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One class of adaptive psychophysical procedures was studied, using simulated and human
observers. These procedures are those which require an increase in stimulus intensity after an
incorrect response, and a decrease dftsuccessive correct responses. This paper analyzes how
step size and the value &faffect the mean and standard deviation of threshold estimates based on
a k-down 1-up adaptive procedure. Computer simulations are used to study the bias in threshold
estimates, which are most evident when larger step size and small vakiaseofised. The adaptive
procedure can be characterized by a function called the imbalance of the track, the relative
probability of adjusting the stimulus either up or down at equal stimulus distances from the
equilibrium point. These imbalance functions can be used to understand the threshold biases
obtained in the computer simulations. The computer simulations also show that the average number
of reversals obtained per trial is dependent on different valués biit are largely independent of

step size. The standard error of the threshold estimates, however, varies systematically with step
size, but are nearly independentlofFinally, we compare the stability of threshold estimates for
human listeners using two very different sets of parameters: a very large stdpmizeximately

half the range of the psychometric functjomith k=4, and the conventiond=3 with an initial

4-dB and a final 2-dB step size. @996 Acoustical Society of America.

PACS numbers: 43.66.Yw, 43.66.Dc, 43.66.[01]]

INTRODUCTION that an increase in the number of observation intervals in-
creases the slope of the psychometric function which in turn
The adaptive up—down procedure is by far the mosteduces statistical uncertainty along the stimulus scale. The
popular procedure used to estimate discrimination or detealope of the transformed psychometric function(Levitt,
tion performance in auditory psychophysié#etherill and  1971), as will be described shortly, also increaseskas-
Levitt, 1965; Levitt, 1971 It is frequently used in a two- creases, further contributing to a lower variability of thresh-
alternative forced-choice task in which the listener is dis-old estimates(Wetherill, 1966; Fisher, 1922; Taylor and
criminating between two stimuli. The physical difference be-Creelman, 1967; Taylor, 1971; Ros# al, 1970; Green,
tween the two stimuli is decreased if the listener is correct990, 1993 Increases in eithds or the number of intervals,
for some number of trials and is increased if the listener isof course, extends the time required for obtaining a fixed
incorrect. This is the so-callekkdown 1-up rule. Part of its number of samplegi.e., reversals When efficiency mea-
popularity stems from its simplicity. The signal level pre- sures are evaluatetk.g., the sweat factor of Taylor and
sented on the next trial is based on the listener’s performancgreelman, 196)7 higher values ok and greater numbers of
over at most the past trials. The use ok=2 or k=3 is intervals remain the more efficient alternativé&limeier
particularly ubiquitous because the probabilities of beinget al, 1988; Schlauch and Rose, 1990
correct at the equilibrium point are 0.707 and 0.794, which  |n addition to its extensive use in psychophysical mea-
are both near the classical definition of threshold in a twosurement, the up—down procedure has proven important to
alternative task, namely, 0.75. psychophysical theory in a variety of ways. The up—down
Some important properties of the up—down procedurgrocedure has been used) to reconstruct psychometric
have previously been considered in studies using computéanctions(Leek et al,, 1988, 1992, (2) to estimate possible
simulations or psychophysical measurements of human pefnstability in psychometric functions fromost hocanalysis
formance. These studies have demonstrated that a greaisfr the stimulus trackgLeek et al, 1991, (3) to analyze
number of intervals on a single trigHall, 1983; Shelton and small-sample statisticcEdwards and Wakefield, 1988nd
Scarrow, 1984; Greest al, 1989; Kollmeieret al, 1988;  (4) in comparison to maximum-likelihood and PEST tech-
Schlauch and Rose, 1900r increasingk from 2 to 3 in-  niques(Sheltonet al, 1982.
creases the reliability of threshold estimatésolimeier Although many features of this procedure have been
et al, 1988; Schlauch and Rose, 1990; Lestkal, 1992.  studied, current usage is often dictated as much by custom
The latter result is partly due to the reduced binomial vari-and habit as by any consideration of optimizing the effi-
ance at higher probabilities &sincreases. Another factor is ciency of the procedure. In this paper, we concentrate on one
parameter that has not been previously discussed, what we
9present address: Research Laboratory of Electronics, 36-765, Massach@@ll the imbalance of the adaptive procedure. This imbalance
setts Institute of Technology, Cambridge, MA 02139. reflects unequal up and down probability forces at stimulus
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values away from equilibrium, and may, in some instancespne another but operating in opposite directions, so that a
introduce a bias in threshold measurement. This discussiodrift away from the equilibrium point in either direction will
leads naturally to a consideration of step size, the amount thievoke equal and opposite tendencies to return to it. Clearly,
stimulus difference is changed when it is adjusted, up othe ratio of such forces will be nearly the same in the region
down. Computer simulations of different adaptive proce-of the equilibrium stimulus, because at that point the two
dures and different step sizes lead us to a definition of th@robabilities are exactly equal. But what of more remote
relative yield of the procedure, that is, average number ostimulus values?

turnarounds produced by a fixed number of trials. Consider- We may quantify an imbalance ratio as the probability
ation of these factors leads us to explore the use of largesf moving down over the probability of moving up for two
step sizes than are currently in vogue and a larger number fatimuli located the same stimulus distance from the equilib-

k. rium point but in opposite directions:
Finally, we estimated human listeners’ thresholds in two
detection tasks, the absolute threshold for a sinusoidal signal FK(xo+A)
and the detection of a sinusoid in noise using two quite dif-  Im(A)= T-FRxg—A)" 2
_ o—

ferent adaptive procedures. One was a conventional 3-down

1-up procedure using first a 4-dB step size that was reduced

to 2 dB after four reversals. The threshold estimate waghe numerator of the ratio is the probability of moving the
based on a run of 60 trials. The second was a 4-down 1-uptimulus down, given a stimulud above the equilibrium
procedure using a step size that was constant throughout tip@int. The denominator of the ratio is the probability of mov-
run and approximately half the width of the psychometricing the stimulus up, given a stimulus below the equilib-
function (10-dB step size for the sinusoidal increment, andrium point.

5-dB step size for the tone in nojsd-or this procedure, The imbalance ratio at the equilibrium point, (@), will
these threshold estimates were obtained by interleaving thrdee exactly unity. At other stimulus values, (x) will gener-
adaptive tracks, each using a total of 20 trials. ally not be equal to unity. If Im is greater than unity, it
indicates that the downward force is larger than the upward
I. UP-DOWN DYNAMICS force; if Im is smaller than unity, the reverse is true. Unless

In most discrimination tasks, we assume that the observt—he ratio is nearly one, then the stimulus track will have a

, ) . ; te&dency to spend more time on one or the other side of the
er's choice can be described as a stationary process YOVENELuilibrium point. Threshold estimates based on average val-
by a psychometric functiork; (x), that relates the probability d point. 9

. . . ues of the stimulus or average values of some features of the
of a correct responsé;, to the stimulus magnitude. It is

. o : track, such as the turnaround values, will provide a biased
usually assumed thdt(x) is monotonic increasing. In the .
. . . _estimate of the true threshold.
case of up—down rules, a stimulus value of considerable im- : . .
We next display the imbalance ratio, (fy), for a num-

portance is the stimulus value at which the probability of . . . o
i . - . ber of different psychometric functions. Six different psy-
moving up is equal to the probability of moving down—what : . .
chometric functions were considered. They were chosen to

is called the equilibrium point. The observer’s response pat- : :
. . . represent a number of reasonable psychometric functions
tern in the up—down process will cause the stimulus to os-

cillate about the equilibrium point, so that it is also treated aﬁrgnglt?cg [f(raog ;’ggazgg]ozoﬂlﬁeegﬁiffi? [(agng](:ﬁ]d at?i

the threshold value for the stimulus in these tasks. It is eaS\V\/geibull [(37)]. The parameters of thesg functions were cho-
tp Qerlve the equilibrium point fo.r'b-down 1'.Up rule. Eqw- sen to produce a two-alternative forced-choice psychometric
librium occurs when the probability of moving the stimulus

K . . . function that has a range of about 20 dB. The first psycho-
down, F*%(x) is equal to the complimentary probability of . . .
. . metric function has a very simple form and the parameters of
moving the stimulus up,

the other functions were adjusted to mimic the first. The
FK(x)=1-FXx)=F(x)=0.5". (1)  equations for each are listed below. Different theorists have
The equilibrium probabilities are 0.7071 flor=2, 0.7937 for proposed that the basic stimulus variable is either a change in
k=3 08409 fork=4 and 0 870(:‘; folk=5 L’evitt called stimulus energy or the logarithm of that quantity, a decibel-
FX(x) the transformed psychometric function. Note that onIIke qhuantliy_(L?mlntg, 1986;dGra(rjltrt1)an1hand YtOSt’ 1982het_
the transformed function the equilibrium probability is 0.5 PSYChometric tunction produced by these two assumptions
for any k. have very different properties. We consider both stimulus

It is convenient to denote the value of the stimulus thaﬂ[ﬁvel i? deICibels{SE)' qu.(Bc) ggd(3g)’ or th§ a?r;lplitur(]je of
satisfies the equilibrium condition as,, also called the e stimulus, X, Egs. (33, (3b), (3¢), and (3f) where

threshold stimulus value. If we increase or decrease thgl‘:20 logio(x):
stimulus to some other value, then the probabilities of mov-
ing up or down are unequal, and the ratio of these two prob-
abilities is the relative likelihood of moving the stimulus in
one direction or another. A related concept is the relative
probability of moving up or down at two stimulus values an
equal distance above and below the equilibrium point. It F(x)= 1 >0 3b)
would be desirable to have these probabilities nearly equal to l+exp—1.%)’ '

xIN2
F(X):ﬁx ¢(z)dz, x>0; (33
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FIG. 1. Six different psychometric functions corresponding to those de- 125k 4t
scribed in Eqs(3a—(3f). B
1 1 (o012sL+0.2 /
F(x)=§+§f #(z)dz, SL=20logXx); =5
- [ Te~————— ]
(39 i ]
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F(x) = 1.1 1 STIMULUS CHANGE FROM EQUILIBRIUM (dB)
2 21+exp—0.21SL-0.3)°
_ . FIG. 2. The imbalance ratidm) shown for the six psychometric functions
SL=20 logx); (3d) of Fig. 1. An imbalance ratio greater than unity means that the downward
1 1 t force is greater than the upward force for equal distarfd@sabove and
F(X)==+= arctarix) >0: (39 below the equilibrium probability. In such a case, the adaptive track will be
2 2 =2 ' biased low.
1 X 1.2
F(x)=1- > ex;{ - (m) T x>0. (3f)  large step size and small valuelofire used. The bias will be

to estimate a threshold somewhat bebayy because the im-
Figure 1 illustrates these six psychometric functions.balance ratio is greater than unity, that is, the downward
The means of the functions have been adjusted to positioforce is larger than the upward force, except at the equilib-
them near each other along the stimulus axis. Except for theum point. We now turn to computer simulations of the
arctangenfmodel (3e)], these functions also produce nearly k-down 1-up adaptive rule for these different psychometric
the same probability of being correct for all stimulus values.functions.
The functions are so similar that it would be difficult to
determine experimentally any difference between them. De-
spite this similarity, the imbalance ratios, (&), shown in |, cOMPUTER SIMULATIONS
Fig. 2 are quite different for the different psychometric func-
tions. We have computed the imbalance ratioskKer2—6 Monte Carlo methods were used to simulate the perfor-
and for A<10 dB, a stimulus change of roughly half the mance of two observers having different psychometric func-
range of the psychometric function. The imbalance ratio fottions. One of the simulations used the fif&aussian, Eq.
models(3a)—(3¢) is always greater than unity for alkyand  (3a)] and the other, the fourtfogistic, Eq.(3d)] psychomet-
all stimulus changes. Model@d)—(3f) show a somewhat ric functions. We selected these two psychometric functions
different pattern, being nearly unity for all stimulus changesbecause their imbalance ratios were markedly diffe(Eit.
when k is equal to or larger than four. Model8¢)—(3f) 2). Simulations were conducted using tkalown 1-up rule
show greater imbalance fér=2 than for any other rule for for k between 2 and 5. For each condition and psychometric
all A, while for models(3a) and(3b) this is true only for the function, 1000 thresholds were measured. From each set of
larger stimulus changes. simulations, the mean and standard deviation of the threshold
One implication of these figures is that any psychomet-estimates were computed as well as the mean number of
ric function will show a bias in the estimate of threshold if a reversals.
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The two major parameters of the simulations, besides k=2
thek of the up—down rule, wer€l) the number of trials per PSYCHOMETRIC FUNCTION @ PSYCHOMETRIC FUNCTION d
run and(2) the step size used in the adaptive procedure. The g o} ' ' ' 1 ' ' ' "]
number of trials per run was 10, 20, 30, 40, or 50. Step sizes ey 18
of 2, 5, 10, 15, and 20 dB were examined. The step sizeg -4r +4
remained constant throughout the run. The threshold was de-% -6 L 8
fined as the signal level corresponding to the equilibrium & -8t a
probability for eachk of the up—down rule. The starting :-lO-V
value for the stimulus was randomly chosen from a uniform ~
distribution with a range of plus and minus two times the =-14f
step size centered at the threshold value. Thus, for the step ~16] ) ) ) T ) . , ]
size of 2 dB, the first stimulus value was chosen at random T T T T L - T - T
from a range of 8 dB, whereas for the step size of 20 dB, the ¥4 2°[ ' sz T 1
initial stimulus value was chosen from a range of 80 dB. In é 20p 5 24
terms of step size, all starting points were dispersed about the¥ A 10 dB
threshold value by an equal distance. The estimated value of& '®f X ég gg
threshold was based on the average of the stimulus values o5 1o}
all reversals. If a run had no reversals, it was discar@se
cept when considering the yield of the procedure as de-
scribed below in Sec. Il AR Virtually no runs were dis-
carded for any value df or step size when there were more : : : . — : ! ! !
than ten trials. When the number of trials was 10, the ap- 25} + .
proximate percentages of discarded runs Ker2—5 were
0.5, 4, 12, 30, and 35, respectively.
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A. Results

oy (dB)

1. Threshold estimates

Figures 3—6 plot the results of these simulations for dif-
ferent step sizesgsee left panel, second from topnd for ol 4 4
different values ok. The left columns show the results for : : : : — : : : .
an observer using the first psychometric functji&u. (3a)].

The right columns show the results for an observer using the
fourth psychometric functiofEq. (3d)]. The top panels are
the mean threshold estimates corresponding to equilibrium
probability (e.g., 0.707 fork=2), which the procedure is
tracking. The solid lines are the stimulus values at that equi-
librium probability. For the lower values &f (Figs. 3 and 4

and for the larger step sizes, there is a noticeable bias in ole v
threshold estimation for both psychometric functions. This is . ! ) . A ¢ ¢ 9
in agreement with results from Schlauch and R¢E@90 10 20 30 40 50 10 20 30 40
and Edwards and Wakefield988 who have also reported NUMBER OF TRIALS PER RUN
biased estimates from simulations, particularly for a large

step size and=2. As the value ok increasesFigs. 5 and FIG. 3. Results from simulations for the 2-down 1-up rute=Q). The left

. nels show results for a simulated observer who performs according to
6), the mean threshold estimates are closer to true threShoﬁiychometric functiora (Gaussiajp and the right panels for psychometric

values. The bias is nearly always in one direction; the profunction d (logistic). Top panels are threshold estimates based on 1000
cedure underestimates threshold, and is in accord with thgmulations per point. The solid lines show stimulus values at equilibrium
imbalance ratio shown in Fig. 2. When the downward pr(-_)b_probability (true thresholyl The parameter is step size. The second row of

. . panels shows the average number of reversals as a function of the number of
ablllty force is greater than the Upward forCen>1), the trials in a run. The solid line is Ed4). The third row of panels shows the

track will spend more time below the equilibrium probability standard deviation of threshold estimates. The solid lines are based on the
than above it. This imbalance is a property of the adaptivequationa/ N, wherea is determined from a least-squares fit to the data
procedure and not related to the number of trials used in th#r various step sizes anlls is determined from Eq(4). The bottom
procedure. Thus, in the simulations, we expect the bias to H&A"¢!S € the psychometric efficiencies determined from&q.
practically independent of the number of trials used to esti-
mate the threshold value, as it is. The bias in threshold estrow region about the equilibrium point. As Fig. 2 shows, the
mates is substantially reduced with increaskglt is be- imbalance ratio is never greater than about 15% in a region
tween 1-2 dB fork>3 for the Gaussian model and nearly within 5 dB of the equilibrium point for any of the six dif-
zero for the logistic model. ferent psychometric functions. Schlauch and R¢E890
Another way to minimize the bias in threshold estimateshave also shown that biases in thresholds may be reduced if
is to reduce the step size. This keeps the track within a nathresholds are estimated from a psychometric function fitted
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FIG. 4. Same as Fig. 3 fdr=3. FIG. 5. Same as Fig. 3 fdt=4.

to the trial history, instead of determining threshold from

: form of the psychometric function, that is, the left and right
averaging the reversals.

panels for a given value df are nearly the same.

The value of the intercept can be rationalized on the
basis of the following argument. It takes some fixed number
of trials to produce the first reversal. It is clear that this

The second row of panels in Figs. 3—6 show the relatiomumber is at leak+ 1 (a sequence df correct followed by
between the number of reversals and the number of trialsne incorrect response, or one incorrect followedkbgor-
used to obtain each threshold estimate. To obtain an accuratec). Thus, if we subtrack+ 1 trials from the total number
estimate of the number of reversals, no runs were discardedf trials, then we might expect for any value lkofthe same
and therefore the average number of reversals per conditiastarting point for the average number of reversals.
is based on all 1000 runs for that condition. The solid line is  The slope of the line relating the number of effective
a linear function relating the number of trials and the averagérials to the number of turnarounds is nicely approximated by
number of reversals. The slope of the linear function changethe value 1/k+1). This slope value is the number of rever-
systematically withk, but it is largely independent of the sals produced per trial. It is what we might call the yield of

2. Number of reversals
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k=5 while an increase requires one incorrect response, on average
PSYCHOMETRIC FUNCTION a  PSYCHOMETRIC FUNCTION d two reversals arise fromk{1) trials [an optimum slope of
ol ' ' ' 1 ' ' ' i 2/(k+1)]. Thus, our empirical slope value of k1) is
- + . roughly half the maximum possible yield.

A better approximation would include the step size as a
parameter, because it is evident from the data that the larger
3 T T step sizes produce, on average, slightly more reversals. The
least-squares slope of a linear function relating the number of
T T reversals to the number of trials is a quantity that describes
-4r T T the empirical yield of an adaptive procedure. The ratio of the
i . . . 1 . . . ] empirical yield to the maximum possible yield expresses the
o5k -sfep e T 1 T T T ] relati\_/e reversal yield of the procedure and was compL_lted for

the different up—down rules and averaged over the different
2 1 {  step sizes. The relative reversal yields are 0/6%2), 0.52

10 dB (k=3), 0.51 k=4), and 0.53 k=5). Thus, all the different

;3 gg T 1 rules produce remarkably similar values. There is a small but

10} + g consistent trend for the relative reversal yield to increase
with step size. For each step size, the relative reversal yields

St T i are, averaging ovek, 0.52(ss=2 dB), 0.53(ss=5 dB), 0.53

of 4 4 (ss=10 dB), 0.55(ss=15 dB), and 0.58(ss=20 dB).

3. Variability of threshold estimates
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Finally, we examine what is generally considered the

1sr T | critical feature of any procedure that estimates threshold, the
10k o 1 . variability of repeated measures. The third rows of panels in

o Figs. 3—6 show the standard deviation of the threshold esti-
St "D\D\ i mates in decibels plotted against the number of triglsyith

ok 4 J the various step sizes coded by different symbols. Five lines
. are shown in each panel; all show the standard deviation
3t +0 1 decreasing inversely with the square root of the number of
dnl 1 trials. Because the distribution of values from which thresh-
0 olds were estimated was the distribution of reversal values,
Nievs, EQ. (4) was used to determind,, from the number
2 of trials, and the fitted lines were calculated usiNg,
X (a/N,eys Wherea is a constant The five lines are based on
different values of the parameter, obtained individually
from a least-squares fit to the data for each step size.
. o 1 . . : ' This equation describes the general trend of the data
8 40 50 lo 20 30 40 50 quite well. There are, however, some systematic departures.
NUMBER OF TRIALS PER RUN For the smallek values, it is evident that the point at=10
is generally below the fitted line. Thus, the measured stan-
FIG. 6. Same as Fig. 3 fde=5. dard deviations are lower than predicted for smgllbut
follow the square-root law for largem. This may be ex-
lained by considering two different distributions, what
ollmeier et al. (1988 refer to as the starting and limiting
distributions. The starting distribution is the distribution of
stimulus levels at the initial stages of the track, while the
limiting distribution is the distribution of stimulus levels near
the end of a track. Often, near the beginning of a track, the
Nrevs=1 77 [Nuiais™ (K+1)]= j 77 Niriais— 1. (4 variability in stimulus levels is smaller. This is partially due
to the usually restricted range from which the starting stimu-
The solid lines in the second rows of Figs. 3—6 are calculatetls value is selected, particularly if this selection is guided by
from Eg. (4). This simple equation provides a reasonablya priori information about the general region of threshold.
good approximation to the data of the simulations. To verify this reasoning, we ran simulations fae=2 in
An interesting concept is the maximum possible yieldwhich the starting distribution was defined as the distribution
for a k-down 1-up adaptive procedure. Such a track wouldof stimulus values on the first incorrect response of a run. We
consist entirely of alternate increases and decreases in stimdefined the limiting distribution as the distribution of values
lus level. Because a decrease requkesorrect responses on the very last trial of the run. Results showed that the

oy (dB)

[m}

S <> O 0
<odq
o4 > O
S 4A> O
SO0 O

0lr

PSYCHOMETRIC EFFICIENCY
o)

o4 SR

that adaptive procedure, because it is the fraction of trial
that produces a turnaround, on average.

A good approximation of our simulation results is there-
fore
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limiting distribution always had a larger standard deviation Second, the psychometric efficiency dependsotthe
than the starting distribution. This difference was greater fonumber of trials used in the threshold estimate. The effi-
the larger step sizes, a maximum difference of 4 dB, andiency will only be constant across varionsf the n law
smaller for the smaller step size, a maximum of 1 dB, al-holds. Wherk=2 and step size is larger than 10 dB, or when
though, relative to step size, the difference was proportionk>2 and the step size is 5 dB, the efficiency is in fact con-
ately greater for the smaller step size; 50% for 2-dB and 20%tant. However, for other cases, one obtains an approximate
for 20-dB step size. Thus, the small departure from themonotonic dependence of efficiency on the number of trials.
square-root law is consistent with a consideration of the~or small step sizes, the psychometric efficiency decrease
properties of the starting and limiting distributions of the monotonically because the starting distribution is too narrow.
stimulus track. For large step sizes ardvalues, the effect reverses and one
One other surprising aspect of these results is the simiebtains a monotonically increasing efficiency. This latter
larity of the standard deviations for all valueslofThe data trend may be due to a larger variance of the starting distri-
for the third rows of panels are nearly the samelfer2 to  bution compared to the limiting distribution when step size is
k=5. As we have just seen, the yield of an adaptive procelarge andk has a high value.
dure (slopes in the second panebiecreases ds increases.
Thus, the same number of trials produces considerably mong, EXPERIMENTS WITH HUMAN LISTENERS
reversals whek=2 as opposed t&=5. The threshold es- ) ) ) o )
timate is based on an average of these reversal levels. While 'n€ Preceding simulations indicate that despite changes
increases irk decrease the number of values used to calcul! Step size from 2 to 20 dB, the average estimated thresh-
late the average, the variability of the estimates is essentiall
independent ok. How is this possible?

Ids are nearly the same if valueslofarger than 3 are used.
n experiments with real observers, step sizes larger than 5

The answer to this question is complex and depends ofB are rarely used and then only when the final step size is
a number of factors, but the principle, and apparently Con_much smaller. Would procedures using large step sizes pro-

trolling, ingredient is simple. The slope of the transformeddUce threshold estimates even close to those produced by
psychometric function increases &sincreases. A steeper more cqnventlonal procedures? .The following experiment
slope for the psychometric function makes the point of tranV3S designed to probe that question. The purpose was not to

sition or threshold easier to estimate, which is to say that th&ompare extenswel_y the two procedyres, but to dete.rmlne if

variability of the threshold estimate decreases as the slop@ large thre_shold bias would result if a Iar_ge step size was

increases. This increase in slope is enough to offset the d&MPloyed with a large value & In one condition a standard

crease in the number of reversdtsr equivalently, the de- S-down 1-up procedure was employed, with an initial step

crease in the number of independent thiaéd the resulting Sz Of 4 dB and a final step size of 2 dB. In the second

variability in threshold estimates is nearly independeni,of condition, ak=4 method was employed with a much larger

at least for changes ik from 25, step size, 10 dB for tone in quiet and 5 dB for tone-in-noise
Finally, we compare the efficiency of the procedure fordetection.

the four values ok and different step sizes. The ideal mini- A. Experimental procedure

mum variability for a single trial is simply the ratio of the

binomial variance divided by the squared slope of the psy;[. -It—hriShm?ﬁ Wt(\a;\:e Zis#lr?a;fd ('jn t\;\i'\c/) forrced-é:hflce I(:etenc-
chometric function,p(1—p)/F’2. The ratio of that factor, lon tasks USing two difierent adaplive procedures. In one

called its “ideal sweat factor” by Taylor and Creelman task, what we call the absolute-detection task, the signal to

(1967 to the empirically observed variance basechdnials, be detected was a 1000-Hz tone of 200-ms duration pre-

o . " sented in quiet. In the second task, what we call the tone-in-
its “empirical sweat factor,” is a measure of the psychomet-~". . )

. - . noise task, the same tone was presented in a broadband noise
ric efficiency of a psychophysical procedure,

of 25-dB spectrum level. The experimental details are similar
to that used by Gu and Gre€h994). The auditory signals
P(1~Pp) were d i i
—_— generated on a microcomputer using a 50 000-Hz sam-
n.(.dF/dx). _ (5) pling rate and played out over 16-bit digital-to-analog con-
empirical variancé verters. The same three undergraduate listeners participated
in all the experiments. Their hearing was within 10 dB of
The attractive feature of this measure is that it allows comnormal as determined from a Bekesy audiometric test, and

parison across various procedures and number of trials.  they were paid for their participation in the experiments.
In the bottom panels of Figs. 3—6, we plot these psycho-

metric efficiencies on a logarithmic scale, to present the valg gxperimental conditions
ues for all step sizes in the same panel. There are two fea- )
tures of these calculations which are immediately noticeablel- Conventional up —down procedure

First, for the smallest step size, the psychometric effi-  One adaptive procedure used to estimate the thresholds
ciency is often greater than unity, which means that the proin these two detection tasks was the conventional 3-down
cedure is performing better than ideal. As previously dis-1-up procedure. The initial step size was 4 dB, but after four
cussed, this better-than-ideal performance may be attributagversals the step size was reduced to 2 dB. A threshold
to the smaller variance associated with the starting distribuestimate was based on 60 trials, calculated as the average of
tion compared to the limiting distribution. successive pairs of reversals once the smaller step size had

psychometric efficiency

534  J. Acoust. Soc. Am., Vol. 100, No. 1, July 1996 K. Saberi and D. M. Green: Adaptive procedures 534



TABLE I. The threshold values obtained with each procedure. timates between the two adaptive procedures. As can be
seen, the two procedures produce very similar threshold es-
timates; the difference is less than 1 dB for the absolute
threshold task and less than 2 dB for the tone-in-noise task

(a) threshold estimates obtained for absolute threshold task for each (fourth columr). We would expect some small difference in

Conventional proc.  Large-step proc. Difference
Listener ss=4 dB—2 dB ss=10 dB (ratio of SB

listener[standard error of estimatSE)].

the threshold estimates because the two procedures track dif-

' (é_'; (02_'}3 (192) ferent probability values, 0.794 fée=3 and 0.841 fok=4.
2 -0.4 1.0 -1.4 These differences lead us to expect about a 1-dB difference
0.3 (0.5 (0.9 in the threshold value for the tone in noise task and about a
3 L7 24 —0.7 2-dB difference in the absolute threshold task. The measured
©4 04 €9 thresholds are in the expected direction and approximately
, Conventional proc.  Large-step proc.  Difference the expected size for the tone-in-noise task.
Listener ss=4 dB—2 dB ss=10 dB (ratio of SB

(b) Threshold estimates obtained for tone-in-noise task for each listener
[standard error of estimat&SE)].

The standard errors for the two procedures are also simi-
lar in size, and are always less than 0.5 dB. The ratio of the
two standard errors for each subject and condition is shown

! 135 150 —15 in the parentheses in the last column. Thus, despite the dif-
0.3 0.3 1.0 ; .

2 11.4 126 12 ference in the step siZ&0 vs 2 dB for the absolute threshold
0.2 0.3 0.7 estimates, 5 vs 2 dB for the tone-in-noise estinatieere

3 11.7 125 -0.8 was no consistent difference in the standard error of the
03 0.3 1.0 threshold estimate.

We conclude that this experiment demonstrates that

) ) larger step sizes can be used in an adaptive psychophysical
been reached. Approximately 6-10 reversals contributed 18,4cedure. For an equal number of trials, the standard error

the threshold estimate. Thresholds were measured in Si the threshold estimate is approximately the same as that
blocks of five runs each. On the basis of 30 runs, we cOMgpained with more conventional procedures, and slightly
puted the average threshold value and the standard error gfyer than those estimated from simulations. The smaller
that estimate. The first of the five 60-trial runs, within @ arapility of estimates for human observers is partly related
block, started with a signal level about 15 dB above thresht, ¢noosing the starting level, after the first run, at the first
old, but the starting value for each consecutive run was thggtimated threshold. The nearly identical standard errors for
threshold estimate of the first run. Thus, only the first threShTarge and conventional steps obtained for human observers
old estimate in a block required a number of trials to reach nay be related to the larger number of runs in the former
near-threshold value. case. While the total number of trials was 1800, the 90-run
2. Large-step procedure estimate from the large-step procedure produces more inde-
As the second procedure, we used a 4-down 1-up adagendent estimates of threshold than the 30-run conventional
tive rule with a much larger step size, which was held conprocedure, hence, offsetting the larger variance associated
stant throughout the adaptive run. The step size was 5 dB fowith a larger step size.
the tone-in-noise task and 10 dB for the absolute threshold
experiments. Only 20 trials per run were used to estimatéV. CONCLUSION

threshold in this adaptive procedure, and the threshold value We introduced in this paper the concept of an imbalance
was computed as the average of the stimulus value at revelt the up—down procedure. This imbalance is related to a
sal points, including the first reversal. In order to equate thitarance in the up and down probability forces which drive
time spent in the listening booth, three 20-trial runs Were, . yive tracking. The imbalance approaches zero as the
mterle_aved. The successive trials were selected_ in strict _agtimulus value approaches equilibrium threshold. Because of
ternation frqm the three tre_lc_ks. Thirty such _60-tr|al runs, Nihis imbalance, it is important that the experimenter be aware
blocks of five, were administered to provide an average, e effects of step size on threshold estimation. Our simu-
threshold estimate and a standard error. As with the converjzions show that larger step sizes result in larger biases con-
tional procedure, the first of the five 60-trial runs in a bIOCksistent with the value of the imbalance ratio. On the other
started with a signal level about 15 dB above threshold, buﬁand, this bias may be reduced if the experimenter uses a
the' starting valug for each consecutive run was the threshol@rger value ok (4 or 5).
estimate of the first run. _ The use of a large step size in adaptive psychophysical
In sum, for different detection t_asks, the average an rocedures may be appealing in certain experimental situa-
standard error of the thre_shold estlm_ates were co_n_1pute ons. One major advantage of a larger step size is that the
based on a_total of 1800 tnals_ per SUt?JGCt and con_d|t|0n. INtimulus level reaches the threshold value quickly. Because
the conventional procedure, thirty 60-trial runs contributed t his is the case, the experimenter needs latlpriori infor-

that estimate. In the large-step procedure, ninety 20-trial run§,ation about the approximate threshold level. A larger step
contributed to that estimate. size also minimizes concern about the starting stimulus value
C. Results causing a bias in the threshold estimate. Another by-product
Table | gives the threshold values obtained with eachof a large step size is that it opens the possibility of using
procedure and for each task as well as the difference in esewer trials per threshold estimatas we have done in our
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tests of human observerd-ewer trials per estimate allows Kaernbach, and Dr. B. Kollmeier for helpful discussions. We
one to interleave a number of adaptive tracks which willalso thank Elizabeth A. Strickland and Huanping Dai for
reduce intertrial correlation and produce more independerdommenting on an earlier draft of this paper, and Z. A. On-
samples of threshold, given a fixed number of total trials insan, Q. T. Nguyen, and Mary Fullerton for technical assis-
the experiment. tance.

Our observers generally report that larger step sizes
made the detection task easier. The larger change in the
stimulus value makes the signal characteristics more obvi-
ous. This feature, together with the ability to use fewer trials,
may make the use of a larger step size appealing for studi@Siwards, B. W., and Wakefield, G. K1988. “Small-sample analysis of
involving animals or children. It may also prove useful in Levitt's psychophysical procedure,” J. Acoust. Soc. Am. Suppi83l
clinical settings where elaborate training on the nature of the S17.
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anvone for anv reason is compelled to use larger ste Size(g?vreen, D. M. (1993. “A maximum-likelihood method for estimating
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