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Evaluation of maximum-likelihood estimators in
nonintensive auditory psychophysics

KOUROSH SABERI and DAVID M. GREEN
University ofFlorida, GainesviUe, Florida

This is a brief report on the use of maximum-likelihood (ML)estimators in auditory psychophysics.
Slope parameters of psychometric functions are characterized for three nonintensive auditory tasks:
forced-choice discrimination of interaural time differences (MTD), frequency (!:if), and duration (M).
Using these slope estimates, the ML method is implemented and threshold estimates are obtained for
the three tasks and compared with previously published data. !:iITD thresholds were additionally mea­
sured for human observers by means of two other psychophysical procedures: the constant-stimuli
(CS) and the 2-down l-up methods (Wetherill & Levitt, 1965).Standard errors were smallest for the ML
method. Finally, simulations showed ML estimates to be more efficient than the CS and k-down l-up
procedures for k = 2 to 5. For up-down procedures, efficiency was highest for k values of 3 and 4. The
entropy (Shannon, 1949) of MLestimates was the smallest of the simulated procedures, but poorer
than ideal by 0.5 bits.

The maximum-likelihood (ML) method is an adaptive
procedure that utilizes the maximum available statistical in­
formation, pooled across trials, in estimating an observer's
threshold (Green, 1990, 1993, 1995; Gu & Green, 1994;
Hall, 1968; Laming & Marsh, 1988; Pavel, 1981; Pentland,
1980; Watson & Fitzhugh, 1990; Watson & Pelli, 1979,
1983). In auditory psychophysics, ML estimators have been
applied to tasks in which the intensity ofthe signal is varied
to estimate a threshold-for example, absolute or tone-in­
noise detection (Green, 1990, 1993; Shelton, Picardi, &
Green, 1982; Shelton & Scarrow, 1984). There is, however,
a lack of information on the requirements and performance
measures and capabilities ofthis procedure when applied to
nonintensive scales. These involve tasks in which the signal
does not involve a change in stimulus energy.'

This paper describes three new results related to ML
measurements. First, psychometric functions and their
slope parameters for three nonintensive stimulus domains
are documented. It is important to determine the slope pa­
rameter of the psychometric function on a logarithmic
stimulus scale for a given stimulus dimension before im­
plementing the ML method. Psychometric functions and
slope parameters are measured for the discrimination of
interaural time differences (~ITDs), but data from the lit­
erature are used to document slope parameters for fre­
quency (~f) and duration (~t) discrimination.

Second, results from the first section are used to im­
plement the ML method. Thresholds are estimated for
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~ITD, ~f, and ~t and compared with those reported in
the literature. In addition, ~ITD thresholds and their vari­
ability are compared with those obtained from the same
human observers but different psychophysical proce­
dures. The latter procedures are the 2-down, I-up adap­
tive method (Levitt, 1971; Wetherill & Levitt, 1965) and
the method of constant stimuli (CS), both of which are
commonly used in psychoacoustics.

In the third and final part of the paper, computer sim­
ulations are used to extend results from human observers
and to add new simulation results to the literature on ef­
ficiency, bias, and information gain from ML estimators,
the k-down I-up procedures for values ofk = 2 to 5, and
the CS method. Although computer simulations have
previously been used to compare the ML method to the
2-down I-up and CS procedures, there are two reasons
why additional simulations are warranted. First, the effi­
ciency of the up-down method increases with the value
ofk (Kollmeier, Gilkey, & Sieben, 1988; Saberi & Green,
1996; Schlauch & Rose, 1990), and therefore itis help­
ful to make a comparison between threshold estimates
from the higher, more efficient k rules and ML estimates.
Second, there is disagreement on the relative efficiency
of the CS method compared with the ML method and
adaptive staircase procedures (McKee, Klein, & Teller,
1985; Simpson, 1988; Taylor, Forbes, & Creelman, 1983;
Watson & Fitzhugh, 1990). Further simulations will con­
tribute to a better understanding of the dynamics ofeach
ofthese methods. We begin with a description ofML es­
timation and the relevance ofthe properties ofthe psycho­
metric function to this procedure.

Maximum-Likelihood Estimation and the
Psychometric Function-

Because likelihood values depend on binomial proba­
bilities associated with a given stimulus level and the
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particular model ofthe psychometric function, one must
make an a priori decision about the psychometric model
that gives rise to these probabilities. Different psycho­
physical tasks produce different psychometric functions,
and the determination of the appropriate function is an
empirical issue. Many forms of the psychometric func­
tion have been used as psychophysical models. These
include the logistic (Green, 1990, 1993; Macmillan &
Creelman, 1991; Madigan & Williams, 1987); Gaussian
(Laming & Marsh, 1988; Saberi, 1995); the Weibull
function (which is more popular in vision research; Foley
& Legge, 1981; Quick, 1974; Robson & Graham, 1981;
Watson, 1979; Watson & Pelli, 1983; Weibull, 1951), and
the arctangent (Finney, 1971, 1978; Saberi & Green, 1996;
Urban, 1910). Most ofthese functions are very similar in
shape if the parameters are correctly adjusted.

Once an experimenter has selected a basic model of
the psychometric function (e.g., logistic), two important
steps must be taken. First, the functions must be trans­
formed tv a logarithmic stimulus scale; it is well known
that psychometric functions defined on such a scale are
parallel (Green & Luce, 1975; Green, McKey, & Licklider,
1959; Laming, 1988; Nachmias, 1981; Roufs, 1974; Wat­
son, 1979; Watson & Pelli, 1983). The parallel nature of
these functions is convenient because one observer's func­
tion usually differs from another only by its placement
along the log-stimulus scale (i.e., its logarithmic mean),
not by its slope.

The second step is that the experimenter must now de­
termine this slope value for the family of psychometric
functions selected in the first step. Different stimulus di­
mensions give rise to different slopes. In general, it is as­
sumed that the psychophysical discriminator observes a
quantity that is related to the stimulus scale, x, by a power
transformation,y oc XV (Egan, 1965; Laming, 1985, 1986,
1988). On a logarithmic scale, the slope of the psycho­
metric function may therefore be considered to be the
proportionality constant, v. If v is unity, the psychomet­
ric function has a range of about 20 dB. Laming (1986)
has described a wide range of functions with v = 1, 2, 4,
or even 8, for auditory and visual tasks that produce ef­
fective ranges of about 3-20 dB.

ported in this paper utilizes dITDs, we wanted a more
detailed quantification of these functions.

Method for MTD Functions
MTD psychometric functions were measured for three

normal-hearing subjects (within 10 dB of ANSI (1989)
standard between 125 and 8000 Hz). All were experienced
in dITD-discrimination tasks. The subjects practiced
until we were confident that their performance on this task
was stabilized. On each trial, 1 ofapproximately 20 fixed
dITDs was randomly selected and presented in a two-in­
terval forced-choice (2IFC) method ofCS. Psychometric
functions were measured for two types of stimuli: a 500­
Hz pure tone and a 50-Hz, sinusoidally amplitude-mod­
ulated (SAM) tone with a carrier frequency of 3.5 kHz.
These two waveforms were selected because they have
been reported to produce very different thresholds; smaller
values for the pure tone and larger values for the SAM
carrier (Henning, 1974, 1980; Klumpp & Eady, 1956;
Nuetzel & Hafter, 1976, 1981).

For the 500-Hz tone, the MTD values ranged from about
4 to 100.usec (slightly different ranges for different ob­
servers) and for the SAM tone, they ranged from 10 to
1,000.usec. Within a trial, the lTD in the first interval
(equal to dITD/2) led to one ear, and in the second inter­
val, to the other. The ear that carried the leading sound in
the first interval was selected on a random basis. Subjects
were instructed to determine whether the order ofthe per­
ceived locations of the sounds was left then right or right
then left. Feedback was provided after each trial. Each run
lasted for 100 trials with unlimited practice allowed at the
beginning ofthe run. Practice trials were ended by the sub­
ject, and usually did not exceed 5-10 trials.

Stimuli were generated on an IBM PC, presented
through digital-to-analog converters (TDT-II) at a rate of
20 kHz, a lowpass filter with a cutoff at 10kHz (Kemo
VBF/24), and through Sennheiser HD-450 headphones
in a sound-attenuating booth. Each stimulus was 400 msec
in duration with 10-msec cosine-squared ramps and was
presented at a level of 60 dB SPL. ITDs were produced
by shifting the phase ofthe 500-Hz pure tone or the phase
of the envelope of the SAM tone (no carrier delay).

..:1ITD Functions
Figure 1 shows results for the 3 observers. Each func­

tion for each observer is based on 7,000 to 10,000 trials.
The solid lines are logistic fits,

where {3 is an assumed inattention rate and jz may be con­
sidered the mean of the psychometric function on a log­
stimulus scale (also referred to as the threshold param­
eterj.' It is useful, for ML procedures, to set {3 at 0.04 or
0.02, which produces an upper asymptote of 0.98 or
0.99, respectively. This asymptote of slightly less than

PSYCHOMETRIC FUNCTIONS AND SLOPE
PARAMETERS FOR MTD, 11f, and M

Psychometric functions and their slope parameters are
characterized here for I1f and I1t from previously pub­
lished data, but for I1ITD they are measured. Some data
on I1ITDpsychometric function do exist (Henning, 1980;
Koehnke, Colburn, & Durlach, 1986), but these func­
tions are remeasured here for simple and complex tones
using the same observers. The primary purpose was to
quantify slope parameters across different observers and
stimuli and to verify the parallel nature of these func­
tions on a Iog-usec scale. In addition, because much of
the comparison with other psychophysical methods re-

()
1-[3

Fj lTD = + 0.5[3,
l+exp (-1.7 ITDv/,u;)

(1)
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a/and at Functions
We next summarize the available data from previously

published work on psychometric functions for frequency
and duration discrimination. These data for a variety of
signals and measurement methods are shown in Figure 2.
The data from these studies were transformed from d'
to proportion correct and plotted as a function of log­
stimulus values. The solid curves are Equation 1 with
slope parameter v = 1; they are visually fitted to the data
to show that they do describe the trend of the data. The
different symbols represent either different observers or
different signals (the asterisks represent data from the
present study and are explained in the next section). The
least squares estimates of v and fl (Equation 1) were ob­
tained individually for each symbol type in each panel.
The average v for frequency discrimination was 1.05 (with
a standard deviation of0.30 from 8 slopes) and for dura­
tion discrimination it was 1.22 (with a standard deviation
of 0.26 from 8 slopes). Thus, v = 1.0 is also a good ap­
proximation for frequency- and duration-discrimination
psychometric functions, and this value was used in the fol­
lowing ML threshold measurements.

best fitting values ofv andu for the 3 observers (J.M., L.E,
and Y.B.), respectively, were v = 1.02,0.95,1.05, andu =
45.2,53.4,30.5 usee. For the SAM complex, these values
were v = 0.94, 0.88, 0.91, and fl = 238.1, 328.2, and
247.1usee. The values ofv are very near unity for the 500­
Hz tone and slightly smaller for the SAM complex. We
should note, for comparison, that for various tasks the re­
ported values of v have ranged from about 1 to 8 for fits
with the Gaussian model (Laming, 1986).

The functions of Figure 1 are all fitted with v = 1 in­
stead of individual values. An inspection of these func­
tions shows that v = 1 provides a good fit to all the func­
tions. Small deviations of observed slope from assumed
slope are not likely to affect the performance ofML pro­
cedures (Emerson, 1984; Green, 1990; Madigan &
Williams, 1987); a slope mismatch of a factor of 2 to 3,
for example, increases the variability of threshold esti­
mates by 20%-50%. For simplicity, we therefore used
v = 1 in implementing the ML procedure.'
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Figure 1. Psychometric functions for 3 subjects measured
using the method of constant stimuli for a S06-Hz pure tone and
a sinusoidally amplitude-modulated (SAM) tone with a 50-Hz
modulation frequency and a 3.5-kHz carrier. The solid fits are
logistic (Equation I, v = 1).

unity is a better approximation of an observer's true
function and prevents digressions of the ML search rou­
tine (Watson & Pelli, 1983).

For each observer and each function, we determined the
best fitting parameters v and fl from a MATLAB imple­
mentation of a multivariate Neider-Meade simplex algo­
rithm to minimize the squared deviation ofeach observer's
data from the fit by Equation 1. For the 500-Hz tone, the

THRESHOLD ESTIMATES FROM
HUMAN OBSERVERS

Maximum-Likelihood Estimates
for MTD, I:!.f, and M

Fifty hypothesis psychometric functions generated by
Equation 1 constituted the set of hypotheses. The func­
tions had a slope parameter v = 1and a value offl that in­
creased geometrically (fli = ab i ) where a and b are con­
stants. The exact choice ofthese parameters is not critical,
but 40 to 60 hypotheses in the stimulus range are usually
sufficient. We first report on results for I:!.ITD discrimi­
nation. For I:!.ITDs, threshold parameters (at.707 proba­
bility ofa correct response) for the 50 hypothesis psycho-



tween trials according to ML rules (Green, 1990; Lam­
ing & Marsh, 1988; Watson & Pelli, 1983).

The first set ofbars in the upper panel ofFigure 3 shows
the average of 14 L1ITD threshold estimates for each ofthe
3 observers (open bars) and the mean for the 3 observers
(solid bar). These thresholds are similar to those reported
in the literature for a 500-Hz tone (Hershkowitz & Dur­
lach, 1969; Klumpp & Eady, 1956; Zwislocki & Feldman,
1956). The first set ofbars in the lower panel ofFigure 3
shows the standard error of threshold estimates. The re­
maining bars are described in the next section.

Next, we report on ML threshold estimates for human
observers in frequency- and duration-discrimination tasks.
For frequency discrimination, observers were instructed
to pick the interval with the higher pitch signal. The tone
in one interval had a frequency of3 log Hz (re 1 Hz), and
the tone in the other interval had a frequency of (3 + t:J.f)
log Hz. The value of t:J.franged from 0.00011 to 0.01115
(total frequency range 1000.26-1026 Hz) and was se­
lected according to ML rules. All tones were 300 msec
in duration and were presented to the left ear. For dura­
tion discrimination, observers were instructed to pick the
interval that carried the longer duration tone. In one in-
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Figure 3. Top panel shows lateralization thresholds for each
of3 subjects (open bars) and their means (solid bars) usingvar­
ious psychophysical procedures. ML, maximum likelihood;
2DIU,2-down I-up; CS, constant stimuli; 2IFC, two-interval
forced-choice; 4I2C, four-interval two-cue. The stimulus was a
400-msec, 500-Hz tone. The bottom panel shows the standard
error of threshold estimates for the same observers and condi­
tions.
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metric functions ranged from 0.6 to about 3.1 log usee
(re 1 Jlsec), which brackets the range of thresholds re­
ported in the literature (Henning, 1974; Klumpp & Eady,
1956). The inattention parameter f3 was 0.02, producing
an upper asymptote of 0.99.

Three normal-hearing observers (M.G., E.M., and A.N.)
whose ages ranged from 19 to 24 years served as sub­
jects. All had experience in lateralization tasks. Each ob­
server completed 14 runs of 30 trials. The stimulus was
the 400-msec, 500-Hz dichotic tone described in the pre­
vious section, and the design was 2IFe. The procedure
tracked the .92 probability ofa correct response (i.e., the
sweetpoint oflogistic functions; Green, 1990); however,
to allow comparison with other techniques, threshold
was defined as the.707 probability determined by inter­
polation on the psychometric function. Visual feedback
was provided after each trial. L1ITD varied adaptively be-

Figure 2. Top panel shows frequency-discrimination data;
lower panel shows duration-discrimination data. The various
symbols code either different subjects or different conditions
from different studies. In the lower panel, each + symbol repre­
sents a different stimulus type used in the Abel (1972) study (dif­
ferent stimulus bandwidths or levels). All data were originally
published in units of d'and were transformed here to proportion
correct. The asterisks indicate data from the present study ob­
tained with the maximum-likelihood method and are discussed in
the section on threshold estimates from human observers. The
solid curves are logistic (Equation I, v = 1).



terval, a I-kHz tone of t = 2.4771 log msec (re 1 msec)
duration was presented, and in the other interval, the tone
duration was (2.4771 + At) log msec (300 + At msec).
The 50 values ofAt ranged from 0.00188 to 0.15635 log
msec (1.3-130 msec) and were selected according to ML
rules.

For duration discrimination, the frequency of the tone
on each observation was randomized by 1% so that the
use of cues based on spectral differences corresponding
to different durations would be difficult. The level of the
tone on each observation was uniformly randomized by
2 dB to eliminate energy-based cues for At thresholds
less than 0.1139 log msec (Green, 1988, pp. 19-20). All
stimuli were presented to the left ear. Each of the seven
runs for each observer and condition consisted of20 tri­
als. Each observer completed both experiments in less
than 15 min. These results are shown as the asterisks in
Figure 2. Each asterisk represents the averaged data from
1 observer. The data fall within the range ofvalues from
the other studies (Abel, 1972; Creelman, 1962; Weir,
Jesteadt, & Green, 1976). The standard errors were also
quite small; for frequency discrimination, (Tlog Hz = 0.08,
0.12, 0.06, and for duration discrimination, (Tlog msec =
0.10,0.15,0.09.

Comparison With Other Psychophysical
Methods (..1ITD)

AITDs for a 500-Hz tone were also measured for the
same observers using the following psychophysical pro­
cedures: (1) the 2-down l-up adaptive procedure in a
2IFC design; (2) the CS method in 2IFC; (3) Condition A
in a 4-interval, 2-cue 2IFC; and (4) Condition B in a 4­
interval, 2-cue 2IFe.

The total number of trials for each method was 420;
each observer completed fourteen 30-trial runs for the
ML method and seven 6O-trial runs for the remaining
methods (the same observers were used in all methods).
For Method A (Levitt, 1971; Wetherill & Levitt, 1965),
all conditions were the same as for ML runs except for
the rules that determined the signal magnitude between
trials. Two successive correct responses resulted in a de­
crease in MTD by a fixed log usee stepsize, and one in­
correct response resulted in an increase in AITD by the
same stepsize.

The procedure tracks the.707 probability ofa correct
response, and therefore may be compared with our ML
estimates. A step size of 0.2 log usee was used up to the
fourth reversal and 0.1 log zzsec thereafter. The first four
reversals were discarded, and threshold estimates were
based on the average ofthe remaining reversals. Although
we have used the average of reversals to obtain an esti­
mate of threshold, other efficient rules of data summary
could have also been used for this purpose (Schlauch &
Rose, 1990; Watson & Fitzhugh, 1990). However, the pres­
ent goal was to compare methods and rules that are com­
monly used in hearing research.
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For the 2IFC CS method (B), after pilot tests, four val­
ues of AITD were selected (0.7, 1.0, 1.3, and 1.6 log
,usec) to cover a reasonable range of the observers' psy­
chometric functions. On each trial, all four values of
AITD had equal a priori probabilities of being used. At
the end of the seventh run, the proportion of correct re­
sponses for each AITD value was pooled across the seven
runs and transformed into z scores; from a weighted least
squares fit (Finney, 1971), threshold corresponding to .707
probability ofa correct response was then determined. For
these fits, the slope parameter v was taken to be unity,
consistent with results from the section on psychometric
functions.

The two other methods (C and D) were identical to
A and B, except that instead of the standard 2IFC, a
4-interval 2-cue 2IFC design was used. This design has
previously been used to measure AITD thresholds with
up-down procedures (Trahiotis & Bernstein, 1990); the
cuing intervals are presumed to facilitate discrimination
without affecting the forced-choice statistics. Method C
was similar to A except for the following. Four intervals
were used in which three of the intervals had a zero
MTD (diotic), and one interval carried the entire AITD
to be detected (instead ofAITD/2). The starting stimulus
level was 650 ,usec. The signal (nonzero lTD) was either
in the second or third interval. In effect, the first and
fourth intervals served as cues and the observers were to
pick the interval that differed from the other three, know­
ing that this was either Interval 2 or 3. Method D was
identical to B except that it was placed in the context of
the 4-interval 2-cue design.

Results are plotted in the remaining bars of Figure 3.
Thresholds are nearly the same for all procedures,
though there is a slight tendency for the CS method to
produce a higher value. A t test between estimates from
the CS methods and estimates from the other methods
was significant [t(13) = 3.13, p < .05]. The cuing para­
digm did not seem to help the discrimination task and
generally increased the variability of estimates, in addi­
tion to increasing the time per trial. The ML method pro­
duced the smallest standard error compared with the re­
maining methods [t(13) = 1.88, p < .05]. We also
compared the ML standard errors with only the 2-down
l-up, 2IFC (Condition A) and again found a statistically
significant difference [t(4) = 2.83, p < .025].

SIMULATIONS

Previous simulations have been used to compare the
ML method with the CS method (Watson & Fitzhugh,
1990), the PEST method (parameter estimation by se­
quential testing; Hall, 1981; Pentland, 1980), the 2-down
l-up adaptive procedure (Hall, 1981; Watson & Fitz­
hugh, 1990), and in forced-choice compared with yes-no
tasks (Green, 1993; King-Smith, Grigsby, Vingrys, Benes,
& Supowit, 1994; Madigan & Williams, 1987). Other fea-
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tures of the ML method that have been examined with
simulations include effects ofslope mismatches between
the assumed and true psychometric function (Emerson,
1984; Green, 1990; Madigan & Williams, 1987), effects
ofmomentary lapses in attention on performance (Green,
1990,1995; Hall, 1981; Madigan & Williams, 1987), of
stimulus-placement policy (Green, 1990; King-Smith
et aI., 1994), and of small-sample statistics on bias and
efficiency (Watson & Fitzhugh, 1990). For a recent re­
view ofvarious adaptive methods, see Treutwein (1995).

Two points from previous simulation are especially
relevant to the present study. First, ML estimators seem
to provide threshold values that are less variable than
those obtained from the 2-down l-up procedure (Watson
& Fitzhugh, 1990). Second, there is disagreement in the
literature as to the relative efficiency of ML and CS
methods. It is suggested, on the one hand, that the CS
method is more efficient than the ML (Simpson, 1988)
or adaptive staircase procedures (McKee et aI., 1985).
Watson and Fitzhugh (1990), on the other hand, have dis­
puted this suggestion by noting the realistic effects ofex­
perimenter uncertainty about threshold and showing that
with such uncertainty included in simulations, ML pro­
cedures are in fact more efficient than the CS method. To
further examine the relative efficiencies of the CS and
ML methods, we used about half as much experimenter
uncertainty in the following simulations as the Watson
and Fitzhugh study in favor of the CS method. This re­
duced uncertainty in stimulus placement should reduce
the variability of threshold estimates when measured
with the CS method.

In comparing the ML method with other procedures,
we chose methods and rules that are commonly used in
psychoacoustic research. These are the k-down I-up and
the CS methods (the same methods as used with human
subjects). In simulating the up-down procedure, we
elected to use the conventional average of levels at re­
versal points to estimate threshold because of the uni­
versal usage of this rule. As noted, more efficient rules
of data summary are available and should be considered
by researchers. For example, one may make ML esti­
mates at the end of the run from the track history
(Schlauch & Rose, 1990; Watson & Fitzhugh, 1990),
which has been shown to be more efficient and less bi­
ased than averaging of reversals. Nonetheless, most re­
searchers use the averaging rule, and because our goal
was to make comparisons with currently established psy­
chophysical methods, the averaging rule was used in the
following simulations.

Efficiency and the Ideal Sweat Factor
for Various Procedures

Taylor and Creelman (1967) have described a very
useful measure that allows comparison among tech­
niques that track different probabilities or that use dif­
ferent rules and numbers oftrials. They have defined the
empirical sweat factor (Semp) ofa procedure as the prod­
uct of the variance ofestimates and number of trials; that
is, Semp = nu2• They have defined the ideal sweat factor
as the binomial variance divided by the squared slope of
the psychometric function; that is, Sideal = pqIF'2. The ef­
ficiency ofa psychophysical procedure is 11 = Sideal ISemp•

We simulated runs for the ML method, the CS method,
and the k-down I-up procedure for k = 2 to 5. The simu­
lated observer had a .707 probability threshold of2.0 log
usee and the number of trials (n) was 60, except for k = 4
and 5, for which it was 80 to ensure a sufficient number of
reversals. For each condition, 1,000 runs were simulated.
At the end of each simulation, the standard deviation,
UlogjLsec, oflog-transformed thresholds was calculated. For
the CS method, four values of~ITD (1.75, 2.0, 2.25, and
2.5 log usee [4-dB stepsize]) were used to cover the effec­
tive range of the observer's psychometric function (these
values bracket probabilities between .62 and .94 for the
simulated observer). The U]ogjLsec ofestimates for this pro­
cedure was based on thresholds determined from a
weighted least squares fit (Finney, 1971) at the end ofeach
run with the slope parameter v fixed at unity. If the ob­
tained threshold was greater than twice the stepsize above
the .99 or below .51 probability on the observer's psycho­
metric function, threshold was taken as that limit. This
rule was adopted because the CS method occasionally
generates data that are insufficient to bound threshold
(Watson & Fitzhugh, 1990).

Although the stepsize between the four selected stimu­
lus levels in the CS method was 4 dB (0.2 log J1sec), we
also simulated other values (2,8, and 12 dB) and found lit­
tle difference in variability of estimates as a function of
stepsizes. Unlike adaptive methods, the experimenter's
uncertainty about threshold may have significant effects
on the performance of the CS method. Watson and
Fitzhugh (1990) simulated this uncertainty by maintaining
a constant stepsize between selected stimuli while, be­
tween runs, the mean of the stimulus levels was a Gauss­
ian random variable with a zero expected value and a stan­
dard deviation that was approximately half the range of
the psychometric function. Their psychometric functions
were quite steep (14 dB between .51 and .99 probabilities;
with a 6-dB uncertainty), whereas our psychometric func-

Table 1
Measures of Sweat Factor and Efficiency

CS k = 2 k = 3 k = 4 k = 5 M L

Sweat factor 4.32 2.91 1.38 1.10 2.10 0.77
Efficiency 0.28 0.42 0.47 0.47 0.23 0.57

Note--CS, constant stimuli; k, k-down l-up; ML, maximum likelihood.
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SUMMARY AND CONCLUSION

For Taylor and Creelman's efficiency measure bound by
zero and unity, HfI" is bound by +00 and zero, respectively.

ML methods may be applied to non intensive auditory
stimulus domains as long as the slope parameters (v in
Equation 1) from psychometric functions are calculated

(3)HfI" = -0.5 log, 1/.

1
• cs •• •• • •- 0 • •••• k=2 •

~
b- •• ,e • s •• k=3 b-

>- -1
, ,c. • II 0 • k=4 IJe ' • 0'E ''' Sc:.

k=5 0w /"" .-2
H . = log (.{21repqlnr' ML •mm 2 F'

20 100
Number of Trials

Figure 4. Entropy of different procedures determined from
simulations. CS, constant stimuli; k, k-down I-up procedure;
ML, maximum likelihood. The dashed line (Hmln) is minimum at­
tainable entropy; p and q = I - P are binomial probabilities, n is
number of trials per run, and F'is the slope of the logistic psy­
chometric function.

als, ML estimates are 1.3 bits more informative than es­
timates from the CS method. This value is very near the
1.5-bit difference (between QUEST and CS) reported by
Watson and Fitzhugh (1990) for n = 64. The up- down
method with k = 2 provides relatively little information
about threshold, but it provides more than the CS. An in­
teresting feature of the up-down method is that if n is
small, higher ks are in some cases less informative than
smaller ks; for example, compare the open square and tri­
angle for n = 60, or compare open circle (k = 5) with
other symbols when n = 80 or 100. On the other hand,
the rate of gain in information, dH/dn, is much greater
for k = 5, and by the time n ~ 120, the k = 5 rule pro­
vides as much information about threshold as k = 3 and
4. However, the need for such a large n, as we have noted,
would make k = 5 a less desirable choice.

Finally, it should be clear that the lower the efficiency
(1/)of a procedure, the greater is the loss of threshold in­
formation from the use ofthat method relative to an ideal
psychophysical procedure. This loss, which is the differ­
ence between the empirically measured and minimum
entropies,

information loss (bits) = HfI" = He - Hes«,

may be related to Taylor and Creelman's (1967) measure
ofefficiency. Substituting the appropriate definitions and
simplifying, the loss of information (in bits) from using
a nonoptimum method is

Entropy and Information Gain
The information gained (or lost) from a system can be

estimated from its entropy before and after a specified
process (Shannon, 1949). The entropy of a system is a
measure of its disorganization. For a Gaussian process,
the entropy in bits (Shannon, 1949, p. 56) is

H=log , (a--J2ne ). (2)

The usefulness of this measure for psychophysical theory
is that it characterizes a procedure and knowledge about
the distribution of thresholds in the strict definition of in­
formation (entropy, H), gain or loss of that information
(HfI,,), and rate ofgain or loss (dH/dn). Watson and Fitzhugh
(1990) have used this concept for evaluating the perfor­
mance of psychophysical procedures and have shown that
the Quest ML procedure (Watson & Pelli, 1983) is about
1.5bits more informative than the CS method by the time n
reaches 64. Watson and Fitzhugh assumed that the distrib­
ution of threshold estimates is approximately normal, and
to the extent that this assumption holds, Equation 2 is a
good estimate of the entropy ofeach method.

We define, in addition, Hmin as the minimum attainable
entropy by assuming that the well-known expression o:«=
v'pq/F' (Finney, 1971; Robbins & Monro, 1951; Taylor,
1971; Wetherill, 1966) is approximately Gaussian dis­
tributed for n ~ 20. 5 Figure 4 shows the empirically
measured entropy He for the various procedures and Hmin

for p = .92. Because the minimum entropy in Figure 4 is
a function of the tracking probability, Hmin will be dif­
ferent for the various procedures. However, since this
function is determined from the optimum tracking prob­
ability (Green, 1990), it is a lower bound on Hmin.

Clearly, for all n, the most information about thresh­
old is acquired from the ML method, which itself is ap­
proximately 0.5 bit less informative than ideal. By 60 tri-

tions are approximately 20 dB between .55 and .95 and
40 dB between .51 and .99. We assumed about half as
much uncertainty as Watson and Fitzhugh, in favor of the
CS method; a standard deviation of 10 dB, which is about
one fourth the range of the psychometric function.

None of the methods showed any significant bias in
threshold estimation. Sweat factors and efficiencies are
shown in Table 1. The CS method produced the largest
sweat factor and was the least efficient. The ML method
was the most efficient. As for the up-down method, k =
3 and 4 were more efficient than k = 2 and 5. This latter
observation for k = 5 is surprising because Sideal for this
case is quite small (i.e., Semp was large). It seems that the
poor efficiency for k = 5 may be related to the number
of trials (n = 80); when k is high, the procedure requires
a large n for efficient and unbiased tracking. When we
increased n to 140, the sweat factors became nearly the
same for k = 3, 4, and 5 and in fact smallest for k = 5
(1.00, 0.90, and 0.86, respectively). However, most ex­
perimenters prefer n < 100, and in such a case, k = 5
would probably not be a very practical alternative.
Kollmeier et al. (1988) and Schlauch and Rose (1990)
also reported better efficiency for k = 3 than for 2.
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on a logarithmic stimulus scale; for the three stimulus
domains examined, v = 1 is a reasonable value. Dis­
crimination thresholds measured by the ML method with
only 20 to 30 trials per run verified the accuracy of this
method for such tasks by producing thresholds similar to
those reported in the literature.

Data from the same human observers show that the ML
method produces threshold estimates similar to those
from the 2-down l-up and CS methods. The standard error
of threshold estimates were smallest for the ML method,
followed by the up-down procedure. These results with
human observers support the computer simulation results
of Watson and Fitzhugh (1990), who also found more ef­
ficient estimates for the ML method than for the 2-down
l-up and CS methods. Cued variants of the up-down and
CS methods, which have been suggested to produce more
stable estimates, were not very efficient.

Efficiency ofML estimates were compared in simula­
tions with k-down l-up rules for higher and more effi­
cient k > 2 rules (Kollmeier et aI., 1988; Saberi &
Green, 1996; Schlauch & Rose, 1990). Results showed a
standard deviation for ML estimates that was smaller
than all the up-down rules for both small and large num­
bers of trials per run (20 to 140); of the up-down rules,
k = 3 and 4 were more efficient than k = 2 and 5, and all
procedures were more efficient than the CS method.

In summary, we therefore recommend against the use
of the CS method unless the experimental apparatus and
setup prevent adaptively changing the stimulus level. If
k-down l-up procedures are to be used, it is best to use k
values of 3 or 4. The k = 2 case is a popular rule; how­
ever, it is less efficient than the higher k = 3 and 4 rules.
We also recommend avoiding the k = 5 rule; in spite of
the lower ideal sweat factor associated with its higher
tracking probability (87.1%), simulations show that the
procedure is inefficient unless large numbers oftrials are
used on each run (e.g., 120).

As an alternative to the k = 3 and 4 rules, the ML
method may be used to measure thresholds for noninten­
sive scales. Data from both human observers and simula­
tions show that this method produces more efficient re­
sults with fewer trials. The ML method does, of course,
require more restrictive assumptions than the k-down 1­
up rule; however, these assumptions may be verified if
the psychometric function has been characterized for that
task. In addition to higher efficiency, the rapid and unbi­
ased threshold estimation (with as few as 20 trials") is an­
other useful feature of the ML method. If a test popula­
tion requires rapid measurements, such as in clinical tests
(Laming & Marsh, 1988), or when large groups are to be
tested, the ML method allows this additional feature.
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NOTES

I. Intensive and nonintensive stimulus cues involve fundamentally
different neural processes (Evans, 1978; Jeffress, 1948; Licklider, 1959;
Smith, 1988; Stevens & Galanter, 1957). Intensity is assumed to be
coded by changes in neural discharge rate (i.e., rate-intensity functions;
Sachs & Kiang, 1974), whereas nonintensive stimuli are in many cases
differentiated in value by excitation ofdifferent neural populations (e.g.,
interaural delays; Carr & Konishi, 1990; Knudsen & Konishi, 1978). It
is important to exercise care in extending results from one to the other
class of auditory measurement.

2. Full descriptions of the maximum-likelihood procedure and im­
plementation rules are given in Watson and Pelli (1983), Laming and
Marsh (1988), and Green (1990).

3. The 1.7 constant in Equation I adjusts the logistic function in such
a way that it produces probability ranges nearly equal to that of the
Gaussian and Weibull functions, given the same threshold parameteru.
The slope parameter v represents an internal nonlinear transformation
ofthe stimulus scale and can generally be considered independent ofthe
psychometric model used to fit the data. Increasing the value of v in­
creases the slope of the log psychometric function similarly for the lo­
gistic (Equation I); Gaussian, <!>(xVIIi); and Weibull, W(x) = I - 0.5
exp( r x"!Ii), functions.
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and the largest error for n ~ 20 and p = .707 is 2% (Pitman, 1993,
p.103).

6. In simulations not reported here, we have verified the results of
Watson and Fitzhugh (1990) that the ML method produces unbiased
threshold estimates (within 0.5 dB) with as few as 20 trials.

876 SABERI AND GREEN

4. The measurement of psychometric functions and their slopes may
be affected by the measurement technique (Taylor,Forbes, & Creelman,
1983). It has been suggested that the presence of a serial correlation be­
tween responses on successive trials of a CS method produces more
variable or different estimates than do adaptive techniques. The slope
estimates of the present study were extremely stable across subjects;
nonetheless, one should be aware of possible effects of measurement
method on characterization of slope parameters.

5. How closely does P-binomial(n ~ 20,0.707) approximate the
Gaussian? Ifwe denote N(a to b) as the normal approximation with con­
tinuity correction to a binomial probability p(a to b), then the worst error
over all integers a and b with 0 :$ a :$ b :$ n is

W(n,p) = max
O~CI~bSn

IP(atob)-N(atob)1 ~ II-~,
IOvnpq




