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We derive a principled information-theoretic account of cross-

language semantic variation. Specifically, we argue that lan-

guages efficiently compress ideas into words by optimizing the

information bottleneck (IB) trade-off between the complexity and

accuracy of the lexicon. We test this proposal in the domain

of color naming and show that (i) color-naming systems across

languages achieve near-optimal compression; (ii) small changes

in a single trade-off parameter account to a large extent for

observed cross-language variation; (iii) efficient IB color-naming

systems exhibit soft rather than hard category boundaries and

often leave large regions of color space inconsistently named,

both of which phenomena are found empirically; and (iv) these

IB systems evolve through a sequence of structural phase transi-

tions, in a single process that captures key ideas associated with

different accounts of color category evolution. These results sug-

gest that a drive for information-theoretic efficiency may shape

color-naming systems across languages. This principle is not spe-

cific to color, and so it may also apply to cross-language variation

in other semantic domains.

information theory | semantic typology | color naming | categories |
language evolution

L
anguages package ideas into words in different ways. For
example, English has separate terms for “hand” and “arm,”

“wood” and “tree,” and “air” and “wind,” but other languages
have single terms for each pair. At the same time, there are uni-
versal tendencies in word meanings, such that similar or identical
meanings often appear in unrelated languages. A major question
is how to account for such semantic universals and variation of
the lexicon in a principled and unified way.

One approach to this question proposes that word meanings
may reflect adaptation to pressure for efficient communication—
that is, communication that is precise yet requires only minimal
cognitive resources. On this view, cross-language variation in
semantic categories may reflect different solutions to this prob-
lem, while semantic commonalities across unrelated languages
may reflect independent routes to the same highly efficient
solution. This proposal, focused on linguistic meaning, echoes
the invocation of efficient communication to also explain other
aspects of language (e.g., refs. 1–4).

Color is a semantic domain that has been approached in
this spirit. Recent work has relied on the notion of the “infor-
mativeness” of word meaning, has often cast that notion in
terms borrowed from information theory, and has accounted for
several aspects of color naming across languages on that basis (5–
10). Of particular relevance to our present focus, Regier, Kemp,
and Kay (ref. 8, henceforth RKK) found that theoretically effi-
cient categorical partitions of color space broadly matched major
patterns of color naming seen across languages—suggesting that
pressure for efficiency may indeed help to explain why languages
categorize color as they do.

However, a fundamental issue has been left largely unad-
dressed: how a drive for efficiency may relate to accounts of
color category evolution. Berlin and Kay (11) proposed an evo-
lutionary sequence by which new terms refine existing partitions
of color space in a discrete order: first dark vs. light, then red,
then green and yellow, then blue, followed by other basic color

categories. RKK’s efficient theoretical color-naming systems cor-
respond roughly to the early stages of the Berlin and Kay
sequence, but they leave the transitions between stages unexam-
ined and are based on the false (9, 12, 13) simplifying assumption
that color-naming systems are hard partitions of color space.
In actuality, color categories are a canonical instance of soft
categories with graded membership, and it has been argued
(12, 13) that such categories may emerge gradually in parts
of color space that were previously inconsistently named. Such
soft category boundaries introduce uncertainty and therefore
might be expected to impede efficient communication (9). Thus,
it remains an open question whether a hypothesized drive for
efficiency can explain not just discrete stages of color category
evolution, but also how systems evolve continuously from one
stage to the next, and why inconsistent naming patterns are
sometimes observed.

Here, we argue that a drive for information-theoretic effi-
ciency provides a unified formal explanation of these phenom-
ena. Specifically, we argue that languages efficiently compress
ideas into words by optimizing the trade-off between the com-
plexity and accuracy of the lexicon according to the information
bottleneck (IB) principle (14), an independently motivated for-
mal principle with broad scope (15–17), which is closely related
(ref. 18 and SI Appendix, section 1.3) to rate distortion theory
(19). We support this claim by showing that cross-language vari-
ation in color naming can be explained in IB terms. Our findings
suggest that languages may evolve through a trajectory of effi-
cient solutions in a single process that synthesizes, in formal
terms, key ideas from Berlin and Kay’s (11) theory and from
more continuous accounts (12, 13) of color category evolution.
We also show that soft categories and inconsistent naming can
be information-theoretically efficient.

Significance

Semantic typology documents and explains how languages

vary in their structuring of meaning. Information theory

provides a formal model of communication that includes a

precise definition of efficient compression. We show that

color-naming systems across languages achieve near-optimal

compression and that this principle explains much of the vari-

ation across languages. These findings suggest a possible

process for color category evolution that synthesizes continu-

ous and discrete aspects of previous accounts. The generality

of this principle suggests that it may also apply to other

semantic domains.
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Our work focuses on data compression, in contrast with work
that views language in information-theoretic terms but focuses
instead on channel capacity (2–4, 7, 20), including work on lan-
guage evolution (21). Our work also further (e.g., refs. 7 and 22)
links information theory to the study of meaning, a connection
that has been contested since Shannon’s (23) foundational work.
IB has previously been used to find semantically meaningful clus-
ters of words (ref. 15; see also ref. 22), but has not previously
been used to account for word meanings as we do here.

Communication Model
To define our hypothesis precisely, we first formulate a basic
communication scenario involving a speaker and a listener.
This formulation is based on Shannon’s classical communica-
tion model (23), but specifically concerns messages that are
represented as distributions over the environment (Fig. 1). We
represent the environment, or universe, as a set of objects U . The
state of the environment can be any object u 2U , and we let U
be a random variable that represents a possible state. We define
a meaning to be a distribution m(u) over U and assume the exis-
tence of a cognitive source that generates intended meanings for
the speaker. This source is defined by a distribution p(m) over a
set of meanings, M, that the speaker can represent. Each mean-
ing reflects a subjective belief about the state of the environment.
If the speaker’s intention is m 2M, this indicates that she wishes
to communicate her belief that U ⇠m(u). We consider a color
communication model in which U is restricted to colors and each
m 2M is a distribution over colors.

The speaker communicates m by producing a word w , taken
from a shared lexicon of size K . The speaker selects words
according to a naming policy q(w |m). This distribution is
a stochastic encoder that compresses meanings into words.
Because we focus on the uncertainty involved in compressing
meanings into words, rather than the uncertainty involved in
transmission, we assume an idealized noiseless channel that con-
veys its input unaltered as its output. This channel may have a
limited capacity, which imposes a constraint on the available lex-
icon size. In this case, the listener receives w and interprets it as
meaning m̂ based on her interpretation policy q(m̂|w), which is a
decoder. We focus on the efficiency of the encoder and therefore
assume an optimal Bayesian listener with respect to the speaker
(see SI Appendix, section 1.2 for derivation), who interprets every
word w deterministically as meaning

A

B

Fig. 1. (A) Shannon’s (23) communication model. In our instantiation of
this model, the source message M and its reconstruction M̂ are distributions
over objects in the universe U . We refer to these messages as meanings. M is
compressed into a code, or word, W . We assume that W is transmitted over
an idealized noiseless channel and that the reconstruction M̂ of the source
message is based on W . The accuracy of communication is determined by
comparing M and M̂, and the complexity of the lexicon is determined by the
mapping from M to W . (B) Color communication example, where U is a set
of colors, shown for simplicity along a single dimension. A specific meaning
m is drawn from p(m). The speaker communicates m by uttering the word
“blue,” and the listener interprets blue as meaning m̂.

m̂w (u)=
X

m2M

q(m|w)m(u), [1]

where q(m|w) is obtained by applying Bayes’ rule with respect to
q(w |m) and p(m).

In this model, different color-naming systems correspond
to different encoders, and our goal is to test the hypothe-
sis that encoders corresponding to color-naming systems found
in the world’s languages are information-theoretically effi-
cient. We next describe the elements of this model in further
detail.

Encoders. Our primary data source for empirically estimating
encoders was the World Color Survey (WCS), which contains
color-naming data from 110 languages of nonindustrialized soci-
eties (24). Native speakers of each language provided names for
the 330 color chips shown in Fig. 2, Upper. We also analyzed
color-naming data from English, collected relative to the same
stimulus array (25). We assumed that each color chip c is asso-
ciated with a unique meaning mc and therefore estimated an
encoder ql(w |mc) for each language l from the empirical dis-
tribution of word w given chip c (see data rows in Fig. 4 for
examples). Each such encoder corresponds to a representative
speaker for language l , obtained by averaging naming responses
over speakers.

Meaning Space. In our formulation, colors are mentally rep-
resented as distributions. Following previous work (6, 8), we
ground these distributions in an established model of human
color perception by representing colors in 3D CIELAB space
(Fig. 2, Lower) in which Euclidean distance between nearby
colors is correlated with perceptual difference. We define the
meaning associated with chip c to be an isotropic Gaussian cen-
tered at c, namely mc(u)/ exp

�
� 1

2�2 ku � ck2
�
. mc reflects the

speaker’s subjective belief over colors that is invoked by chip
c, and the scale of these Gaussians reflects her level of per-
ceptual uncertainty. We take �2 =64, which corresponds to a
distance over which two colors can be comfortably distinguished
(SI Appendix, section 6.3).

Cognitive Source. The cognitive source p(m) specifies how often
different meanings m must be communicated by a speaker.
In principle, different cultures may have different communica-
tive needs (8); we leave such language-specific analysis for
future work and instead consider a universal source for all lan-
guages. Previous studies have used the uniform distribution for
this purpose (8, 10); however, it seems unlikely that all col-
ors are in fact equally frequent in natural communication. We
therefore consider an alternative approach, while retaining the
uniform distribution as a baseline. Specifically, we focus on
a source that is derived from the notion of least informative
(LI) priors (Materials and Methods), a data-driven approach that
requires minimal assumptions. This approach also accounts for
the data better than another approach based on image statistics
(SI Appendix, section 7.2).

Bounds on Semantic Efficiency
From an information-theoretic perspective, an optimal encoder
minimizes complexity by compressing the intended message M
as much as possible, while maximizing the accuracy of its inter-
pretation M̂ (Fig. 1A). In general, this principle is formalized by
rate distortion theory (RDT) (19). In the special case in which
messages are distributions, the IB principle (14) provides a nat-
ural formalization. In IB, as in RDT (SI Appendix, section 1.3),
the complexity of a lexicon is measured by the number of bits
of information that are required for representing the intended
meaning. In our formulation the speaker represents her intended
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Fig. 2. (Upper) The WCS stimulus palette. Columns correspond to equally
spaced Munsell hues. Rows correspond to equally spaced lightness values.
Each stimulus is at the maximum available saturation for that hue/lightness
combination. (Lower) These colors are irregularly distributed in 3D CIELAB
color space.

meaning M by W , using an encoder q(w |m), and thus the
complexity is given by the information rate

Iq(M ;W )=
X

m,w

p(m)q(w |m) log
q(w |m)
q(w)

, [2]

where q(w)=
P

m2M p(m)q(w |m). Minimal complexity, i.e.,
Iq(M ;W )= 0, can be achieved if the speaker uses a sin-
gle word to describe all her intended meanings. However, in
this case the listener will not have any information about the
speaker’s intended meaning. To enable useful communication,
W must contain some information about M ; i.e., the complexity
Iq(M ;W ) must be greater than zero.

The accuracy of a lexicon is inversely related to the cost
of a misinterpreted or distorted meaning. While RDT allows
an arbitrary distortion measure, IB considers specifically the
Kullback–Leibler (KL) divergence,

D [mkm̂]=
X

u2U

m(u) log
m(u)
m̂(u)

, [3]

which is a natural distortion measure between distributions. [For
a general justification of the KL divergence see ref. 26, and in
the context of IB see ref. 18.] Note that this quantity is 0 if and
only if the listener’s interpretation is accurate; namely, m̂ ⌘m .
The distortion between the speaker and the ideal listener is the
expected KL divergence,

Eq

h
D [M kM̂ ]

i
=
X

m,w

p(m)q(w |m)D [mkm̂w ]. [4]

In this case, the accuracy of the lexicon is directly related to
Shannon’s mutual information,

Eq

h
D [M kM̂ ]

i
= I (M ;U )� Iq(W ;U ). [5]

Since I (M ;U ) is independent of q(w |m), minimizing distortion
is equivalent to maximizing the informativeness, or accuracy, of
the lexicon, quantified by Iq(W ;U ). This means that mutual
information appears in our setting as a natural measure both for
complexity and for semantic informativeness.

If the speaker and the listener are unwilling to tolerate any
information loss, the speaker must assign a unique word to each
meaning, which requires maximal complexity. However, between
the two extremes of minimal complexity and maximal accuracy,
an optimal trade-off between these two competing needs can be
obtained by minimizing the IB objective function,

F� [q(w |m)] = Iq(M ;W )��Iq(W ;U ), [6]

where �� 1 is the trade-off parameter. Every language l , defined
by an encoder ql(w |m), attains a certain level of complexity and
a certain level of accuracy. These two quantities can be plotted
against each other. Fig. 3 shows this information plane for the
present color communication model. The maximal accuracy that
a language l can achieve, given its complexity, is bounded from
above. Similarly, the minimal complexity that l can achieve given
its accuracy is bounded from below. These bounds are given by
the complexity and accuracy of the set of hypothetical IB lan-
guages that attain the minimum of Eq. 6 for different values of
�. The IB curve is the theoretical limit defined by these optimal
languages, and all trade-offs above this curve are unachievable.

Predictions
Near-Optimal Trade-offs. Our hypothesis is that languages evolve
under pressure for efficient compression, as defined by IB, which
implies that they are pressured to minimize F� for some value
of �. If our hypothesis is true, then for each language l there
should be at least one value, �l , for which that language is
close to the optimal F⇤

�l
. If we are able to find a good candi-

date �l for every language, this would support our hypothesis,
because such an outcome would be unlikely given systems that
evolved independently of F� . A natural choice for fitting �l is
the value of � that minimizes �F� =F� [ql ]�F⇤

� . We measure
the efficiency loss, or deviation from optimality, of language l by
"l = 1

�l
�F�l .

Structure of Semantic Categories. Previous work (e.g., ref. 8) has
sometimes summarized color-naming responses across multiple
speakers of the same language by recording the modal naming
response for each chip, resulting in a hard categorical partition
of the stimulus array, called a mode map (e.g., Fig. 4A). How-
ever, IB predicts that if some information loss is allowed, i.e.,
�<1, then an efficient encoder would induce soft rather than
hard categories. This follows from the structure of the IB optima
(14), given by

q�(w |m)/ q�(w) exp(��D [mkm̂w ]), [7]

which is satisfied self-consistently with Eq. 1 and with the
marginal q�(w). We therefore evaluate how well our model
accounts for mode maps, but more importantly we also evaluate
how well it accounts for the full color-naming distribution across

Fig. 3. Color-naming systems across languages (blue circles) achieve near-
optimal compression. The theoretical limit is defined by the IB curve (black).
A total of 93% of the languages achieve better trade-offs than any of their
hypothetical variants (gray circles). Small light-blue Xs mark the languages
in Fig. 4, which are ordered by complexity.
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Fig. 4. Similarity between color-naming distributions of languages (data rows) and the corresponding optimal encoders at �l (IB rows). Each color category
is represented by the centroid color of the category. (A) Mode maps. Each chip is colored according to its modal category. (B) Contours of the naming
distribution. Solid lines correspond to level sets between 0.5 and 0.9; dashed lines correspond to level sets of 0.4 and 0.45. (C) Naming probabilities along
the hue dimension of row F in the WCS palette.

speakers of a given language. If languages achieve near-optimal
trade-offs, and their category structure is similar to that of the
corresponding IB encoders, this would provide converging sup-
port for our hypothesis. We evaluate the dissimilarity between
the mode maps of ql and q�l by the normalized information
distance (NID) (27) and the dissimilarity between their full prob-
abilistic structures by a generalization of NID to soft partitions
(gNID) (Materials and Methods).

Results
We consider the color communication model with the IB objec-
tive of efficient compression (IB model) and, as a baseline for
comparison, with RKK’s efficiency objective (RKK+ model, see
SI Appendix, section 4). We consider each model with the LI
source and again with the uniform source. Because the LI source
is estimated from the naming data, it is necessary to control
for overfitting. Therefore, we performed fivefold cross-validation
over the languages used for estimating the LI source. Table 1
shows that IB with the LI source provides the best account of
the data. Similar results are obtained when estimating the LI
source from all folds, and therefore the results with this source
(SI Appendix, Fig. S1) are used for the figures. Table 1 and Fig. 3
show that all languages are near-optimally efficient with �l that
is only slightly greater than 1; this means that for color naming,
maximizing accuracy is only slightly more important than mini-
mizing complexity. These trade-offs correspond to the steepest
part of the IB curve, in which every additional bit in complex-
ity contributes the most to the accuracy of communication. In
this sense, naturally occurring color-naming systems lie along the
most active area of the curve, before the point of diminishing
returns.

IB achieves 74% improvement in "l and 61% improvement
in gNID compared to RKK+ with the LI source; however, the
difference in NID is not substantial. Similar behavior appears

with the uniform source. This result makes sense: The RKK+
bounds correspond to deterministic limits of suboptimal IB
curves in which the lexicon size is restricted (SI Appendix, sec-
tion 4.6). Because RKK’s objective predicts deterministic color-
naming systems, it can account for mode maps but not for full
color-naming distributions.

Although Table 1 and Fig. 3 suggest that color-naming systems
in the world’s languages are near-optimally efficient, a possible
objection is that perhaps most reasonable naming systems are
near optimal according to IB, such that there is nothing privi-
leged about the actual naming systems we consider. To rule out
the possibility that IB is too permissive, we follow ref. 6 and con-
struct for each language a control set of 39 hypothetical variants
of that language’s color-naming system, by rotating that nam-
ing system in the hue dimension across the columns of the WCS
palette (SI Appendix, section 8). A total of 93% of the languages
achieve better trade-offs than any of their hypothetical variants,
and the remaining 7% achieve better trade-offs than most of
their variants (Fig. 3).

The quantitative results in Table 1 are supported by visual
comparison of the naming data with IB-optimal systems. Fig. 4
shows that IB accounts to a large extent for the structure of

Table 1. Quantitative evaluation via fivefold cross-validation

Source Model "l gNID NID �l

LI IB 0.18 (±0.07) 0.18 (±0.10) 0.31 (±0.07) 1.03 (±0.01)
RKK+ 0.70 (±0.23) 0.47 (±0.10) 0.32 (±0.10)

U IB 0.24 (±0.09) 0.39 (±0.12) 0.56 (±0.07) 1.06 (±0.01)
RKK+ 0.95 (±0.22) 0.65 (±0.08) 0.50 (±0.10)

Shown are averages over left-out languages ±1 SD for the LI and uniform
(U) source distributions. Lower values of "l, gNID, and NID are better. Best
scores are in boldface.
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color naming in four languages with increasing complexity. Simi-
lar results for all languages are presented in SI Appendix, section
10. The category colors in Fig. 4 correspond to the color cen-
troids of each category, and it can be seen that the data centroids
are similar to the corresponding IB centroids. In addition, the IB
encoders exhibit soft category boundaries and sometimes leave
parts of color space without a clearly dominant name, as is seen
empirically (9, 13). Note that the qualitatively different solutions
along the IB rows are caused solely by small changes in �. This
single parameter controls the complexity and accuracy of the IB
solutions.

Tracking the IB centroids along the IB curve (Fig. 5) reveals a
hierarchy of color categories. These categories evolve through an
annealing process (28), by gradually increasing � (SI Appendix,
Movie S1). During this process, the IB systems undergo a
sequence of structural phase transitions, in which the number
of distinguishable color categories increases—corresponding to
transitions between discrete stages in Berlin and Kay’s (11)
proposal. Near these critical points, however, one often finds
inconsistent, low-consensus naming—consistent with more con-
tinuous views of color category evolution (9, 12, 13). It is in
this sense that the IB principle provides a single explanation for
aspects of the data that have traditionally been associated with
these different positions.

By assigning �l to each language we essentially map it to a
point on this trajectory of efficient solutions. Consider for exam-
ple the languages shown in Figs. 4 and 5 (see SI Appendix, Movie
S2 for more examples). Culina is mapped to a point right after
a phase transition in which a green category emerges. This new
green category does not appear in the mode maps of Fig. 4A, Left
(data and IB), because it is dominated by other color categories,
but it can be detected in Fig. 4C. Such dominated categories
could easily be overlooked or dismissed as noise in the data,
but IB predicts that they should exist in some cases. In partic-
ular, dominated categories tend to appear near criticality, as a
new category gains positive probability mass. The color-naming
systems of Agarabi and Dyimini are similar to each other and
are mapped to two nearby points after the next phase transi-
tion, in which a blue category emerges. These two languages each
have six major color categories; however, IB assigns higher com-
plexity to Dyimini. The higher complexity for Dyimini is due to
the blue category, which has a clear representation in Dyimini
but appears at an earlier, lower consensus stage in Agarabi. SI

Fig. 5. Bifurcations of the IB color categories (Movie S1). The y axis shows
the relative accuracy of each category w (defined in Materials and Methods).
Colors correspond to centroids and width is proportional to the weight of
each category, i.e., q� (w). Black vertical lines correspond to the IB systems
in Fig. 4.

Appendix, Movie S1 shows that low agreement around blue hues
is predicted by IB for languages that operate around 1.026�l 
1.033, and this is consistent with several WCS languages (e.g.,
Aguacatec and Berik in SI Appendix, section 10; also ref. 29), as
well as some other languages (9, 13).

English is mapped to a relatively complex point in the IB hier-
archy. The ability of IB to account in large part for English should
not be taken for granted, since all IB encoders were evaluated
according to a cognitive source that is heavily weighted toward
the WCS languages, which have fewer categories than English.
There are some differences between English and its correspond-
ing IB system, including the pink category that appears later in
the IB hierarchy. Such discrepancies may be explained by inac-
curacies in the cognitive source, the perceptual model, or the
estimation of �l .

The main qualitative discrepancy between the IB predictions
and the data appears at lower complexities. IB predicts that a
yellow category emerges at the earliest stage, followed by black,
white, and red. The main categories in low-complexity WCS lan-
guages correspond to black, white, and red, but these languages
do not have the dominant yellow category predicted by IB. The
early emergence of yellow in IB is consistent with the promi-
nence of yellow in the irregular distribution of stimulus colors in
CIELAB space (Fig. 2, Lower Right). One possible explanation
for the yellow discrepancy is that the low-complexity WCS lan-
guages may reflect suboptimal yet reasonably efficient solutions,
as they all lie close to the curve.

Discussion
We have shown that color-naming systems across languages
achieve near-optimally efficient compression, as predicted by the
IB principle. In addition, this principle provides a theoretical
explanation for the efficiency of soft categories and inconsistent
naming. Our analysis has also revealed that languages tend to
exhibit only a slight preference for accuracy over complexity in
color naming and that small changes in an efficiency trade-off
parameter account to a large extent for the wide variation in
color naming observed across languages.

The growth of new categories along the IB curve captures
ideas associated with opposing theories of color term evolu-
tion (see also refs. 9 and 25). Apart from the yellow discrep-
ancy, the successive refinement of the IB categories at critical
points roughly recapitulates Berlin and Kay’s (11) evolutionary
sequence. However, the IB categories also evolve between phase
transitions and new categories tend to appear gradually, which
accounts for low-consensus regions (9, 12, 13). In addition, the
IB sequence makes predictions about color-naming systems at
complexities much higher than English and may thus account
for the continuing evolution of high-complexity languages (25).
This suggests a theory for the evolution of color terms in which
semantic categories evolve through an annealing process. In this
process, a trade-off parameter, analogous to inverse temperature
in statistical physics, gradually increases and navigates languages
toward more refined representations along the IB curve, cap-
turing both discrete and continuous aspects of color-naming
evolution in a single process.

The generality of the principles we invoke suggests that a drive
for information-theoretic efficiency may not be unique to color
naming. The only domain-specific component in our analysis is
the structure of the meaning space. An important direction for
future research is exploring the generality of these findings to
other semantic domains.

Materials and Methods
Treatment of the Data. The WCS data are available online at www1.icsi.
berkeley.edu/wcs. English data were provided upon request by Lindsey and
Brown (25). Fifteen WCS languages were excluded from the LI source and
from our quantitative evaluation, to ensure that naming probabilities for
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each language were estimated from at least five responses per chip (SI

Appendix, section 4.1).

LI Source. A source distribution can be defined from a prior over colors by
setting p(mc) = p(c). For each language l, we constructed a LI source pl(c) by
maximizing the entropy of c while also minimizing the expected surprisal of
c given a color term w in that language (see SI Appendix, section 2 for more
details). We obtained a single LI source by averaging the language-specific
priors.

IB Curve. For each value of � the IB solution is evaluated using the IB
method (14). IB is a nonconvex problem, and therefore only convergence
to local optima is guaranteed. To mitigate this problem we fix K = 330 and
use the method of reverse deterministic annealing to evaluate the IB curve
(SI Appendix, section 1.4).

Dissimilarity Between Naming Distributions. Assume two speakers that inde-
pendently describe m by W1 ⇠ q1(w1|m) and W2 ⇠ q2(w2|m). We define the
dissimilarity between q1 and q2 by

gNID(W1, W2) = 1 �
I(W1; W2)

max{I(W1; W0
1), I(W2; W0

2)}
, [8]

where W
0
i

corresponds to another independent speaker that uses qi . If q1

and q2 are deterministic, i.e., they induce hard partitions, then gNID reduces
to NID (SI Appendix, section 3 for more details).

Relative Accuracy. We define the informativeness of a word w by

Iq(w) = D[m̂wkm0], [9]

where m0(u) =
P

m
p(m)m(u) is the prior over u before knowing w. Note

that the accuracy of a language can be written as Iq(W ; U) =
P

w
q(w)Iq(w),

and therefore we define the relative accuracy of w (y axis in Fig. 5) by
Iq(w) � Iq(W ; U).
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Movie Captions
Movie S1. Evolution of the IB color naming systems. Left panel: Bifurcation diagram, similar to Fig.5. This
diagram shows the full range of IB solutions, whereas Fig.5 shows only the range relevant for the languages in our data.
The black line indicates the location in the diagram that corresponds to the value of —. Right panel: Visualization
(as in Fig.4) of the IB system that corresponds to —. The IB systems evolve as — gradually increases from — = 1,
where there is only one category, to — = 213, where each color is mapped deterministically to its own unique category.
In between these two extremes, the IB systems induce soft color categories. Structural phase transitions occur at
critical values of — along this trajectory of e�cient solutions, in which new categories appear. Low-consensus regions
often appear in systems near these phase transitions.

Movie S2. Languages achieve near-optimal compression. Left panel: The red dot traces along the optimal
systems on the IB curve (theoretical limit), while the blue dot follows nearby, indicating the position of selected
languages just below the curve in the information plane. A total of 23 representative languages are shown, which
were selected to demonstrate the range of empirical variation accommodated by the IB model and the relation of
that variation to languages’ positions near the IB curve. Right panel: Contour plots of the language’s naming
distribution (top) and the IB encoder (bottom) that correspond to the blue and red dots on the left panel, respectively.
The IB systems captures much of the structural variability in the data, and even languages that are less similar to the
IB systems are still highly e�cient, as seen on the left panel.

Supporting Information Text

1. Theoretical framework
1.1. Summary of notation. We use capital letters to denote random variables (e.g. M and U), calligraphic letters to
denote their support (e.g. M and U), and lower case letters to denote a specific realization (e.g. m and u). In our
formulation we consider a finite set of distributions M. Each element in this set (i.e., each m œ M) is a distribution
over the set U . In other words, m is a function that takes u as an argument. We use the notation m(u) when we wish
to make explicit that m is a function of u, or when we wish to denote the probability of a specific u according to m.
It may be helpful to think of m(u) in terms of conditional probabilities, i.e., m(u) = p(u|m). Table S1 summarizes
the notation used in the IB framework (1), in our current formulation of IB, in the framework of RKK (2) and in the
adjusted RKK model (RKK+) which we constructed as a baseline for evaluation. A detailed description of RKK+
appears in section 4.

Table S1. Summary of notation

Component IB (1999) IB (current) RKK+ (current) RKK (2015)

Communication
model

Target variable / universe y œ Y u œ U u œ U t œ U
Source variable x œ X m œ M m œ M -
Speaker’s intended meaning p(y|x) m(u) m(u) s(t)
Source distribution / need p(x) p(m) p(m) n(t)
Cluster / word x̂ œ X̂ w œ W w œ W w œ W
Encoder / naming distribution q(x̂|x) q(w|m) q(w|m) t ‘æ w if t œ cat(w)
Decoder x̂ ‘æ q(y|x̂) q(m̂|w) q(m̂|w) -
Listener’s interpreted meaning q(y|x̂) m̂w(u) m̂w(u) l(t)

Optimization
principle

Complexity Iq(X; X̂) Iq(M ; W ) log K K = |W|
Distortion / communicative cost D[p(y|x)Îq(y|x̂)] D[mÎm̂] D[mÎm̂] D[sÎl]
Accuracy Iq(X̂; Y ) Iq(W ; U) Iq(W ; U) -
Tradeoff parameter — — - -

1.2. Bayesian listener. We show that the ideal listener with respect to a given speaker is an optimal Bayesian decision
maker. In our case, this means that we can assume an ideal listener that always decodes w deterministically by
interpreting it as meaning m̂w(u) =

q
mœM q(m|w)m(u), where q(m|w) is obtained by applying Bayes’ rule,

q(m|w) = q(w|m)p(m)
q(w) , [S1]
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where q(w) =
q

mÕ p(mÕ)q(w|mÕ). To show that this Bayesian listener is optimal, assume that the speaker’s encoder
is given by q(w|m). The optimal listener for this speaker is defined by the decoder q(m̂|w) that minimizes

F— [q] = Iq(M ; W ) ≠ —Iq(W ; U) = Iq(M ; W ) ≠ —

1
I(M ; U) ≠ Eq

Ë
D[MÎM̂ ]

È2
, [S2]

where the second equality follows from Eq. (5). Note that I(M ; U) is constant in q and Iq(M ; W ) depends on the
encoder but not on the decoder. Only the last term depends on the decoder, and it holds that

Eq

Ë
D[MÎM̂ ]

È
=

ÿ

m,w,m̂

p(m)q(w|m)q(m̂|w)D [mÎm̂] [S3]

=
ÿ

m,w,m̂

q(w)q(m|w)q(m̂|w)D [mÎm̂] [S4]

Ø
ÿ

w

q(w) argmin
m̂Õ

ÿ

m

q(m|w)D [mÎm̂
Õ] [S5]

Therefore, there is a deterministic decoder q(m̂|w) that minimizes Eq. (S2),

q(m̂|w) =

Y
]

[
1 if m̂ = argmin

m̂Õ
Eq(m|w) [D [mÎm̂

Õ]]

0 otherwise
. [S6]

Di�erentiating Eq(m|w) [D [mÎm̂
Õ]] with respect to m̂

Õ and equating to 0 gives that the minimum is attained at m̂w.
Since

q
u m̂w(u) = 1 we did not need to impose this normalization constraint on the optimization, and because the

KL divergence is convex in both arguments m̂w is indeed the minimum.

1.3. Relation between IB and rate distortion theory. It has been shown that IB can be considered a special type of
rate distortion (RD) with a variable distortion measure (3), and that the IB distortion measure has unique properties
that distinguish IB from other RD problems (4). Furthermore, it was shown in (4) that IB can be considered a
standard RD problem over probability measures, where the reconstruction alphabet is continuous. This view is closely
related to the interpretation of IB as distributional clustering (5), in contrast to many applications of IB in the
context of supervised learning (6). The setting we consider in this paper corresponds to a RD problem where M is
compressed into M̂ . Although we are explicitly interested in the compression of M into a codeword W and in the
reconstruction of M̂ from W , it can be shown that the two problems are equivalent under mild assumptions.

A formal proof of this statement is beyond the scope of this work, but the main idea is that we can assume w.l.o.g.
that the decoder is information lossless, i.e., Iq(M ; W ) = Iq(M ; M̂). In this case, minimizing F— [q] is equivalent to
minimizing the RD objective Iq(M ; M̂) + —Eq[D[MÎM̂ ]], under the constraint q(m̂|m) =

q
w q(w|m)1[m̂=m̂w]. It is

possible to show that, under mild assumptions, this additional constraint on q(m̂|m) would not change the optimum
of the RD problem. However, here we will only justify the assumption that the decoder is information lossless. Let
Ï(w) = m̂w with respect to some encoder q. The decoder is information lossless if Ï(w) is a one-to-one mapping over
the support of q (i.e., over Sup(q) = {w œ W : q(w) > 0}). We can assume that this property holds, because otherwise
it is possible to construct q

Õ for which this property holds and F— [qÕ] Æ F— [q]. Assume there are w1, w2 œ Sup(q) such
that w1 ”= w2 and Ï(w1) = Ï(w2). Define q

Õ by merging them, namely for all m let q
Õ(w1|m) = q(w1|m) + q(w2|m),

q
Õ(w2|m) = 0, and for all w ”= w1, w2 let q

Õ(w|m) = q(w|m). This does not change the expected distortion; however,
IqÕ(M ; W ) Æ Iq(M ; W ).

1.4. The IB method and deterministic annealing. Given a value of —, the IB method (1) iteratively updates the
following IB equations until convergence,

q—(w|m) = q—(w)
Z(m; —) exp(≠—D [mÎm̂w]) [S7]

q—(w) =
ÿ

mœM
q—(w|m)p(m) [S8]

m̂w(u) =
ÿ

mœM
m(u)q—(m|w) , [S9]

where Z(m; —) is the normalization factor. At the optimum, these equations are satisfied self-consistently. Because
IB is a non-convex problem, the method of deterministic annealing (7) is often used to mitigate the problem of
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converging to sub-optimal fixed points of the IB equations (e.g. 5, 8). Deterministic annealing starts at a low value of
— (— = 1 in IB) where the solution is trivial, and then gradually increases —. For each —, the IB method is initialized
with the solution found for the previous value of —. In practice, for better convergence, we evaluated the IB curve by
reverse deterministic annealing (9); i.e., starting at a very high value of —, where the solution is given by a one-to-one
mapping from M to W , and then gradually decreasing —. We repeated this process with 1500 values of — in [1, 213].

2. Least informative source
How to accurately model a cognitive process that generates meanings for the speaker is an open question that is
beyond the scope of this work. Instead, we wish to estimate a source distribution that is more realistic than the
uniform distribution, but does not require prior knowledge. In this work we propose a general approach for doing so,
based on the following observation: if a source distribution exists, it should be reflected somehow in the way people
speak, i.e., in the naming distribution. Therefore, it makes sense to try to infer the source distribution directly from
the naming data. We do so without making assumptions about the cognitive source by building on the notion of least
informative priors. Our approach is domain-general; however, for simplicity we present it here in terms our color
naming model. In section 7 we discuss other approaches for estimating the source distribution, and show that our
conclusions also hold under these alternative source distributions.

2.1. Definition for a given language. We begin by defining a least informative prior over color chips, with respect to a
given naming distribution ql(w|c). Because we assumed that each chip c is associated with a unique meaning mc, any
prior p(c) induces a source distribution by setting p(mc) = p(c). One common approach for obtaining uninformative
priors is by invoking the maximum entropy principle. However, in our case the maximum entropy distribution over
color chips is simply the uniform distribution. Another natural approach in our setting is to find a distribution that
maximizes the entropy of c while minimizing the expected uncertainty over c give a term w in the language. That is,

pl(c) = argmax
p(c)

H(C) ≠ Hq(C|W ) [S10]

where Hq(C|W ) = ≠
q

c,w p(c)q(w|c) log q(c|w)
p(c) is the conditional entropy, and q(c|w) = q(w|c)p(c)

q(w) is the posterior
distribution of c given w.

This definition has two interesting interpretations, in addition to being a constrained maximum entropy distribution.
First, note that

Iq(W ; C) = argmax
p(c)

H(C) ≠ Hq(C|W ) , [S11]

which implies that pl(c) maximizes the mutual information between colors and words. This type of prior distribution
is also called a capacity achieving prior, and can be evaluated using the Blahut-Arimoto algorithm (10, 11). Note that
in the IB model, a language l would be maximally complex if the source distribution were defined from pl(c). This
contrasts with the IB principle, which aims to minimize complexity. Second, pl(c) is considered the least informative
prior over c in the sense that it minimizes information about the posterior q(c|w) by maximizing the KL divergence
between the prior and posterior. This interpretation follows from the identity

Iq(W ; C) =
ÿ

w

q(w)D[q(c|w)Îp(c)] , [S12]

and it is closely related to the notion of reference priors in Bayesian inference (12). Reference priors are considered
objective priors in the sense that they depend solely on the given distribution q(w|c), but not on other assumptions
that may reflect subjective prior beliefs.

2.2. Estimation across languages. Our approach for estimating a LI source can be applied on a language-specific
basis. However, we leave this language-specific analysis for future research and instead focus on estimating a single
source distribution for all languages. We obtain this universal LI source by averaging across the language-specific LI
priors, namely

pLI(mc) = 1
L

Lÿ

l=1
pl(c) . [S13]

To control for overfitting and to test the ability of our model to generalize to languages which are not used for
estimating the source, we performed 5-fold cross-validation over the languages that contribute to the average in
Eq. (S13). Fifteen WCS languages were excluded from this process, to ensure that the naming probabilities for each
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language were estimated from at least 5 responses for every chip. This regularization process is further explained
in section 4.1, and the excluded 15 languages are listed in section 10. Section 10 contains the results for all 111
languages.

The full LI source, estimated by averaging over 96 languages, is shown in Fig.S1. This source distribution is
non-uniform; however, it still has relatively high entropy, H[p(mc)] ¥ 7.41, compared to the maximal entropy
log2(330) ¥ 8.36. This means that the KL divergence between the LI source and the uniform source is roughly 1 bit.
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I

J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

10�9 10�8 10�7 10�6 10�5 10�4 10�3 10�2

Fig. S1. The LI prior over the color chips obtained by averaging across the LI priors of 96 languages. Each chip is colored according to its probability
mass, where black corresponds to probability 0 and white corresponds to probability 1. Gray colors are based on a logarithmic scale.

3. Dissimilarity measures
We compared di�erent encoders, or color naming systems, by building on standard information-theoretic dissimilarity
measures between clusterings (13). In our setting, these measures have an intuitive interpretation that relates them
to the information between speakers of two languages.

Assume a language l1 with lexicon W1 and an encoder q1(w1|m), and a language l2 with lexicon W2 and an encoder
q2(w1|m). In addition, assume that given a meaning m ≥ p(m), a speaker of l1 produces a word W1 ≥ q1(w1|m) and
a speaker of l2 independently produces a word W2 ≥ q2(w2|m). The joint distribution of W1 and W2 is given by

q(w1, w2) =
ÿ

mœM
p(m)q1(w1|m)q2(w2|m) . [S14]

Similarly, we can consider the joint distribution of two speakers of the same language that independently produce
words Wi and W

Õ
i given m,

q(wi, w
Õ
i) =

ÿ

mœM
p(m)qi(wi|m)qi(wÕ

i|m) . [S15]

Intuitively, two languages are similar if the cross-language information I(W1; W2) is large compared to the information
within each language.

3.1. Normalized Information Distance (NID). The normalized information distance (NID 13) is defined by

NID(W1, W2) = 1 ≠ I(W1; W2)
max{H(W1), H(W2)} . [S16]

NID has been defined in (13) for hard partitions; i.e., in the case where q(w|m) is a deterministic distribution. In this
case NID has several desirable properties (13): it is a metric, it is bounded in the interval [0, 1], and it was shown to
outperform other methods for measuring similarity between hard clusterings. Therefore, we measured the distance
between the mode maps that correspond to q1 and q2 by the NID between them.

3.2. Generalization of NID to soft partitions (gNID). Although it is straightforward to apply the NID formula to soft
partitions (soft-NID), we noticed that soft-NID is not sensitive enough to di�erences in the full probabilistic structure
of the encoders. This can be seen in Fig.S2, which shows Dyimini for example. The soft-NID between Dyimini and
di�erent IB theoretical systems along the IB curve has a relatively flat part. This means that soft-NID can barely
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distinguish between these di�erent IB systems. We therefore slightly modified soft-NID in a way that also generalized
NID to soft partitions. We define this generalization by

gNID(W1, W2) = 1 ≠ I(W1; W2)
max{I(W1, W

Õ
1), I(W2, W

Õ
2)} . [S17]

If q1(w1|m) and q2(w2|m) are both deterministic conditional distributions (i.e., W1 and W2 are selected deterministically
given m), then gNID reduces to NID. To see this, notice that I(Wi; W

Õ
i ) = H(Wi) ≠ H(Wi|W Õ

i ) and H(Wi|W Õ
i ) = 0

in the deterministic case.
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Fig. S2. Dissimilarity measures between the color naming system of Dyimini and the IB theoretical systems along the IB curve. gNID and soft-NID apply
to the full distributions, whereas NID applies to their corresponding mode maps.

gNID has a few desirable properties. It holds that gNID(W1, W2) Æ 1 because mutual information is non-negative,
and gNID(W1, W2) = 1 when W1 and W2 are independent because in that case I(W1; W2) = 0. When the two
encoders are equivalent, then gNID(W1, W2) = 0, as opposed to soft-NID which could be positive in this case.
Although gNID in general is not necessarily non-negative, we did not encounter cases in which the gNID between a
language’s color naming distribution and an IB or RKK+ encoder was negative. In addition, for most languages gNID
exhibits qualitatively similar behavior as seen for Dyimini (Fig.S2). That is, the gNID between the language and the
IB systems follows a similar trend as NID and soft-NID; however, unlike NID and soft-NID, gNID is unimodal.

4. The RKK+ model
The RKK+ model is based on our communication model (Fig.1), but the definition of e�ciency and the treatment of
the data are derived from RKK’s approach to color naming (2). Our communication model is very similar to RKK’s
communication model, although we relaxed a few assumptions made by RKK. In this section we discuss in detail the
derivation of RKK+ from RKK’s notion of e�ciency, and explain the di�erences between the RKK+ model and
RKK’s color naming model. The mapping between our notation and RKK’s notation is described in Table S1. For
simplicity, we use here our notation for RKK+ and refer to the components of RKK’s color naming model by the
corresponding RKK+ notation.

4.1. Encoders based on major color terms. RKK’s approach to the WCS color naming data relies on the notion of
a major color term. According to RKK, w is a major color term in a given language, if it is the modal term for at
least 10 color chips. Otherwise, w is considered a minor color term. For English, which was not included in RKK’s
color naming analysis, we set the threshold at 5 chips in order to obtain the 11 basic color terms in English. As in
RKK’s analysis, only data for major color terms is considered for the evaluation of the RKK+ model. That is, for
each language l RKK+ considers a naming distribution q

+
l (w|c) which is obtained from ql(w|c) by restricting it only

to the major color terms in l. Restricting the data of a language to major terms may result in insu�cient data for
estimating the color naming distribution of that language. In 15 WCS languages some chips had fewer than 5 naming
responses, and therefore we excluded these languages from the quantitative model evaluation and from the estimation
of the LI source. These 15 languages are presented in section 10.
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4.2. Relaxing RKK’s assumptions.

Stochastic speaker. RKK made the simplifying assumption that the speaker chooses words deterministically, which
induces hard partitions of the color space into named categories. For each color term w RKK defined cat(w) by the
set of colors that are named by w. This corresponds to a deterministic encoder: q(w|c) = 1 if c œ cat(w) and 0 else.
In RKK+ this assumption was relaxed because the encoder in our communication model can be stochastic.

Perceptual uncertainty. RKK assumed that the speaker has no perceptual uncertainty, which means that colors are
represented by delta functions, i.e., mc(u) = ”c,u. In our model we allow for perceptual uncertainty and instead
assume that each color c is represented by the Gaussian mc.

Bayesian listener. RKK assumed that the listener’s interpreted meanings take the form

lw(u) Ã
ÿ

cœcat(w)
exp

3
≠ 1

2‡2 Îu ≠ cÎ2
4

. [S18]

Although this form is justified (2), we show in section 4.4 that a similar form can emerge directly from the need
for e�ciency. Therefore, we waive this assumption and consider a listener who is adapted to the speaker without
additional constraints, as in the IB model.

4.3. Efficiency according to RKK. RKK argued that theoretically e�cient languages minimize a communicative cost
for a given level of complexity. We next present their definitions of complexity and communicative cost, and discuss
the specific form these measures take in RKK+.

Complexity. RKK’s notion of complexity is derived from the minimum description length principle on a domain-specific
basis. In the domain of color, RKK defined the complexity of a language by the number of major terms in that
language, denoted here by K. In RKK+ we slightly adjust this complexity measure and consider instead log K. This
does not change the essence of the measure nor the structure of the theoretically optimal systems, but allows us to
measure complexity in bits, as in IB.

Communicative cost. RKK defined the error between the speaker’s intended meaning and listener’s interpreted meaning
by the KL divergence between these two distributions. This definition coincides with the distortion measure in IB.
RKK’s communicative cost is the expected error, as it corresponds to the expected distortion in IB. Following the
same argument as in section 1.2, we obtain that the ideal listener in RKK+ takes the same form as in IB; i.e., it is
given by m̂w. Therefore, in RKK+ the communicative cost of an encoder q(w|m) is given by

D[q] =
ÿ

m,w

p(m)q(w|m)D [mÎm̂w] . [S19]

This definition is the same as Eq. (S3), but in RKK+ it applies to q
+
l instead of ql. We can therefore apply

Eq. (5) to inversely relate the communicative cost D[q+
l ] to the accuracy of the language according to RKK+. The

complexity-accuracy pairs of the languages we considered, according to RKK+, are shown in Fig.S3.

4.4. Structure of the solution. An optimal speaker-listener pair in RKK+ jointly minimizes the expected distortion
between them, for a given K. The hard constraint on the number of major terms is enforced by only considering
encoders q(w|m) over K terms. We have already seen that optimizing this distortion with respect to the speaker’s
interpreted meanings, while fixing the speaker’s encoder, gives m̂w. Now, fix m̂w and consider the encoder that
minimizes Eq. (S19). Since this objective is linear in q(w|m) the minimum is attained at

q(w|m) =

Y
]

[
1 if w = wm, where wm = argmin

wÕ
D [mÎm̂wÕ ]

0 otherwise
. [S20]

Formally, this can be shown by following a similar argument as in section 1.2. This means that even though we relaxed
the assumption that the speaker is deterministic, RKK+ does not predict any advantage for non-deterministic speakers
that induce soft categories, and the theoretically optimal RKK+ systems can be characterized by hard partitions of
color space. We can therefore define cat(w) as in RKK’s color naming model, namely cat(w) = {m œ M : wm = w}.
Plugging back this encoder into the formula of m̂w (i.e., Eq. (1)) and substituting the structure of mc, gives a similar
form as RKK’s assumed listener in Eq. (S18).
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4.5. Evaluation of the RKK+ bounds. The RKK+ fixed points are characterized by the self-consistent cat(w) and
m̂w. This suggests an iterative algorithm for finding these fixed points, which can be considered as K-Means over
distributions where the KL divergence is used as the dissimilarity function. Denote by C

(t)
w the set cat(w) obtained at

the t-th iteration of the algorithm. The algorithm can be described as follows:

• Initialize C
(0)
w for w œ {1, . . . , K}

• For t = 1, . . . (until convergence) update:

m̂
(t)
w (u) = 1

|C(t≠1)
w |

ÿ

mœCw

m(u) [S21]

C
(t)
w =

;
m œ M : w = argmin

wÕ
D[mÎm̂

(t)
wÕ ]

<
[S22]

This is a non-convex optimization problem, and only convergence to a local optimum is guaranteed. Therefore, for
each K we repeated this algorithm 300 times with random initializations, and selected the best result. We evaluated
the RKK+ bounds for K = 2, . . . , 11. These bounds are shown in Fig.S3 (orange bars). The number of major terms
in the languages we considered varies between 3-11.

4.6. Relation to IB. RKK+ is equivalent to IB when the lexicon size is restricted to K terms, and when — æ Œ. To
see this, notice that taking — æ Œ means that the speaker and listener only care about accuracy, and therefore
minimizing F— amounts to only minimizing the expected distortion. For every K we can evaluate the IB solution
for 0 Æ — < Œ, where the hard constraint on the lexicon size is imposed by considering only encoders q(w|m) over
a lexicon of size K. While the optimal IB curve is estimated for K = |M| (see 4), for smaller values of K we can
obtain sub-optimal IB curves. This means that the IB curve upper bounds the RKK+ bounds. This relation between
IB and RKK+ can be seen in Fig.S3.
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Fig. S3. Comparison between IB and RKK+. Complexity-accuracy values for all languages according to IB (blue dots) and RKK+ (red crosses). The
IB curve (black) is evaluated for K = 330, and it defines the theoretical limit of achievable tradeoffs, including those achieved by the optimal systems
according to RKK+. RKK+ bounds (orange bars) correspond to the deterministic limits of sub-optimal IB curves (gray curves) obtained by restricting the
lexicon size to K = 2, . . . , 11. The efficiency of the languages according to each model is evaluated with respect to the model’s bounds.

5. Quantitative evaluation and variants of the IB model
Our goal in comparing IB with RKK+ is to test which principle can account better for the data, while holding all
other elements of the model constant. Although IB and RKK+ are defined over the same communication model,
there are two di�erences in the way these models treat the data: (1) RKK+ only considers major terms while IB
considers the full set of naming responses, and (2) RKK+ evaluates each language against an optimal system with the
same complexity, whereas in the IB model each language is evaluated against an optimal system at —l which may have
a di�erent complexity than that of the language. We controlled for these di�erences by considering two variants of

Zaslavsky et al. 9 of 58



the IB model that match how RKK+ treats the data. We show here that the results in both cases are similar to our
main evaluation, which suggests that these two di�erences are mainly technical and do not impact our conclusions.

We evaluate RKK+ in the same way we evaluate IB. Namely, we are interested in (A) whether color naming
systems across languages are near-optimally e�cient according to RKK+; and (B) how well a theoretically optimal
RKK+ encoder for a given Kl can explain the structure of the color naming distribution q

+
l in languages with Kl

major color terms. We use the same quantitative measures for evaluating IB and RKK+, namely Ál, gNID and NID,
where Ál is defined with respect to the objective in each model. Although there is no tradeo� parameter in RKK+,
the definition of Ál coincides with the definition of Ál in IB, because in RKK+ the complexity term cancels out. Recall
that for IB we defined

Ál = 1
—l

!
F—l [ql] ≠ Fú

—l

"
= 1

—l

1
Iql(W ; M) ≠ Iq—l

(W ; M)
2

≠
1

Iql(W ; U) ≠ Iq—l
(W ; U)

2
. [S23]

From Eq. (5) we get that
Ál = 1

—l

1
Iql(W ; M) ≠ Iq—l

(W ; M)
2

+
1

D[ql] ≠ D[q—l ]
2

. [S24]

If ql and q—l have the same complexity then we get that Ál = D[ql] ≠ D[q—l ]. In RKK+ we have Ál = D[q+
l ] ≠ D[qKl ],

where qKl is an optimal RKK+ encoder for Kl.

5.1. IB with constrained complexity. We considered a variant of the IB model in which —l is determined such that
the complexity at —l matches the language’s complexity (IB-C). Formally, this means that in IB-C —l is selected such
that Iql(W ; M) = Iq—l

(W ; M) and therefore Ál = D[ql] ≠ D[q—l ]. Table S2 shows the results for IB-C, together with
the results for IB and RKK+ that are reported in main text (Table 1). The di�erences between IB and IB-C are not
substantial, both for the LI source and for the uniform source. Therefore, our conclusions hold even for IB-C.

Table S2. Quantitative evaluation via fivefold cross-validation (including IB-C)

Source Model Ál gNID NID —l

LI
IB 0.18 (±0.07) 0.18 (±0.10) 0.31 (±0.07) 1.03 (±0.01)

IB-C 0.18 (±0.07) 0.21 (±0.08) 0.31 (±0.08) 1.04 (±0.02)
RKK+ 0.70 (±0.23) 0.47 (±0.10) 0.32 (±0.10)

U
IB 0.24 (±0.09) 0.39 (±0.12) 0.56 (±0.07) 1.06 (±0.01)

IB-C 0.24 (±0.09) 0.40 (±0.10) 0.56 (±0.08) 1.07 (±0.02)
RKK+ 0.95 (±0.22) 0.65 (±0.08) 0.50 (±0.10)

Averages over left-out languages ±1 SD for the least informative (LI) and uniform (U) source distributions. Lower values of Ál, gNID and NID are better.

5.2. IB for major color terms. Applying RKK+ to both major and minor terms can only increase the gap between
the performance of RKK+ and IB. This is because in some languages there are many low frequency terms which
do not much a�ect the partition of color space, however the optimal RKK+ encoders are very much a�ected by K.
IB is more robust to low frequency terms, because the informational complexity in IB takes this into account by
considering the frequency of each term. Therefore, we considered a variant of IB and a variant of IB-C in which they
are applied to the color naming distributions restricted to major terms, i.e., to q

+
l instead of ql. Table S3 shows that

the results in this case are not substantially di�erent from the results in Table S2, which correspond to our main
evaluation. Therefore, our conclusions hold whether or not the data are restricted to major color terms.

Table S3. Quantitative evaluation via fivefold cross-validation (based only on major color terms)

Source Model Ál gNID NID —l

LI
IB 0.14 (±0.06) 0.20 (±0.11) 0.31 (±0.07) 1.03 (±0.01)

IB-C 0.14 (±0.06) 0.20 (±0.09) 0.31 (±0.08) 1.04 (±0.02)
RKK+ 0.70 (±0.23) 0.47 (±0.10) 0.32 (±0.10)

U
IB 0.19 (±0.07) 0.42 (±0.12) 0.57 (±0.07) 1.06 (±0.01)

IB-C 0.19 (±0.07) 0.40 (±0.10) 0.56 (±0.08) 1.07 (±0.02)
RKK+ 0.95 (±0.22) 0.65 (±0.08) 0.50 (±0.10)

Averages over left-out languages ±1 SD for the least informative (LI) and uniform (U) source distributions. Lower values of Ál, gNID and NID are better.

10 of 58 Zaslavsky et al.



6. Foundational assumptions
In this section we examine the foundational assumptions of our communication model more closely, and discuss the
robustness of our results to these assumptions.

6.1. Choice of color space. Our model is based on the assumption that colors are represented in CIELAB space. To
test the robustness of our results to this assumption, we repeated our full analysis with colors that are represented
in the CIELUV color space (similarly to (14)) instead of CIELAB. Apart from this, all the other assumptions and
methods were kept fixed. Table S4 shows quantitatively that this analysis yields similar results as the main analysis
which is based on the CIELAB assumption. In particular, in both cases IB with the LI source provides the best
account of the data. This conclusion is also supported by the qualitative results shown in Fig.S4 and in Fig.S5A,
which are very similar to the corresponding results based on the CIELAB space. The main di�erence appears to be
in the bifurcation diagram (Fig.S5B), where a red category appears much earlier compared to the results based on
CIELAB.

Table S4. Quantitative evaluation via fivefold cross-validation (based on CIELUV)

Source Model Ál gNID NID —l

LI
IB 0.14 (±0.06) 0.19 (±0.10) 0.30 (±0.09) 1.02 (±0.01)

RKK+ 0.71 (±0.23) 0.45 (±0.10) 0.29 (±0.10)

U
IB 0.19 (±0.08) 0.36 (±0.12) 0.54 (±0.11) 1.03 (±0.01)

RKK+ 0.97 (±0.24) 0.66 (±0.07) 0.51 (±0.09)

Averages over left-out languages ±1 SD for the least informative (LI) and uniform (U) source distributions. Lower values of Ál, gNID and NID are better.
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Fig. S4. CIELUV space. Mode maps (A), contour plots (B) and naming probabilities along row F (C), similar to Fig.4 in main text but based on the results
for CIELUV instead of CIELAB.

Zaslavsky et al. 11 of 58



Fig. S5. CIELUV space. Information plane (A) and bifurcation diagram (B) for the full LI source. These figures are similar to Fig.3 and Fig.5 in main text,
but they are based on the results for CIELUV instead of CIELAB.

6.2. Category effects and biological constraints. By grounding our model in a presumed universal perceptual color
space such as CIELAB, we have implicitly assumed that this underlying representation is not a�ected by language.
However, it is known that in fact there are lexical e�ects on the perceived similarity of colors (e.g. 15). While distances
between colors in CIELAB may have been influenced to some extent by such category e�ects, we believe it is unlikely
that this has introduced a substantial bias to our model. One reason for this belief is that our model is able to account
for wide cross-language variation in color naming based on the same underlying perceptual space for all languages.
Another reason is that category e�ects on color memory (e.g. 16, 17) have themselves been accounted for by assuming
the same universal perceptual space, CIELAB, combined with knowledge of language-specific categories (18). These
outcomes, which are consistent with a universal perceptual space, seem unlikely given a perceptual space that is
instead strongly biased toward lexical categorization in one language, such as English.

It has recently been shown that pre-linguistic infants exhibit categorical distinctions that resemble common
patterns in the WCS data (14), and this finding has been taken to suggest a pre-linguistic biological basis for color
categorization. That conclusion is broadly consistent with our assumption of a universal color space, although
our analysis is based solely on data from adults, and we do not attempt to directly engage the question of color
categorization in infants.

6.3. Perceptual uncertainty. The color meaning space (M) that we assumed has a free parameter, ‡
2, that determines

the speaker’s level of perceptual uncertainty. We set ‡
2 = 64 based on a result reported in (19) which suggested that

this value corresponds to a distance over which two colors can be comfortably distinguished. To further justify this
setting, we evaluated our IB model with a higher (‡2 = 500) and lower (‡2 = 36) level of perceptual uncertainty. The
higher value, ‡

2 = 500, corresponds to a level of perceptual uncertainty that has been used in previous studies (e.g.
2, 20). Table S5 shows the quantitative results for our IB model with di�erent levels of perceptual uncertainty, and
with respect to the full LI source. It can be seen that under higher uncertainty, the model is slightly worse on all
three measures. Under lower uncertainty the model is slightly better in terms of Ál but slightly worse in terms of
gNID. This suggests that the value of ‡

2 that we used is in a reasonable region; however, slightly lower values could
perhaps improve the model. This remains a question for future work.

Table S5. Evaluation of IB with different levels of perceptual uncertainty.

‡2 Ál gNID NID —l

Lower perceptual uncertainty 36 0.13 (±0.06) 0.23 (±0.11) 0.31 (±0.08) 1.01 (±0.01)
Baseline (main model) 64 0.18 (±0.07) 0.18 (±0.1) 0.31 (±0.07) 1.03 (±0.01)
Higher perceptual uncertainty 500 0.26 (±0.06) 0.31 (±0.12) 0.41 (±0.08) 1.77 (±0.20)

Numbers correspond to averages over languages ±1 SD. Lower values are better for Ál, gNID and NID.

6.4. Validity of the WCS protocol. In the WCS protocol, field workers were instructed to encourage participants to
provide short color terms. In practice, these instructions were not applied equally across languages, and in some
languages this biased the free naming task towards frequently used terms. This raises a concern about the quality of
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the WCS data and questions results based on these data. Gibson et al. (21) addressed this issue by comparing color
naming data they collected in a free naming task and in a fixed naming task, and showing that their results were
robust to these two conditions. To assure that our results were also not influenced by this issue, we applied a similar
approach to our analysis.

Specifically, we considered the English color naming data that were collected by Lindsey and Brown (LB, 22) in a
free naming task. LB used an improved experimental protocol for this task, and therefore the quality of their data is
irrefutable. We also considered a modified version of these data which is based only on major terms (MT data), as
described in section 4.1. Fig.S6D shows that the complexity and accuracy values evaluated from the LB data and
the MT data are very similar. In addition, Fig.S6A-Fig.S6C show that the naming distribution estimated from the
LB data is fairly similar to the naming distribution estimated from the MT data, and that the IB predictions are
also similar in both cases. This suggests that our information-theoretic analysis is robust to restricting the naming
responses to major terms, and thus the WCS data can be considered reliable in our setting.
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Fig. S6. English color naming data. Mode maps (A), contour plots (B) and naming probabilities along row F of the WCS palette (C), as in Fig.4. Data
rows correspond to the English color naming distribution estimated from the LB data (left), which considers all color terms, and from the modified MT data
(right), which was restricted to major color terms. D. Complexity and accuracy evaluated based on the LB data the modified MT data.

7. Alternative source distributions
In this section we examine two alternatives to the LI source – the uniform distribution, which we used as a baseline
for evaluation, and another approach based on image statistics.

7.1. Uniform distribution. The quantitative results for the uniform source are reported in the main text. We complete
this picture by presenting Fig.S7A, Fig.S7B and Fig.S8, which are analogous to Fig.3, Fig.5 and Fig.4 in the main
text, but were evaluated for the uniform source. In this case, the languages in our data also lie near the theoretical
limit (Fig.S7), although not as close as they do with the LI source (this can be seen by comparing Ál for IB under the
uniform and LI source in Table 1). In addition, although both IB and RKK+ capture some of the structure in the
data even with the uniform source (Fig.S8), this fit does not look as good as the fit based on the LI source (Fig.4 and
section 10). This is consistent with Table 1, which quantitatively shows that the LI source improves the similarity
between each model and the data.

Note that since the uniform source does not take into account communicative needs, the IB model with this source
only reflects properties of the perceptual CIELAB space that are extracted by IB. The bifurcation diagram (Fig.S7B)
in this case reveals a similar yellow discrepancy as observed for the LI source, in which a yellow category emerges at
the earliest stage. This suggests that the yellow discrepancy is directly related to the irregular distribution of stimulus
colors in CIELAB space.
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Fig. S7. Uniform source. Information plane (A) and bifurcation diagram (B) evaluated for the uniform source. For more details see captions of Fig.3 and
Fig.5 in main text.
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Fig. S8. Uniform source. Mode maps (A), contour plots (B) and naming probabilities along row F of the WCS palette (C), for the color naming
distributions (data) and for the IB and RKK+ models. These plots are similar to Fig.4 in main text, where the only difference is that they were evaluated
with respect to the uniform source.
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7.2. Salience-weighted distribution. Another possible approach for estimating the source distribution is based on the
frequencies of colors in natural images. We used the color salience data of Gibson et al. (21), in which the salience of
a color is defined by the frequency with which it appears in objects in a large set of images, relative to its frequency
either in objects or in backgrounds, under the assumption that foreground objects are more likely to be spoken about
than backgrounds are. Gibson et al. estimated the salience of 80 out of the 320 chromatic chips in the WCS palette,
and obtained a salience-weighted (SW) prior by taking the probability of each chip to be proportional to its salience.

In order to apply the SW approach to our setting, we first constructed a salience function over CIELAB space by
interpolating Gibson et al.’s salience data. We used RBF interpolation with basis functions „(x ≠ xi) =

Ò
Îx≠xiÎ2

2‡2 + 1
and ‡

2 = 64 as in our main analysis. Based on this interpolated function, we estimated the salience of all 330 WCS
chips and constructed a SW prior over them (see Fig.S9). This prior corresponds to a SW source.
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Fig. S9. The estimated salience-weighted (SW) prior over the 330 WCS chips. This prior was interpolated from the salience data of Gibson et al. (21).

We repeated our analysis exactly as described in the main text, but this time with the SW source. Our results
show that in this case as well, naturally occurring color naming systems lie near the theoretical limit (Fig.S10A), and
that IB achieves better scores than RKK+ (Table S6). Therefore, these results appear to be robust across the three
reasonable source distribution we considered.

A comparison of Table S6 and Table 1 shows that the quantitative results with the SW source are similar to the
results with the uniform source, and not as good as the results with the LI source. This can also be seen qualitatively
by looking at Fig.S11 and Fig.S10B, which were evaluated for the SW source. Note that the e�ect of the SW source on
the performance of the model is not specific to the IB principle — both IB and RKK+ do not fit the data well when
evaluated with the SW source compared to the LI source or even to the uniform source. One possible explanation
is that the SW source is strongly biased towards warm (reds/yellows) colors and does not weigh achromatic colors
(in particular black and white) properly. This can clearly be seen in Fig.S9, and in Gibson et al.’s salience data
before our interpolation. Although Gibson et al. argue that warm colors are more useful for communication than
cool colors, and in that sense the SW source make sense, it seems unlikely that dark/light colors would have the low
communicative need assigned to them by the SW prior.

Table S6. Quantitative evaluation (SW source)

Source Model Ál gNID NID —l

SW
IB 0.24 (±0.09) 0.40 (±0.14) 0.54 (±0.12) 1.05 (±0.02)

RKK+ 0.96 (±0.22) 0.65 (±0.08) 0.51 (±0.10)

Averages over left-out languages ±1 SD. Lower values of Ál, gNID and NID are better.
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Fig. S10. SW source. Information plane (A) and bifurcation diagram (B) evaluated for the SW source. For more details see captions of Fig.3 and Fig.5 in
the main text.
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Fig. S11. SW source. Mode maps (A), contour plots (B) and naming probabilities along row F of the WCS palette (C), for the color naming distributions
(data) and for the IB and RKK+ models. These plots are similar to Fig.4 in main text, where the only difference is that they were evaluated with respect to
the SW source.
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8. Hypothetical color naming systems
Is it a trivial result that naturally occurring color naming systems lie near the IB curve? Perhaps any ’reasonable-
seeming’ color naming system would lie near the curve, whether or not it is similar to naming systems found in the
world’s languages. Randomly generated color naming systems will typically lie close to the origin in the information
plane. Such systems are non-informative and are thus not useful for color categorization. Therefore, in order to show
that it is not trivial that naturally occurring color naming systems lie near the IB curve (and far from the origin), we
considered two types of hypothetical color naming systems that maintain some informative structure about color
space.

8.1. Rotation analysis. Following (20), we constructed a control set of 39 hypothetical variants for each language
which were obtained by rotating its color naming distribution in the hue dimension across the columns of the WCS
palette. Examples of a few hypothetical variants of Culina are shown in Fig.S12. r = 0 corresponds to the actual
language, r = 2 corresponds to a shift of two columns to the right, and r = ≠2 corresponds to a shift of two columns
to the left.

If languages are shaped by pressure for information-theoretic e�ciency as defined by IB, we would expect that
naturally occurring color naming systems would be more e�cient than their hypothetical variants. To test this, for
each rotated color naming system, ql,r, we evaluated the deviation from optimality, or e�ciency loss, in the same way
we evaluated Ál for the actual language, i.e. Ál,r = min—

1
— (F [ql,r] ≠ Fú

—). We compared the e�ciency of the language
and the e�ciency of its variants by considering Ál,r ≠ Ál (� e�ciency loss) for IB with the full LI source. Fig.S13
shows that 93% of the languages are more e�cient than all of their hypothetical variants. The remaining 7% are
more e�cient than most of their variants, and the preferred rotation is attained at a small |r|.

However, one could argue that these results are an outcome of the LI source, which was estimated with respect to
the unrotated color naming systems. We therefore repeated this analysis with the uniform source. Fig.S14) shows
that the results in this case are similar. This suggests that the actual languages are indeed more e�cient than their
hypothetical variants. The advantage of the actual languages can be explained by their alignment with the irregular
structure of CIELAB space (20), which influences the accuracy of communication in the IB model. We also repeated
this rotation analysis for colors that are represented in CIELUV space, and obtained similar results.

r = 5
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1
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F1 F20 F40
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1

r = 0

F1 F20 F40

0

1

r = �2
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F1 F20 F40
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Fig. S12. Rotation example. Hypothetical variants for Culina obtained by rotating its color naming distribution in the hue dimension across the columns
of the WCS palette. r = 0 corresponds to the actual language, r = 2 corresponds to a shift of two columns to the right, and r = ≠2 corresponds to a
shift of two columns to the left. Colors correspond to the color centroid of each category, and columns correspond to mode maps (left), contour plots of
the naming distribution (middle) and conditional probabilities along row F of the WCS palette (right).
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Fig. S13. Rotation analysis for the full LI source. A. Histogram of the most efficient rotation across languages. Rotation 0 corresponds to the actual
language, and it is the most efficient for 93% of the languages in our data. B. Differences between the efficiency loss of the rotated language and the
actual language, � efficiency loss = Ál,r ≠ Ál. Lower values are better. Blue curve is the average across languages, and the colored region corresponds
to ±1 SD across languages.
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Fig. S14. Rotation analysis for the uniform source. A. Histogram of the most efficient rotation across languages. Rotation 0 corresponds to the actual
language, and it is the most efficient for 98% of the languages in our data. B. Differences between the efficiency loss of the rotated language and the
actual language, � efficiency loss = Ál,r ≠ Ál. Lower values are better. Blue curve is the average across languages, and the colored region corresponds
to ±1 SD across languages.

8.2. Structured control set based on random Gaussians. We considered another set of structured hypothetical
systems in which the naming distribution is defined by random Gaussians over CIELAB space. We constructed
a hypothetical system with K categories by (1) randomly selecting K chips cw as representatives for categories
w = 1 . . . , K; (2) assigning to each category a random covariance matrix �w; and (3) defining the color naming
distribution by

q(w|mc) Ã exp
3

≠1
2(c ≠ cw)€�≠1

w (c ≠ cw)
4

. [S25]

�w induces a random transformation of CIELAB space and its eigenvalues are exponentially distributed with mean
‡

2 = 64, which matches the level of perceptual uncertainty we used for constructing the color meaning space. We
generated these random matrices as follows: a 3◊3 diagonal matrix D was generated by sampling Dii ≥ Exp( 1

‡2≠1 )+1,
and a 3 ◊ 3 matrix A was generated by sampling uniformly Aij œ [0, 1]. The singular value decomposition of A

€
A

was evaluated, i.e. A
€

A = U�V
€. Finally, �w = UDV

€.
We constructed these hypothetical systems with K = 3, . . . , 20. For each K we sampled 100 systems, yielding

a total of 1,800 hypothetical systems (see Fig.S15 for a few examples). We evaluated these systems with the IB
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model based on the full LI source (Ál = 0.33 ± 0.1, gNID = 0.39 ± 0.16, NID = 0.44 ± 0.13) and the uniform source
(Ál = 0.36 ± 0.08, gNID = 0.47 ± 0.15 ,NID = 0.5 ± 0.13). In both cases, these hypothetical systems are less e�cient
on average than the actual languages we considered.

K = 3 K = 4 K = 5

K = 6 K = 7 K = 8

Fig. S15. Examples of hypothetical color naming systems based on K random Gaussians in CIELAB space.

9. Sensitivity analysis
In this section we test the sensitivity of our results to small errors in the structure of the meaning space, M, that we
assumed. To do so, we injected a small perturbation to each mc and re-evaluated IB and RKK+ with the full LI
source. We injected the perturbation by first drawing i.i.d. Gaussian variables Zc,u ≥ N (0, 0.01), and defining the
perturbed model by m

Õ
c(u) Ã mc(u)eZc,u . The results, summarized in table S7, are almost identical to the results

without perturbation, which suggests that our analysis is robust to small amounts of noise in the perceptual model.

Table S7. Quantitative evaluation with the perturbed meaning space

Source Model Ál gNID NID —l

LI
IB 0.18 (±0.07) 0.18 (±0.10) 0.31 (±0.07) 1.03 (±0.01)

IB-C 0.18 (±0.07) 0.21 (±0.08) 0.30 (±0.08) 1.04 (±0.02)
RKK+ 0.70 (±0.23) 0.46 (±0.10) 0.31 (±0.10)

Numbers correspond to averages over languages ±1 SD. Lower values are better for Á, gNID and NID.
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10. Predictions for all languages
In this section the predictions of the IB model and RKK+ model for all 111 languages in our data are presented.
These are based on the full LI source discussed in section 2.

A-C. Similarity between color naming distributions of languages (data rows) and the corresponding optimal IB
encoders at —l (IB rows) and RKK+ encoders for Kl. Each color category is represented by the centroid color
of the category. IB predicts soft partitions of color space while RKK+ predicts hard partitions. A. Mode
maps: each chip is colored according to its modal category. B. Contours of the naming distribution. Solid lines
correspond to level sets between 0.5 to 0.9; dashed lines correspond to level sets of 0.4 and 0.45. C. Naming
probabilities along the hue dimension of row F in the WCS palette.

D. Information plane. Complexity-accuracy tradeo�s for each language according to IB (blue dots) and RKK+ (red
dots) are compared with the theoretical optima of both principles (green cross and black line respectively). The
IB curve is the same as in Fig.3, and also defines the theoretical limit for RKK+ (see section 4.6). Colors along
the curve reflect gNID values between the language and the IB systems along the curve.

E. Quantitative evaluation of IB and RKK+. Ál measures the extent to which language l deviates from the optimum
predicted by the model. gNID measures the dissimilarity between the language’s color naming distribution and
the predicted encoder at —l in IB or at Kl in RKK+. NID measures the dissimilarity between the model’s and
language’s mode maps. Lower values of Ál, gNID and NID are better.

* WCS languages excluded from the estimation of the LI source and from our quantitative model evaluation due to
insu�cient data (see section 2). For some of these languages we could not evaluate the RKK+ encoders because
some chips were not named by any major color term. In such cases the RKK+ prediction is not shown.
Excluded languages: Amuzgo, Camsa, Candoshi, Chayahuita, Chiquitano, Cree, Garífuna (Black Carib), Ifugao,
Micmac, Nahuatl, Papago (O’odham), Slave, Tacana, Tarahumara (Central), Tarahumara (Western).
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Bété - Ivory Coast

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Bhili (IB)

Bhili (RKK+)

IB, �l = 1.033

RKK+, Kl = 7

0

1

�l gNID NID
IB 0.16 0.13 0.24
RKK+ 0.79 0.43 0.26

E.

Bhili - India

Zaslavsky et al. 25 of 58



Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Buglere (IB)

Buglere (RKK+)

IB, �l = 1.030

RKK+, Kl = 6

0

1

�l gNID NID
IB 0.13 0.14 0.28
RKK+ 0.77 0.43 0.22

E.

Buglere - Panama

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Cakchiquel (IB)

Cakchiquel (RKK+)

IB, �l = 1.057

RKK+, Kl = 11

0

1

�l gNID NID
IB 0.28 0.15 0.35
RKK+ 0.84 0.41 0.23

E.

Cakchiquel - Guatemala

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Campa (IB)

Campa (RKK+)

IB, �l = 1.019

RKK+, Kl = 4

0

1

�l gNID NID
IB 0.19 0.39 0.42
RKK+ 1.07 0.73 0.47

E.

Campa - Peru

26 of 58 Zaslavsky et al.



Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Camsa (IB)

Camsa (RKK+)

IB, �l = 1.062

RKK+, Kl = 8

0

1

�l gNID NID
IB 0.29 0.13 0.36
RKK+ 0.54 0.35 0.26

E.

* Camsa - Columbia

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Candoshi (IB)

Candoshi (RKK+)

IB, �l = 1.047

RKK+, Kl = 6

0

1

�l gNID NID
IB 0.17 0.12 0.26
RKK+ 0.39 0.32 0.25

E.

* Candoshi - Peru

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Cavineña (IB)

Cavineña (RKK+)

IB, �l = 1.035

RKK+, Kl = 6

0

1

�l gNID NID
IB 0.12 0.15 0.30
RKK+ 0.60 0.37 0.26

E.

Cavineña - Bolivia

Zaslavsky et al. 27 of 58



Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Cayapa (IB)

Cayapa (RKK+)

IB, �l = 1.032

RKK+, Kl = 5

0

1

�l gNID NID
IB 0.12 0.13 0.28
RKK+ 0.53 0.43 0.30

E.

Cayapa - Ecuador

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Chácobo (IB)

Chácobo (RKK+)

IB, �l = 1.020

RKK+, Kl = 4

0

1

�l gNID NID
IB 0.10 0.41 0.45
RKK+ 0.84 0.66 0.53

E.

Chácobo - Bolivia

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Chavacano (IB)

Chavacano (RKK+)

IB, �l = 1.069

RKK+, Kl = 10

0

1

�l gNID NID
IB 0.19 0.11 0.31
RKK+ 0.56 0.33 0.25

E.

Chavacano (Zamboangueño) - Philippines

28 of 58 Zaslavsky et al.



Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Chayahuita (IB)

Chayahuita (RKK+)

IB, �l = 1.043

RKK+, Kl = 6

0

1

�l gNID NID
IB 0.21 0.20 0.34
RKK+ 0.55 0.39 0.33

E.

* Chayahuita - Peru

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Chinantec (IB)

Chinantec (RKK+)

IB, �l = 1.034

RKK+, Kl = 8

0

1

�l gNID NID
IB 0.17 0.14 0.34
RKK+ 0.90 0.46 0.29

E.

Chinantec - Mexico

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Chiquitano (IB)

Chiquitano (RKK+)

IB, �l = 1.063

RKK+, Kl = 9

0

1

�l gNID NID
IB 0.28 0.11 0.27
RKK+ 0.54 0.33 0.21

E.

* Chiquitano - Bolivia

Zaslavsky et al. 29 of 58



Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Chumburu (IB)

Chumburu (RKK+)

IB, �l = 1.033

RKK+, Kl = 8

0

1

�l gNID NID
IB 0.18 0.15 0.27
RKK+ 1.02 0.49 0.31

E.

Chumburu - Ghana

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Cofán (IB)

Cofán (RKK+)

IB, �l = 1.041

RKK+, Kl = 6

0

1

�l gNID NID
IB 0.10 0.10 0.25
RKK+ 0.45 0.33 0.21

E.

Cofán - Ecuador

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Colorado (IB)

Colorado (RKK+)

IB, �l = 1.036

RKK+, Kl = 5

0

1

�l gNID NID
IB 0.09 0.11 0.27
RKK+ 0.30 0.35 0.24

E.

Colorado - Ecuador

30 of 58 Zaslavsky et al.



Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Cree (IB) IB, �l = 1.042

0

�l gNID NID
IB 0.15 0.22 0.37

E.

* Cree - Canada

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Culina (IB)

Culina (RKK+)

IB, �l = 1.024

RKK+, Kl = 4

0

1

�l gNID NID
IB 0.18 0.19 0.31
RKK+ 0.61 0.50 0.32

E.

Culina - Peru, Brazil

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Didinga (IB)

Didinga (RKK+)

IB, �l = 1.037

RKK+, Kl = 7

0

1

�l gNID NID
IB 0.36 0.28 0.38
RKK+ 0.71 0.45 0.37

E.

Didinga - Sudan

Zaslavsky et al. 31 of 58



Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Djuka (IB)

Djuka (RKK+)

IB, �l = 1.040

RKK+, Kl = 7

0

1

�l gNID NID
IB 0.20 0.12 0.24
RKK+ 0.67 0.38 0.21

E.

Djuka - Surinam

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Dyimini (IB)

Dyimini (RKK+)

IB, �l = 1.038

RKK+, Kl = 6

0

1

�l gNID NID
IB 0.13 0.12 0.27
RKK+ 0.57 0.37 0.25

E.

Dyimini - Ivory Coast

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Ejagam (IB)

Ejagam (RKK+)

IB, �l = 1.022

RKK+, Kl = 3

0

1

�l gNID NID
IB 0.06 0.31 0.39
RKK+ 0.27 0.62 0.54

E.

Ejagam - Nigeria, Cameroon

32 of 58 Zaslavsky et al.



Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.

Ese Ejja (IB)

Ese Ejja (RKK+)

IB, �l = 1.038

RKK+, Kl = 7

0

1

�l gNID NID
IB 0.12 0.08 0.24
RKK+ 0.69 0.39 0.25

E.

Ese Ejja - Bolivia

Data

A. B.

F1 F20 F40

0

1

C.

IB

F1 F20 F40

0

1

RKK+

F1 F20 F40

0

1

0 2 4 6

Complexity, I(M ; W )

0

2

4

A
cc

ur
ac

y,
I(

W
;U

)

D.
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