Step 5:  

Load the layers you just created using the deepNetworkDesigner

clear;
clc;
close all;

mydata = imageDatastore('MerchData', ...   % load data from folder named 'MerchData'
'IncludeSubfolders',true, ...                           % Also include the subfolders (there are 5 of these for the 5 objects, cap, cube, ...)
'LabelSource','foldernames');                       % The name of the subfolders supply the "correct answer" labels
 
[mydataTrain,mydataValidation] = splitEachLabel(mydata,0.7);
  

%Resize images in the image datastores to match the pretrained network GoogLeNet.

mydataResizedTrain = augmentedImageDatastore([224 224],mydataTrain,'colorpreprocessing','gray2rgb'); 

mydataResizedValidation = augmentedImageDatastore([224 224],mydataValidation,'colorpreprocessing','gray2rgb');

% colorpreprocessing option above makes sure that if your data set includes

% both color and  grayscale images there won't be a problem loading them to the datastore.
% Color images usually have a dimension of mxnx3 where as grayscales are mxnx1

load MerchNewLayers  %network created for transfer learning using deepNetworkDesigner & GoogleNet