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One class of adaptive psychophysical procedures was studied, using simulated and human
observers. These procedures are those which require an increase in stimulus intensity after an
incorrect response, and a decrease afterk successive correct responses. This paper analyzes how
step size and the value ofk affect the mean and standard deviation of threshold estimates based on
a k-down 1-up adaptive procedure. Computer simulations are used to study the bias in threshold
estimates, which are most evident when larger step size and small values ofk are used. The adaptive
procedure can be characterized by a function called the imbalance of the track, the relative
probability of adjusting the stimulus either up or down at equal stimulus distances from the
equilibrium point. These imbalance functions can be used to understand the threshold biases
obtained in the computer simulations. The computer simulations also show that the average number
of reversals obtained per trial is dependent on different values ofk, but are largely independent of
step size. The standard error of the threshold estimates, however, varies systematically with step
size, but are nearly independent ofk. Finally, we compare the stability of threshold estimates for
human listeners using two very different sets of parameters: a very large step size~approximately
half the range of the psychometric function! with k54, and the conventionalk53 with an initial
4-dB and a final 2-dB step size. ©1996 Acoustical Society of America.

PACS numbers: 43.66.Yw, 43.66.Dc, 43.66.Cb@WJ#

INTRODUCTION

The adaptive up–down procedure is by far the most
popular procedure used to estimate discrimination or detec-
tion performance in auditory psychophysics~Wetherill and
Levitt, 1965; Levitt, 1971!. It is frequently used in a two-
alternative forced-choice task in which the listener is dis-
criminating between two stimuli. The physical difference be-
tween the two stimuli is decreased if the listener is correct
for some number of trials and is increased if the listener is
incorrect. This is the so-calledk-down 1-up rule. Part of its
popularity stems from its simplicity. The signal level pre-
sented on the next trial is based on the listener’s performance
over at most the pastk trials. The use ofk52 or k53 is
particularly ubiquitous because the probabilities of being
correct at the equilibrium point are 0.707 and 0.794, which
are both near the classical definition of threshold in a two-
alternative task, namely, 0.75.

Some important properties of the up–down procedure
have previously been considered in studies using computer
simulations or psychophysical measurements of human per-
formance. These studies have demonstrated that a greater
number of intervals on a single trial~Hall, 1983; Shelton and
Scarrow, 1984; Greenet al., 1989; Kollmeieret al., 1988;
Schlauch and Rose, 1990! or increasingk from 2 to 3 in-
creases the reliability of threshold estimates~Kollmeier
et al., 1988; Schlauch and Rose, 1990; Leeket al., 1992!.
The latter result is partly due to the reduced binomial vari-
ance at higher probabilities ask increases. Another factor is

that an increase in the number of observation intervals in-
creases the slope of the psychometric function which in turn
reduces statistical uncertainty along the stimulus scale. The
slope of the transformed psychometric function~Levitt,
1971!, as will be described shortly, also increases ask in-
creases, further contributing to a lower variability of thresh-
old estimates~Wetherill, 1966; Fisher, 1922; Taylor and
Creelman, 1967; Taylor, 1971; Roseet al., 1970; Green,
1990, 1993!. Increases in eitherk or the number of intervals,
of course, extends the time required for obtaining a fixed
number of samples~i.e., reversals!. When efficiency mea-
sures are evaluated~e.g., the sweat factor of Taylor and
Creelman, 1967!, higher values ofk and greater numbers of
intervals remain the more efficient alternatives~Kollmeier
et al., 1988; Schlauch and Rose, 1990!.

In addition to its extensive use in psychophysical mea-
surement, the up–down procedure has proven important to
psychophysical theory in a variety of ways. The up–down
procedure has been used:~1! to reconstruct psychometric
functions~Leek et al., 1988, 1992!, ~2! to estimate possible
instability in psychometric functions frompost hocanalysis
of the stimulus tracks~Leek et al., 1991!, ~3! to analyze
small-sample statistics~Edwards and Wakefield, 1988!, and
~4! in comparison to maximum-likelihood and PEST tech-
niques~Sheltonet al., 1982!.

Although many features of this procedure have been
studied, current usage is often dictated as much by custom
and habit as by any consideration of optimizing the effi-
ciency of the procedure. In this paper, we concentrate on one
parameter that has not been previously discussed, what we
call the imbalance of the adaptive procedure. This imbalance
reflects unequal up and down probability forces at stimulus
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values away from equilibrium, and may, in some instances,
introduce a bias in threshold measurement. This discussion
leads naturally to a consideration of step size, the amount the
stimulus difference is changed when it is adjusted, up or
down. Computer simulations of different adaptive proce-
dures and different step sizes lead us to a definition of the
relative yield of the procedure, that is, average number of
turnarounds produced by a fixed number of trials. Consider-
ation of these factors leads us to explore the use of larger
step sizes than are currently in vogue and a larger number for
k.

Finally, we estimated human listeners’ thresholds in two
detection tasks, the absolute threshold for a sinusoidal signal
and the detection of a sinusoid in noise using two quite dif-
ferent adaptive procedures. One was a conventional 3-down
1-up procedure using first a 4-dB step size that was reduced
to 2 dB after four reversals. The threshold estimate was
based on a run of 60 trials. The second was a 4-down 1-up
procedure using a step size that was constant throughout the
run and approximately half the width of the psychometric
function ~10-dB step size for the sinusoidal increment, and
5-dB step size for the tone in noise!. For this procedure,
these threshold estimates were obtained by interleaving three
adaptive tracks, each using a total of 20 trials.

I. UP–DOWN DYNAMICS

In most discrimination tasks, we assume that the observ-
er’s choice can be described as a stationary process governed
by a psychometric function,F(x), that relates the probability
of a correct response,F, to the stimulus magnitude,x. It is
usually assumed thatF(x) is monotonic increasing. In the
case of up–down rules, a stimulus value of considerable im-
portance is the stimulus value at which the probability of
moving up is equal to the probability of moving down—what
is called the equilibrium point. The observer’s response pat-
tern in the up–down process will cause the stimulus to os-
cillate about the equilibrium point, so that it is also treated as
the threshold value for the stimulus in these tasks. It is easy
to derive the equilibrium point for ak-down 1-up rule. Equi-
librium occurs when the probability of moving the stimulus
down, Fk(x) is equal to the complimentary probability of
moving the stimulus up,

Fk~x!512Fk~x!⇔F~x!50.51/k. ~1!

The equilibrium probabilities are 0.7071 fork52, 0.7937 for
k53, 0.8409 fork54, and 0.8706 fork55. Levitt called
Fk(x) the transformed psychometric function. Note that on
the transformed function the equilibrium probability is 0.5
for any k.

It is convenient to denote the value of the stimulus that
satisfies the equilibrium condition asx0 , also called the
threshold stimulus value. If we increase or decrease the
stimulus to some other value, then the probabilities of mov-
ing up or down are unequal, and the ratio of these two prob-
abilities is the relative likelihood of moving the stimulus in
one direction or another. A related concept is the relative
probability of moving up or down at two stimulus values an
equal distance above and below the equilibrium point. It
would be desirable to have these probabilities nearly equal to

one another but operating in opposite directions, so that a
drift away from the equilibrium point in either direction will
invoke equal and opposite tendencies to return to it. Clearly,
the ratio of such forces will be nearly the same in the region
of the equilibrium stimulus, because at that point the two
probabilities are exactly equal. But what of more remote
stimulus values?

We may quantify an imbalance ratio as the probability
of moving down over the probability of moving up for two
stimuli located the same stimulus distance from the equilib-
rium point but in opposite directions:

Im~D!5
Fk~x01D!

12Fk~x02D!
. ~2!

The numerator of the ratio is the probability of moving the
stimulus down, given a stimulusD above the equilibrium
point. The denominator of the ratio is the probability of mov-
ing the stimulus up, given a stimulusD below the equilib-
rium point.

The imbalance ratio at the equilibrium point, Im~0!, will
be exactly unity. At other stimulus values, Im~x! will gener-
ally not be equal to unity. If Im is greater than unity, it
indicates that the downward force is larger than the upward
force; if Im is smaller than unity, the reverse is true. Unless
the ratio is nearly one, then the stimulus track will have a
tendency to spend more time on one or the other side of the
equilibrium point. Threshold estimates based on average val-
ues of the stimulus or average values of some features of the
track, such as the turnaround values, will provide a biased
estimate of the true threshold.

We next display the imbalance ratio, Im~D!, for a num-
ber of different psychometric functions. Six different psy-
chometric functions were considered. They were chosen to
represent a number of reasonable psychometric functions
ranging from variants of the Gaussian@~3a! and ~3c!# and
logistic @~3b! and ~3d!# to the arctangent@~3e!# and the
Weibull @~3f!#. The parameters of these functions were cho-
sen to produce a two-alternative forced-choice psychometric
function that has a range of about 20 dB. The first psycho-
metric function has a very simple form and the parameters of
the other functions were adjusted to mimic the first. The
equations for each are listed below. Different theorists have
proposed that the basic stimulus variable is either a change in
stimulus energy or the logarithm of that quantity, a decibel-
like quantity~Laming, 1986; Grantham and Yost, 1982!. The
psychometric function produced by these two assumptions
have very different properties. We consider both stimulus
level in decibels~SL!, Eqs.~3c! and~3d!, or the amplitude of
the stimulus, x, Eqs. ~3a!, ~3b!, ~3e!, and ~3f! where
SL520 log10(x):

F~x!5E
2`

x/A2
f~z!dz, x.0; ~3a!

F~x!5
1

11exp~21.2x!
, x.0; ~3b!
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1
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f~z!dz, SL520 log~x!;

~3c!

F~x!5
1

2
1
1
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1

11exp~20.21 SL20.3!
,

SL520 log~x!; ~3d!

F~x!5
1

2
1
1

2

arctan~x!

p/2
, x.0; ~3e!

F~x!512
1

2
expF2S x

1.157D
1.25G , x.0. ~3f!

Figure 1 illustrates these six psychometric functions.
The means of the functions have been adjusted to position
them near each other along the stimulus axis. Except for the
arctangent@model ~3e!#, these functions also produce nearly
the same probability of being correct for all stimulus values.
The functions are so similar that it would be difficult to
determine experimentally any difference between them. De-
spite this similarity, the imbalance ratios, Im~D!, shown in
Fig. 2 are quite different for the different psychometric func-
tions. We have computed the imbalance ratios fork52–6
and for D<10 dB, a stimulus change of roughly half the
range of the psychometric function. The imbalance ratio for
models~3a!–~3c! is always greater than unity for anyk and
all stimulus changes. Models~3d!–~3f! show a somewhat
different pattern, being nearly unity for all stimulus changes
when k is equal to or larger than four. Models~3c!–~3f!
show greater imbalance fork52 than for any other rule for
all D, while for models~3a! and~3b! this is true only for the
larger stimulus changes.

One implication of these figures is that any psychomet-
ric function will show a bias in the estimate of threshold if a

large step size and small value ofk are used. The bias will be
to estimate a threshold somewhat belowx0 , because the im-
balance ratio is greater than unity, that is, the downward
force is larger than the upward force, except at the equilib-
rium point. We now turn to computer simulations of the
k-down 1-up adaptive rule for these different psychometric
functions.

II. COMPUTER SIMULATIONS

Monte Carlo methods were used to simulate the perfor-
mance of two observers having different psychometric func-
tions. One of the simulations used the first@Gaussian, Eq.
~3a!# and the other, the fourth@logistic, Eq.~3d!# psychomet-
ric functions. We selected these two psychometric functions
because their imbalance ratios were markedly different~Fig.
2!. Simulations were conducted using thek-down 1-up rule
for k between 2 and 5. For each condition and psychometric
function, 1000 thresholds were measured. From each set of
simulations, the mean and standard deviation of the threshold
estimates were computed as well as the mean number of
reversals.

FIG. 1. Six different psychometric functions corresponding to those de-
scribed in Eqs.~3a!–~3f!.

FIG. 2. The imbalance ratio~Im! shown for the six psychometric functions
of Fig. 1. An imbalance ratio greater than unity means that the downward
force is greater than the upward force for equal distances~D! above and
below the equilibrium probability. In such a case, the adaptive track will be
biased low.
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The two major parameters of the simulations, besides
thek of the up–down rule, were~1! the number of trials per
run and~2! the step size used in the adaptive procedure. The
number of trials per run was 10, 20, 30, 40, or 50. Step sizes
of 2, 5, 10, 15, and 20 dB were examined. The step size
remained constant throughout the run. The threshold was de-
fined as the signal level corresponding to the equilibrium
probability for eachk of the up–down rule. The starting
value for the stimulus was randomly chosen from a uniform
distribution with a range of plus and minus two times the
step size centered at the threshold value. Thus, for the step
size of 2 dB, the first stimulus value was chosen at random
from a range of 8 dB, whereas for the step size of 20 dB, the
initial stimulus value was chosen from a range of 80 dB. In
terms of step size, all starting points were dispersed about the
threshold value by an equal distance. The estimated value of
threshold was based on the average of the stimulus values on
all reversals. If a run had no reversals, it was discarded~ex-
cept when considering the yield of the procedure as de-
scribed below in Sec. II A 2!. Virtually no runs were dis-
carded for any value ofk or step size when there were more
than ten trials. When the number of trials was 10, the ap-
proximate percentages of discarded runs fork52–5 were
0.5, 4, 12, 30, and 35, respectively.

A. Results

1. Threshold estimates

Figures 3–6 plot the results of these simulations for dif-
ferent step sizes~see left panel, second from top! and for
different values ofk. The left columns show the results for
an observer using the first psychometric function@Eq. ~3a!#.
The right columns show the results for an observer using the
fourth psychometric function@Eq. ~3d!#. The top panels are
the mean threshold estimates corresponding to equilibrium
probability ~e.g., 0.707 fork52!, which the procedure is
tracking. The solid lines are the stimulus values at that equi-
librium probability. For the lower values ofk ~Figs. 3 and 4!
and for the larger step sizes, there is a noticeable bias in
threshold estimation for both psychometric functions. This is
in agreement with results from Schlauch and Rose~1990!
and Edwards and Wakefield~1988! who have also reported
biased estimates from simulations, particularly for a large
step size andk52. As the value ofk increases~Figs. 5 and
6!, the mean threshold estimates are closer to true threshold
values. The bias is nearly always in one direction; the pro-
cedure underestimates threshold, and is in accord with the
imbalance ratio shown in Fig. 2. When the downward prob-
ability force is greater than the upward force~Im.1!, the
track will spend more time below the equilibrium probability
than above it. This imbalance is a property of the adaptive
procedure and not related to the number of trials used in the
procedure. Thus, in the simulations, we expect the bias to be
practically independent of the number of trials used to esti-
mate the threshold value, as it is. The bias in threshold esti-
mates is substantially reduced with increasingk. It is be-
tween 1–2 dB fork.3 for the Gaussian model and nearly
zero for the logistic model.

Another way to minimize the bias in threshold estimates
is to reduce the step size. This keeps the track within a nar-

row region about the equilibrium point. As Fig. 2 shows, the
imbalance ratio is never greater than about 15% in a region
within 5 dB of the equilibrium point for any of the six dif-
ferent psychometric functions. Schlauch and Rose~1990!
have also shown that biases in thresholds may be reduced if
thresholds are estimated from a psychometric function fitted

FIG. 3. Results from simulations for the 2-down 1-up rule (k52). The left
panels show results for a simulated observer who performs according to
psychometric functiona ~Gaussian! and the right panels for psychometric
function d ~logistic!. Top panels are threshold estimates based on 1000
simulations per point. The solid lines show stimulus values at equilibrium
probability ~true threshold!. The parameter is step size. The second row of
panels shows the average number of reversals as a function of the number of
trials in a run. The solid line is Eq.~4!. The third row of panels shows the
standard deviation of threshold estimates. The solid lines are based on the
equation,a/ANrevs, wherea is determined from a least-squares fit to the data
for various step sizes andNrevs is determined from Eq.~4!. The bottom
panels are the psychometric efficiencies determined from Eq.~5!.
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to the trial history, instead of determining threshold from
averaging the reversals.

2. Number of reversals

The second row of panels in Figs. 3–6 show the relation
between the number of reversals and the number of trials
used to obtain each threshold estimate. To obtain an accurate
estimate of the number of reversals, no runs were discarded,
and therefore the average number of reversals per condition
is based on all 1000 runs for that condition. The solid line is
a linear function relating the number of trials and the average
number of reversals. The slope of the linear function changes
systematically withk, but it is largely independent of the

form of the psychometric function, that is, the left and right
panels for a given value ofk are nearly the same.

The value of the intercept can be rationalized on the
basis of the following argument. It takes some fixed number
of trials to produce the first reversal. It is clear that this
number is at leastk11 ~a sequence ofk correct followed by
one incorrect response, or one incorrect followed byk cor-
rect!. Thus, if we subtractk11 trials from the total number
of trials, then we might expect for any value ofk, the same
starting point for the average number of reversals.

The slope of the line relating the number of effective
trials to the number of turnarounds is nicely approximated by
the value 1/(k11). This slope value is the number of rever-
sals produced per trial. It is what we might call the yield of

FIG. 4. Same as Fig. 3 fork53. FIG. 5. Same as Fig. 3 fork54.
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that adaptive procedure, because it is the fraction of trials
that produces a turnaround, on average.

A good approximation of our simulation results is there-
fore

Nrevs5
1

k11
@Ntrials2~k11!#5

1

k11
Ntrials21. ~4!

The solid lines in the second rows of Figs. 3–6 are calculated
from Eq. ~4!. This simple equation provides a reasonably
good approximation to the data of the simulations.

An interesting concept is the maximum possible yield
for a k-down 1-up adaptive procedure. Such a track would
consist entirely of alternate increases and decreases in stimu-
lus level. Because a decrease requiresk correct responses

while an increase requires one incorrect response, on average
two reversals arise from (k11) trials @an optimum slope of
2/(k11)]. Thus, our empirical slope value of 1/(k11) is
roughly half the maximum possible yield.

A better approximation would include the step size as a
parameter, because it is evident from the data that the larger
step sizes produce, on average, slightly more reversals. The
least-squares slope of a linear function relating the number of
reversals to the number of trials is a quantity that describes
the empirical yield of an adaptive procedure. The ratio of the
empirical yield to the maximum possible yield expresses the
relative reversal yield of the procedure and was computed for
the different up–down rules and averaged over the different
step sizes. The relative reversal yields are 0.51 (k52), 0.52
(k53!, 0.51 (k54!, and 0.53 (k55). Thus, all the different
rules produce remarkably similar values. There is a small but
consistent trend for the relative reversal yield to increase
with step size. For each step size, the relative reversal yields
are, averaging overk, 0.52~ss52 dB!, 0.53~ss55 dB!, 0.53
~ss510 dB!, 0.55 ~ss515 dB!, and 0.58~ss520 dB!.

3. Variability of threshold estimates

Finally, we examine what is generally considered the
critical feature of any procedure that estimates threshold, the
variability of repeated measures. The third rows of panels in
Figs. 3–6 show the standard deviation of the threshold esti-
mates in decibels plotted against the number of trials,n, with
the various step sizes coded by different symbols. Five lines
are shown in each panel; all show the standard deviation
decreasing inversely with the square root of the number of
trials. Because the distribution of values from which thresh-
olds were estimated was the distribution of reversal values,
Nrevs, Eq. ~4! was used to determineNrevs from the number
of trials, and the fitted lines were calculated usingNrevs

(a/ANrevs, wherea is a constant!. The five lines are based on
different values of the parametera, obtained individually
from a least-squares fit to the data for each step size.

This equation describes the general trend of the data
quite well. There are, however, some systematic departures.
For the smallerk values, it is evident that the point atn510
is generally below the fitted line. Thus, the measured stan-
dard deviations are lower than predicted for smalln, but
follow the square-root law for largern. This may be ex-
plained by considering two different distributions, what
Kollmeier et al. ~1988! refer to as the starting and limiting
distributions. The starting distribution is the distribution of
stimulus levels at the initial stages of the track, while the
limiting distribution is the distribution of stimulus levels near
the end of a track. Often, near the beginning of a track, the
variability in stimulus levels is smaller. This is partially due
to the usually restricted range from which the starting stimu-
lus value is selected, particularly if this selection is guided by
a priori information about the general region of threshold.
To verify this reasoning, we ran simulations fork52 in
which the starting distribution was defined as the distribution
of stimulus values on the first incorrect response of a run. We
defined the limiting distribution as the distribution of values
on the very last trial of the run. Results showed that the

FIG. 6. Same as Fig. 3 fork55.
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limiting distribution always had a larger standard deviation
than the starting distribution. This difference was greater for
the larger step sizes, a maximum difference of 4 dB, and
smaller for the smaller step size, a maximum of 1 dB, al-
though, relative to step size, the difference was proportion-
ately greater for the smaller step size; 50% for 2-dB and 20%
for 20-dB step size. Thus, the small departure from the
square-root law is consistent with a consideration of the
properties of the starting and limiting distributions of the
stimulus track.

One other surprising aspect of these results is the simi-
larity of the standard deviations for all values ofk. The data
for the third rows of panels are nearly the same fork52 to
k55. As we have just seen, the yield of an adaptive proce-
dure ~slopes in the second panels! decreases ask increases.
Thus, the same number of trials produces considerably more
reversals whenk52 as opposed tok55. The threshold es-
timate is based on an average of these reversal levels. While
increases ink decrease the number of values used to calcu-
late the average, the variability of the estimates is essentially
independent ofk. How is this possible?

The answer to this question is complex and depends on
a number of factors, but the principle, and apparently con-
trolling, ingredient is simple. The slope of the transformed
psychometric function increases ask increases. A steeper
slope for the psychometric function makes the point of tran-
sition or threshold easier to estimate, which is to say that the
variability of the threshold estimate decreases as the slope
increases. This increase in slope is enough to offset the de-
crease in the number of reversals~or equivalently, the de-
crease in the number of independent trials!, and the resulting
variability in threshold estimates is nearly independent ofk,
at least for changes ink from 2–5.

Finally, we compare the efficiency of the procedure for
the four values ofk and different step sizes. The ideal mini-
mum variability for a single trial is simply the ratio of the
binomial variance divided by the squared slope of the psy-
chometric function,p(12p)/F82. The ratio of that factor,
called its ‘‘ideal sweat factor’’ by Taylor and Creelman
~1967! to the empirically observed variance based onn trials,
its ‘‘empirical sweat factor,’’ is a measure of the psychomet-
ric efficiency of a psychophysical procedure,

psychometric efficiency5

p~12p!

n~dF/dx!2

empirical variance
. ~5!

The attractive feature of this measure is that it allows com-
parison across various procedures and number of trials.

In the bottom panels of Figs. 3–6, we plot these psycho-
metric efficiencies on a logarithmic scale, to present the val-
ues for all step sizes in the same panel. There are two fea-
tures of these calculations which are immediately noticeable.

First, for the smallest step size, the psychometric effi-
ciency is often greater than unity, which means that the pro-
cedure is performing better than ideal. As previously dis-
cussed, this better-than-ideal performance may be attributed
to the smaller variance associated with the starting distribu-
tion compared to the limiting distribution.

Second, the psychometric efficiency depends onn, the
number of trials used in the threshold estimate. The effi-
ciency will only be constant across variousn if the An law
holds. Whenk52 and step size is larger than 10 dB, or when
k.2 and the step size is 5 dB, the efficiency is in fact con-
stant. However, for other cases, one obtains an approximate
monotonic dependence of efficiency on the number of trials.
For small step sizes, the psychometric efficiency decrease
monotonically because the starting distribution is too narrow.
For large step sizes andk values, the effect reverses and one
obtains a monotonically increasing efficiency. This latter
trend may be due to a larger variance of the starting distri-
bution compared to the limiting distribution when step size is
large andk has a high value.

III. EXPERIMENTS WITH HUMAN LISTENERS

The preceding simulations indicate that despite changes
in step size from 2 to 20 dB, the average estimated thresh-
olds are nearly the same if values ofk larger than 3 are used.
In experiments with real observers, step sizes larger than 5
dB are rarely used and then only when the final step size is
much smaller. Would procedures using large step sizes pro-
duce threshold estimates even close to those produced by
more conventional procedures? The following experiment
was designed to probe that question. The purpose was not to
compare extensively the two procedures, but to determine if
a large threshold bias would result if a large step size was
employed with a large value ofk. In one condition a standard
3-down 1-up procedure was employed, with an initial step
size of 4 dB and a final step size of 2 dB. In the second
condition, ak54 method was employed with a much larger
step size, 10 dB for tone in quiet and 5 dB for tone-in-noise
detection.

A. Experimental procedure

Thresholds were estimated in two forced-choice detec-
tion tasks using two different adaptive procedures. In one
task, what we call the absolute-detection task, the signal to
be detected was a 1000-Hz tone of 200-ms duration pre-
sented in quiet. In the second task, what we call the tone-in-
noise task, the same tone was presented in a broadband noise
of 25-dB spectrum level. The experimental details are similar
to that used by Gu and Green~1994!. The auditory signals
were generated on a microcomputer using a 50 000-Hz sam-
pling rate and played out over 16-bit digital-to-analog con-
verters. The same three undergraduate listeners participated
in all the experiments. Their hearing was within 10 dB of
normal as determined from a Bekesy audiometric test, and
they were paid for their participation in the experiments.

B. Experimental conditions

1. Conventional up –down procedure

One adaptive procedure used to estimate the thresholds
in these two detection tasks was the conventional 3-down
1-up procedure. The initial step size was 4 dB, but after four
reversals the step size was reduced to 2 dB. A threshold
estimate was based on 60 trials, calculated as the average of
successive pairs of reversals once the smaller step size had
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been reached. Approximately 6–10 reversals contributed to
the threshold estimate. Thresholds were measured in six
blocks of five runs each. On the basis of 30 runs, we com-
puted the average threshold value and the standard error of
that estimate. The first of the five 60-trial runs, within a
block, started with a signal level about 15 dB above thresh-
old, but the starting value for each consecutive run was the
threshold estimate of the first run. Thus, only the first thresh-
old estimate in a block required a number of trials to reach a
near-threshold value.
2. Large-step procedure

As the second procedure, we used a 4-down 1-up adap-
tive rule with a much larger step size, which was held con-
stant throughout the adaptive run. The step size was 5 dB for
the tone-in-noise task and 10 dB for the absolute threshold
experiments. Only 20 trials per run were used to estimate
threshold in this adaptive procedure, and the threshold value
was computed as the average of the stimulus value at rever-
sal points, including the first reversal. In order to equate the
time spent in the listening booth, three 20-trial runs were
interleaved. The successive trials were selected in strict al-
ternation from the three tracks. Thirty such 60-trial runs, in
blocks of five, were administered to provide an average
threshold estimate and a standard error. As with the conven-
tional procedure, the first of the five 60-trial runs in a block
started with a signal level about 15 dB above threshold, but
the starting value for each consecutive run was the threshold
estimate of the first run.

In sum, for different detection tasks, the average and
standard error of the threshold estimates were computed,
based on a total of 1800 trials per subject and condition. In
the conventional procedure, thirty 60-trial runs contributed to
that estimate. In the large-step procedure, ninety 20-trial runs
contributed to that estimate.
C. Results

Table I gives the threshold values obtained with each
procedure and for each task as well as the difference in es-

timates between the two adaptive procedures. As can be
seen, the two procedures produce very similar threshold es-
timates; the difference is less than 1 dB for the absolute
threshold task and less than 2 dB for the tone-in-noise task
~fourth column!. We would expect some small difference in
the threshold estimates because the two procedures track dif-
ferent probability values, 0.794 fork53 and 0.841 fork54.
These differences lead us to expect about a 1-dB difference
in the threshold value for the tone in noise task and about a
2-dB difference in the absolute threshold task. The measured
thresholds are in the expected direction and approximately
the expected size for the tone-in-noise task.

The standard errors for the two procedures are also simi-
lar in size, and are always less than 0.5 dB. The ratio of the
two standard errors for each subject and condition is shown
in the parentheses in the last column. Thus, despite the dif-
ference in the step size~10 vs 2 dB for the absolute threshold
estimates, 5 vs 2 dB for the tone-in-noise estimate!, there
was no consistent difference in the standard error of the
threshold estimate.

We conclude that this experiment demonstrates that
larger step sizes can be used in an adaptive psychophysical
procedure. For an equal number of trials, the standard error
of the threshold estimate is approximately the same as that
obtained with more conventional procedures, and slightly
better than those estimated from simulations. The smaller
variability of estimates for human observers is partly related
to choosing the starting level, after the first run, at the first
estimated threshold. The nearly identical standard errors for
large and conventional steps obtained for human observers
may be related to the larger number of runs in the former
case. While the total number of trials was 1800, the 90-run
estimate from the large-step procedure produces more inde-
pendent estimates of threshold than the 30-run conventional
procedure, hence, offsetting the larger variance associated
with a larger step size.

IV. CONCLUSION

We introduced in this paper the concept of an imbalance
of the up–down procedure. This imbalance is related to a
difference in the up and down probability forces which drive
adaptive tracking. The imbalance approaches zero as the
stimulus value approaches equilibrium threshold. Because of
this imbalance, it is important that the experimenter be aware
of the effects of step size on threshold estimation. Our simu-
lations show that larger step sizes result in larger biases con-
sistent with the value of the imbalance ratio. On the other
hand, this bias may be reduced if the experimenter uses a
larger value ofk ~4 or 5!.

The use of a large step size in adaptive psychophysical
procedures may be appealing in certain experimental situa-
tions. One major advantage of a larger step size is that the
stimulus level reaches the threshold value quickly. Because
this is the case, the experimenter needs littlea priori infor-
mation about the approximate threshold level. A larger step
size also minimizes concern about the starting stimulus value
causing a bias in the threshold estimate. Another by-product
of a large step size is that it opens the possibility of using
fewer trials per threshold estimate~as we have done in our

TABLE I. The threshold values obtained with each procedure.

Listener
Conventional proc.
ss54 dB→2 dB

Large-step proc.
ss510 dB

Difference
~ratio of SE!

~a! threshold estimates obtained for absolute threshold task for each
listener@standard error of estimate~SE!#.
1 2.8 2.8 0

~0.5! ~0.4! ~1.2!
2 20.4 1.0 21.4

~0.3! ~0.5! ~0.6!
3 1.7 2.4 20.7

~0.4! ~0.4! ~1.0!

Listener
Conventional proc.
ss54 dB→2 dB

Large-step proc.
ss510 dB

Difference
~ratio of SE!

~b! Threshold estimates obtained for tone-in-noise task for each listener
@standard error of estimate~SE!#.
1 13.5 15.0 21.5

~0.3! ~0.3! ~1.0!
2 11.4 12.6 21.2

~0.2! ~0.3! ~0.7!
3 11.7 12.5 20.8

~0.3! ~0.3! ~1.0!
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tests of human observers!. Fewer trials per estimate allows
one to interleave a number of adaptive tracks which will
reduce intertrial correlation and produce more independent
samples of threshold, given a fixed number of total trials in
the experiment.

Our observers generally report that larger step sizes
made the detection task easier. The larger change in the
stimulus value makes the signal characteristics more obvi-
ous. This feature, together with the ability to use fewer trials,
may make the use of a larger step size appealing for studies
involving animals or children. It may also prove useful in
clinical settings where elaborate training on the nature of the
signal is less practical and where the testing time must, of
necessity, be short.

Finally, in spite of these advantages, we do not, as a
rule, recommend the use of large step sizes because it in-
creases the variability of threshold estimation. However, if
anyone for any reason is compelled to use larger step sizes,
then it would be judicious to choose a highk value ~4 or 5!
to reduce bias in these estimated thresholds.

V. SUMMARY

Computer simulations ofk-down 1-up adaptive proce-
dures, show the following:

~1! Larger step sizes produce biases in threshold estimates.
These biases are generally underestimates of the true
threshold and can be as large as 8 dB fork52, but are
reduced to less than 2 dB fork54 and 5. The size and
direction of these biases can be understood by consider-
ing the imbalance ratio inherent in up–down adaptive
procedures. The imbalance bias is a property of the psy-
chometric function and does not diminish with increas-
ing number of trials per run.

~2! The yield, the average number of reversals per trial, of a
k-down 1-up procedure is approximately 1/(k11).

~3! Despite the changes in yield, the standard deviation of
repeated threshold measurements is very similar for dif-
ferent values ofk. Larger step size produces monotonic
increases in the standard deviation for any number of
trials.

Measurements of human listeners’ thresholds using two
different adaptive procedures, show that a procedure using a
larger step size~10 dB! can produce standard error of thresh-
old estimates comparable in size to those produced by more
conventional small-step-size~4–2 dB! procedures, given the
same total number of trials.
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