native
speaker; a logarithmic effect of lexical predictability both
implies and subsumes logarithmic effects of transitional
probability, syntactic predictability, semantic predictabil-
ity, etc., allowing us to explain these apparently disparate
effects as arising via a single unified mechanism. With con-
temporary probabilistic models of language structure we
can measure the bits carried by a wide variety of abstract
linguistic structures; the way is thus paved for their contri-
butions to the time required for incremental language
comprehension to be investigated and quantified using
this common currency.
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Appendix A

In the main body, we claimed that if these two equali-
ties hold:

pword ¼ p1 � � � � � pk

total processing time ¼ f ðp1Þ þ � � � þ f ðpkÞ
then as k goes to infinity, the total processing time will be-
come a closer and closer approximation to a logarithm of
pword. Here we formalize and prove this claim.

First, we need a way to talk about the pi values as k in-
creases. Let’s assume we have a sequence of increasingly
long vectors (p1, . . . , pk)k, for k = 1, 2, . . .. We’ll write the
ith entry in the kth vector as pi,k, with 1 6 i 6 k. As per
above, we require that for all k, p1,k� � � � �pk,k = pword. We
do not, though, require that there be any necessary rela-
tionship between pi,k and pi+1,k; our result holds even if
each new vector is totally different than the one before.
What we do need is a condition to avoid degenerate behav-
ior. What we want to avoid is a sequence like this one,
where all the uncertainty remains restricted to a single
fragment:

pi;k ¼
pword i ¼ 1
1 i – 1

�

Therefore, we require that as k increases, the probability of
the most-surprising fragment should go to 1:

lim
k!1

min
i

pi;k ¼ 1

This forces the word’s overall uncertainty to be distributed
over an increasing number of fragments.

Next we consider f(x). For convenience, we assume that
f(1) = 0. If it does not, then we can just subtract off a con-
stant c, and this would not alter the shape of f(x). This will
also affect the total processing time graph by shifting it up
or down by k � c units, but this only affects the baseline
reading time, not the shape of the curve. To avoid degener-
ate behavior, we also assume that the derivative of f(x) is
defined at x = 1. This derivative will play an important role
in our story, so we give it a name: f0(1) = �h.

Now given these conditions, we wish to show that

lim
k!1

Xk

i¼1

f ðpi;kÞ
 !

¼ �h log pword

It will be easier to work with this after a change of vari-
ables. Let ~pword ¼ log pword; ~pi;k ¼ log pi;k, and gð~xÞ ¼ f ðe~xÞ.
Plugging these transformations into our assumptions
above, we have as given that

~pword ¼
Xk

i¼1

~pi;k

lim
k!1
ðmin

i
~pi;kÞ ¼ 0

gð0Þ ¼ f ð1Þ ¼ 0

g0ð0Þ ¼ f 0ð1Þ � e0 ¼ f 0ð1Þ ¼ �h

and wish to show that

lim
k!1

Xk

i¼1

gð~pi;kÞ
 !

¼ �h� ~pword:

Note that since
P

~pi;k ¼ ~pword, our result would hold if gð~xÞ
were the linear function �h� ~x. The idea of our proof is to
use the derivative to approximate gð~xÞ as a linear function
near 0. This turns out to be enough since as k increases, the
~pi;k values approach 0.
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More formally, recall from the definition of the deriva-
tive that

�h ¼ g0ð0Þ ¼ lim
h!0�

gð0þ hÞ � gð0Þ
h

¼ lim
h!0�

gðhÞ
h

Therefore, for any � > 0 there exists a d > 0 such that for all
h 2 (�d,0),

gðhÞ
h
� ð�hÞ

����
���� < �

which implies that

� � < gðhÞ
h
� ð�hÞ < �

� h� � < gðhÞ
h

< �hþ �

ð�h� �Þh < gðhÞ < ð�hþ �Þh

That is, for h 2 (�d,0), g(h) is approximately linear with
slope �h ± �.
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Fig. B1. ‘‘By item’’ analysis of per-token mean reading times aggregated across p
succeeding words. 95% confidence intervals calculated by bootstrapping over
proportion of data available at each level of probability.
Now, for k sufficiently large, we are guaranteed that
pi,k 2 ( � d,0]. And so for such a k, we can infer thatPk

i¼1gð~pi;kÞ is bounded by

ð�h� �Þ
Xk

i¼1

~pi;k ¼ ð�h� �Þ � ~pword

¼ ð�h� ~pwordÞ � ð�� ~pwordÞ:

That is, we can always pick k so as to guarantee thatPk
i¼1gð~pi;kÞ is as close as we like to �h� ~pword, which is

what we wanted to prove.

Appendix B

A discussion of item effects in our analyses: In null-
hypothesis significance testing within psycholinguistics,
it is widely recognized that it is essential to take into ac-
count idiosyncratic differences among individuals and
experimental items relevant to the dependent measure—
1

n measured at...

word n + 2

10−6 10−5 10−4 10−3 10−2 10−1

word n + 3

10−6 10−5 10−4 10−3 10−2 10−1 1

d at...

articipants, showing the effect of the predictability of wordn on wordn and
cases. (a) Eye-tracking. (b) Self-paced reading. Lower panels show the
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both overall proclivities and sensitivities to psychological
variables—because they break the conditional indepen-
dence assumptions implicit in non-hierarchical (‘‘flat’’)
regression models. This issue is what motivates the use
of by-participant and by-item ‘‘random effects’’ in re-
peated-measures ANOVA and mixed-effects regression
models (Baayen, Davidson, & Bates, 2008; Clark, 1973;
see also Barr, Levy, Scheepers, & Tily (2013) for specific dis-
cussion on this issue). The analyses above use a hierarchi-
cal bootstrap procedure (first on participant clusters, then
on observations within each participant) that takes into ac-
count the by-subjects clustering structure in our data, but
it does not take into account the clustering structure deriv-
ing from the fact that our data involve multiple measure-
ments taken from a given [word,context] pairing—what
would be called item random effects. Upon this view, the
theoretically critical effect of word probability is ‘‘between
items’’ rather than ‘‘within items’’, since a given
[word,context] pair always has the same conditional prob-
ability in our language model, so that a reasonable way to
model item random effects would be to assume that the
underlying hypothetical ‘‘average’’ reading time for a given
[word,context] pair across the potential participant popu-
lation is offset from that predicted by the other compo-
nents by a factor bw drawn from some distribution with
zero mean. This is known as an ITEM RANDOM INTERCEPT in the
mixed-effects models literature (Baayen et al., 2008). It is
worth carefully considering how the results we obtained
here might be affected by our omission of item random
intercepts if they are present with non-negligible variance
in the underlying generative process:
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Fig. B2. ‘‘By item’’ analysis of per-token mean reading times aggregated across p
predictability. (The sum of the curves in Fig. B1). 95% confidence intervals calcul
Lower panels show the proportion of data available at each level of probability.
1. Omitting them could induce overconfidence in the
parametric form of the probability/time relationship,
artificially narrowing our confidence intervals.

2. Omitting them could induce the non-parametric model
to overfit arbitrary, small deviations from the true
underlying probability/reading-time function, since clo-
sely matching observed mean reading times for specific
[word,context] pairs would produce spuriously high
cross-validation scores and lead to the selection of too
small a penalization term.

The former could lead to unjustified overconfidence in
the inferred effect size and shape; the effect of the latter
would, if anything, make us less likely to obtain a cleanly
linear effect shape. Since we nevertheless did obtain a
nearly perfectly linear effect shape in both datasets, it is
the first of these two possibilities, (1), that is of primary
concern.

We first demonstrate that when the effect of word
log-probability is assumed to be linear, its effect is highly
significant even when crossed subject and item random
effects are taken into account. For both the Brown and
Dundee datasets we fit parametric linear mixed-effects
models (Baayen et al., 2008) to reading times. As fixed
effects, we entered all predictors used in the main analysis
except for participant identity, and with linear effects
substituting for all splines. Our random effects structure
included (i) a random intercept for word token, and (ii)
random subject slopes for all word probability measures
entered as fixed effects, with all correlations allowed
(a ‘‘maximal’’ random-effects structure in the sense of Barr
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articipants, showing the total reading time slowdown attributable to word
ated by bootstrapping over cases. (a) Eye-tracking. (b) Self-paced reading.
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et al., 2013). Models were fit with (unrestricted) maximum
likelihood estimation using the lme4 package (Bates,
Maechler, & Bolker, 2011). Consistent with the findings of
our non-parametric analyses, these analyses found that
the linear effects of word log-probability were highly
significant in all cases except for that of current-word
log-probability in the Brown self-paced reading dataset
(Dundee: current-word jtj = 2.88, one-back jtj = 5.59;
Brown: current-word jtj = 1.35, one-back jtj = 4.83,
two-back jtj = 3.68, three-back jtj = 3.13).

In addition, we conducted a ‘‘by-items’’ analysis of each
dataset, computing mean reading time for each word token
(aggregating across subjects) and then fitting our non-
parametric model to each dataset. (For the eye-tracking
dataset this meant discarding the predictor of whether
the previous word was fixated.) Results are shown in
Fig. B1 and B2; once again we recovered effects on reading
time that were linear in word log-probability. The main
difference from our earlier results is that in Fig. B2, the
self-paced reading effect appears somewhat stronger than
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Fig. C1. The effect of penalization in controlling over-fitting. (a) Our original, pe
raw probability entered instead of log probability, then plotted in log-space. (c)
first-pass gaze durations; lower panels show self-paced reading times. That the lo
to the relative sizes of the two data sets; in the absence of penalization, the sma
point-wise 95% confidence intervals. Lower panels show the proportion of data
the eye-tracking effect. If true, this may be an artifact of
our excluding unfixated words from the eye-tracking
analysis.
Appendix C

Penalized spline regression as implemented by mgcv

(Wood, 2004, 2006) is a powerful and principled technique
for estimating unknown non-linear relations. In order to fit
nearly-arbitrary smooth curves, it uses a high-dimensional
spline basis; in order to avoid the over-fitting that other-
wise plagues such high-dimensional models, it combines
the standard maximum likelihood criterion with a curva-
ture penalty term that biases the regression towards less
‘wiggly’ curves. Critically, the relative weight placed on
the likelihood term (which attempts to follow the data)
versus the penalty term (which attempts to make the line
smoother and closer to a straight line) is determined by
cross-validation. In theory, therefore, this method’s fitted
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nalized model (a repeat of Fig. 4). (b) The same model as in a, but fit with
The same model as in a, but fit without penalization. Upper panels show
wer panels show more wiggliness than the upper ones is presumably due
ller data set allows more overfitting than the larger. Dashed lines denote
available at each level of probability.
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curves should be biased towards smoothness only to the
extent that this helps it better match the true curve
describing the underlying phenomenon.

But since our key empirical finding is that such a fit pro-
duces a straight line, it seems prudent to verify that this is
not an artifact introduced by penalization. We therefore re-
peated our analysis, but using two different methods to re-
move this potential bias.

First, we ran the same model fits, but entering raw
probability in place of log-probability; in this case we pre-
dict that the splines should attempt to form a steep loga-
rithmic curve (since we believe that is the true
underlying relationship), while the penalization pushes to-
wards a linear relationship (Fig. 1). As expected, mgcv’s
algorithm chose to apply very small penalization weights
(ranging from 65 to 64,000 times smaller than the corre-
sponding weights chosen in the original analyses), which
in turn allowed the resulting spline fit to form an highly-
nonlinear, approximately logarithmic curve with substan-
tial local variation around this underlying trend (Fig. C1b;
note that while the fit was performed using raw probabil-
ity, we plot the result against log probability to facilitate
comparison with other fits). Second, we fit our original
model, but with penalization simply disabled (i.e., using
standard least-squares); this produced similar results
(Fig. C1c). The three models thus agree that the underlying
relationship is approximately logarithmic.

Finally, we would like to confirm that the local non-lin-
ear deviations from this trend that we see in models (b)
and (c) are the result of over-fitting rather than a true ef-
fect. We verified this by performing 1000-fold cross-vali-
dation on all three models, and found that in both data
sets, the original penalized model (Fig. C1a) achieved the
highest log-likelihood on held-out data. (Similar results,
not shown, were obtained when performing cross-valida-
tion of the penalized model versus the other models on
the ‘‘by item’’ data set described above.) Thus we conclude
that, to the limits of our data, the underlying relationship
between word probability and processing time is in fact
logarithmic.
Appendix D. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.cognition.2013.02.013.
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