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1 | INTRODUCTION

In an auditory signal-detection study, Hickok et al. (2015)
showed that a sinusoidally amplitude-modulated noise
can entrain the detection of a signal in steady-state noise
presented after termination of the entraining stimulus.
We use the term ‘forward entrainment’ to refer to this
and other similar phenomena in which the entrainment
process outlasts the entraining stimulus (Saberi &
Hickok, 2021, 2022). Sun et al. (2021) recently reported
the results of experiments in which they used stimuli

Forward entrainment refers to that part of the entrainment process that per-
sists after termination of an entraining stimulus. Hickok et al. (2015) reported
forward entrainment in signal detection that lasted for two post-stimulus
cycles. In a recent paper, Sun et al. (2021) reported new data which suggested
an absence of entrainment effects (Eur. J. Neurosci, 1-18, doi.org/10.1111/
ejn.15367). Here we show that when Sun et al.’s data are analysed using unbi-
ased detection-theoretic measures, a clear antiphasic bicyclic pattern of
entrainment is observed. We further show that the measure of entrainment
strength used by Sun et al., the normalized Fourier transform of performance
curves, is not only erroneously calculated but is also unreliable in estimating
entrainment strength due to signal-processing artifacts.

attention, periodicity, phase, psychophysics, signal detection

identical to those of Hickok et al. to investigate forward
entrainment in signal detection. Their main finding was
that while there was an inverse U-shape pattern in post-
stimulus performance, no bicyclic (M-shaped) pattern
was observed at the overall group level, although approxi-
mately a third of their subjects did show forward entrain-
ment but with variable phase alignment across subjects.
In what follows, we describe some of the methodological
differences as well as data-analysis dissimilarities
between Hickok et al. and Sun et al. which may help in
understanding their discrepant findings.

Abbreviations: AM, amplitude modulation; FA, false alarm; FFT, fast Fourier transform; FM, frequency modulation; SKE, signal-known-exactly;

SNR, signal-to-noise ratio.
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2 | ADETECTION THEORY
ANALYSIS

One of the main experimental design features in Hickok
et al. (2015) was the introduction of trial-by-trial level
uncertainty by randomly selecting the signal level from
one of five intensities. In their first experiment, Sun et al.
used only two signal levels. This is important because
Farahbod et al. (2020) have shown that level uncertainty
appears to be critical to observing forward entrainment,
at least in the signal-detection design used by Hickok
et al. (2015). Because of this difference in design (among
other methodological differences), Sun et al. referred to
their first experiment as a ‘conceptual replication’. Based
on Farahbod et al.’s (2020) finding on uncertainty, Sun
et al. then ran a second experiment which they referred
to as an ‘exact’ replication. However, even in this case,
there were nearly a half dozen methodological, proce-
dural and experimental design differences between their
exact replication and the original Hickok et al. (2015)
study. Some of these differences are outlined in the foot-
notes section.

The most critical difference between the two studies,
however, is in their data-analysis approach. In the main
part of their manuscript, Sun et al. used ‘hit rates’ as a
dependent measure, restricting their analysis only to ‘sig-
nal trials’ (trials that contained a tone to be detected) and
eliminating from analysis all no-signal trials. By

'Some of the methodological differences between Hickok et al. (2015)
and Sun et al. (2021) include the following: Sun et al. used a staircase
procedure to set signal levels individually for each subject (experiment
1), used practice runs prior to the actual experiments that exposed
subjects to high SNR levels, participants were restricted to a response
time window of 1.5 s, intertrial interval was randomized (between 1 and
2 s) and a pseudorandomized procedure was used in assignment of trial
types instead of a fully randomized design used by Hickok et al. (2015).
In their pseudorandomized design, they forced an equal number of
trials for signal and no-signal conditions (as well as an equal number of
trials per temporal position and per signal level). Psychophysicists
typically avoid use of pseudorandom designs largely because they
introduce serial dependencies near the end of runs that can affect
subject response strategy. An examination of the raw data of Sun et al.
(2021), which they have made publicly available (https://doi.org/10.
17617/3.5c¢), shows that such non-independence resulted in aggregation
of specific trial types, for example, ‘signal-present’ trials, at the end of
many run, for example, subject 205, run #18; subject 207, run #13; and
subject 213, run #7. This serial dependency can, for example, increase
the likelihood of FAs on runs in which the prior expectancy has
changed in favour of responding ‘yes’ near the end of a run (i.e., a
decision criterion shift). Subjects can pick up on these trends and
develop effective response strategies (same argument applies to signal
level and temporal positions). The authors state that balancing of trial
types was ‘particularly crucial to prevent participants from developing
response biases’. We argue that in fact such pseudorandomization
almost ensures development of response biases within a run and
especially near the end of a run.

1 Subject 205 (Sun et al., 2021)
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FIGURE 1 Hitand false-alarm rates for two subjects from Sun
et al. (2021). Subject 205 (top) has a higher averaged hit rate but
lower d’' than subject 221 (bottom) when false alarms are taken into
account in calculating an unbiased measure of performance.

excluding no-signal trials, Sun et al. effectively used half
as many trials as Hickok et al. who evaluated perfor-
mance using ‘proportion correct’ as the dependent mea-
sure. This latter measure includes both signal and no-
signal trials. Sun et al.’s reasoning for excluding no-signal
trials was to reduce ‘random response noise’. What they
refer to as ‘random noise’, however, is in reality a mea-
sure of false-alarm (FA) rate which is just as informative
as hit rate in evaluating performance. Exclusive reliance
on hit rates in a single-interval yes-no task is a critical
flaw that produces inaccurate results unless FAs are also
taken into account. In an extreme case, a subject could
simply respond ‘yes’ on every trial and get 100% hit rate
without attending to the stimulus. Use of ‘hit rate’ as a
dependent measure by itself is therefore both misleading
and biased. In fact, signal detection theory emerged origi-
nally in engineering and then extended to psychophysics
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in reaction to flaws inherent in measurements exclusively
based on hit rates (Green & Swets, 1966; Tanner &
Birdsall, 1958).

Figure 1 shows hit-rate data from Sun et al. (2021)
plotted individually for two subjects from their experi-
ment 2. Also included are their FA rates (not shown in
Sun et al.’s original paper). A cursory examination illus-
trates our concern. Subject 205 has an average hit rate of
0.87, and subject 221 has an average hit rate of 0.66. If we
use an unbiased measure of performance, such as the
detection index d’, it becomes clear that subject 221 is
actually significantly outperforming subject 205 in detect-
ing the tonal signal (d’ = 2.33 vs. 1.92). The problem of
course is that subject 205 has a liberal decision criterion
that results in a disproportionately large number of ‘yes’
responses (hence the high FA rates for this subject),
whereas subject 221 is much more strict (or careful) in
reporting ‘yes’, as evident from this subject’s very low FA
rates. This problem is also observed in the data of several
other subjects from Sun et al., for example subjects
202, 217 and 219 all have significantly lower hit rates, but
higher performance levels than subject 205 when evaluat-
ing performance using an unbiased measure (d').

2.1 | Nonlinear relationship between d’
and hit rate

Sun et al. (2021) state that FAs serve only to add noise to
measurements and imply that, if taken into account,
function as a scalar for performance. They consequently
claim that incorporating FAs into analysis will not affect
the shape of the d' curves relative to hit-rate curves.
There is, however, a statistical nonlinearity between d’
and hit (or FA) rates that alters performance curves in
precisely the direction that would diminish detection of
bicyclic patterns if based alone on hit rates instead of d’
(i.e., which takes into account both hit and FA rates).
This nonlinear relationship may be expressed as the
quantile function:

d' =@ '[P(Y|SN)]-®'[P(Y|N)] Pec(0,1) (1)

where ®! is the inverse cumulative Gaussian distribu-
tion, P(Y|SN) is the probability of responding ‘signal’
(or ‘yes’) on signal-plus-noise trials (hit rate) and P(Y|N)
is the probability of responding ‘signal’ on noise-alone
trials (FA rate). The subject’s decision is in fact based not
on characteristics of the signal-plus-noise trials alone
(as Sun et al. assume) but on the likelihood ratio:

l(x) _ e—O.S()%)Z/efo.S(x/u)2 (2)
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FIGURE 2 (a) Nonlinear relation between d’ and hit and FA
rates. (b) Small changes in hit rate may result in large changes in d’
(see text).

which is the ratio of the height of the probability density
function under the signal-plus-noise distribution (with
expected value ) for a given sensory observation (x) rel-
ative to that height for the noise-alone distribution. To
maximize detection performance, the observer’s decision
rule in a single-interval yes—no signal-detection task is

D=YiffI(x)> (3)

If the likelihood ratio is equal or greater than the
decision criterion (f), the subject responds ‘yes’ (there
was a ‘signal’); otherwise they respond that the observa-
tion was obtained from the noise-alone distribution and
will respond ‘no’. The position of the decision criterion
determines the degree to which the observer is biased in
their decision. Sun et al. incorrectly assume that subjects
base their decisions on the probability density associated
with the signal-plus-noise distribution instead of the like-
lihood ratio and the cumulative evidence across trials
under both distributions.

The nonlinear transform of d’ described in Equation 1
is plotted in Figure 2a as a joint function of hit and FA
rates. Figure 2b shows that small (even imperceptible)
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perturbation in hit rate can translate into significant
modulatory effects in d’ space (FA rate = 0.1). Although
we have shown extreme cases here, the point raised is
simply that use of hits rates without accounting for FAs
(even a constant FA rate) will, among other problems,
reduce the likelihood of detecting modulatory patterns in
performance. Furthermore, averaging hit-rate curves
across subjects, as Sun et al. have done, is misleading
because the averaging process applies a linear operant to
nonlinear space. A hit rate of 0.9 compared to 0.8 does
not represent the same difference in sensitivity as a hit
rate of 0.8 relative to 0.7, whereas differences in d’' are
normalized across the entire range of detection curves.
The plots shown in Figure 2b are for a fixed value of FA
(0.1). Different values of FA give rise to a family of non-
linear curves that define the relationship between d’ and
hit rates.

3 | REANALYSISOF SUNET AL.’S
DATA

To assess the effects of using a biased versus unbiased
measure on their results, we reanalysed the raw data of
Sun et al. (2021) using a detection-theoretic approach.
For each of 23 subjects, we measured d’ and proportion
correct at each temporal position.” We used the same sig-
nal level as that used for analysis by Sun et al. (2021) and
Hickok et al. (2015), i.e., signal-to-noise ratio (SNR)
labeled 2 (3 dB). The averaged curve for the 23 subjects is

*In the following analysis, we focus exclusively on their experiment

2 (‘exact’ replication). By convention, we assumed a small inattention
rate in setting a ceiling hit rate of 0.99 and a floor FA rate of 0.01
(Green, 1995; Hautus et al., 2021; Saberi & Green, 1997). This avoids the
practical problem of d’ = co when estimating performance in small
samples. For each combination of temporal position and signal level,
FA was determined from the raw data of Sun et al., which for each trial
included a designation of signal temporal position and level, as well as
whether or not a signal was presented on that trial (i.e., the same
procedure used by Sun et al. to generate their fig. S5). This allowed
independent estimates of FAs at each temporal position. In their
original manuscript, which Sun et al. graciously shared with us, only
hit-rate measurements were made. The peer review history of their
paper, made publically available by the European Journal of
Neuroscience (https://publons.com/publon/10.1111/ejn.15367), shows
that the reviewers cautioned against this approach. In spite of these
cautions, the authors maintained hit rates as the basis of their primary
analysis, largely dismissing use of FAs in calculating d’ as just adding
noise to the data. In the final version of their paper, the authors, to their
credit, do show cursory measurements using d's, but this analysis is
incomplete, failing to take the extra step of reporting the averaged d’
curve that shows a bicyclic pattern (our Figure 3a) and failing to
conduct the necessary statistical analyses that would have confirmed an
antiphasic dip in performance (see also our critique of their
‘modulation strength’ measurements).
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FIGURE 3 (a)Data from Sun et al. (2021) plotted as

proportion correct and as an unbiased index of detectability (d")
instead of hit rates averaged across 23 subjects. Note the antiphasic
dip at temporal position 5. (b) d’ and proportion correct for the
same 23 subjects at optimum SNR. (c) Data from Hickok et al.
(2015)

shown in Figure 3a as detection index d’ and as propor-
tion correct.® A reasonably bicyclic (M-shaped) pattern of
performance is observed when an unbiased measure d’ is
used instead of ‘hit rates’, with a dip at temporal position
5 which is precisely antiphasic to the expected modula-
tion peak. A similar, though less prominent, M-shaped
pattern is observed for proportion correct.

A repeated-measures analysis of variance (ANOVA)
on the individual-subject d’s of Figure 3a shows a highly

3For clarity of presentation, error bars have been excluded from this
figure. However, these error bars are shown in Figure S1 as d’ and
proportion-correct data plotted in separate panels.
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significant effect of temporal position (F(8, 176) = 2.85,
p = 0.005; 7> =0.12). Post hoc paired-samples ¢t tests
(one-tailed) showed significant differences between tem-
poral positions 5 (dip) and 8 (right peak) (#(22) = 2.31,
p = 0.015), a near-significant difference between tempo-
ral positions 4 (left peak) and 5 (dip) (#22) = 1.69,
p = 0.054), and as expected, no significant difference
between the two peaks at temporal positions 4 and 8 (¢
(22) =0.21, p = 0.42). There was no significant differ-
ence between the three dips at positions 1, 5 and 9 (F
(2, 44) = 0.39, p = 0.682). Omitting just a single outlier
subject from analysis and repeating the same statistical
analyses on the remaining 22 subjects confirmed a bicy-
clic pattern with a significant main effect of temporal
position (F(8, 168) = 3.35, p = 0.001), significant differ-
ence between temporal positions 4 (left peak) and 5 (dip)
(#(21) = 2.41, p = 0.013), significant difference between
positions 5 (dip) and 8 (right peak) (#(21)= 2.95,
p = 0.004) and no significant difference between the two
peaks at positions 4 and 8 (#(21) = 0.031, p = 0.49). There
was also no significant difference between the three dips
at positions 1, 5 and 9 when analysing the data of these
22 subjects (F(2, 42) = 0.23, p = 0.796).*

In light of the large intersubject variability reported
by Sun et al., with some subjects averaging very low hit
rates (e.g., 25% for subject 218) and others very high (87%
for subject 205) at the same SNR, we wondered whether
some subjects may have performed more optimally at a
different SNR. Sun et al. measured performance at five
SNRs (spaced ~3 dB apart) but reported results only for a
single SNR. We therefore conducted additional analyses
on Sun et al.’s data in which we selected for each of
23 subjects the SNR that had generated the strongest
modulatory pattern. This approach proved to be quite
informative. Figure 3b shows that optimum SNR analysis
produces a deeper bicyclic pattern with a statistically sig-
nificant main effect (d' curves) (F(8, 176)=4.27,
p < 0.001), a highly significant difference between the left
peak and antiphasic dip (#(22) =2.87, p =0.004), a
highly significant difference between the right peak and
antiphasic dip (#(22) = 3.80, p < 0.001) and no significant
difference between the two peaks (#(22)=0.167,
p = 0.43).° For comparison, the data of Hickok et al.

“Similar results were found for statistical analysis of proportion-correct
data. The omitted subject (subject 204) generated an outlier pattern of
performance with an antiphasic dip that occurred one time point earlier
at temporal position 4 (i.e., phase advanced by a quarter of the
modulation phase). This phase drift created a counter-modulatory effect
when compared to the group-level pattern based on the 22 other
subjects.

>The mean optimum SNR level was 2.17, which is close to the original
SNR level of 2.

(2015) are plotted in Figure 3c as both d’ and proportion
correct.

3.1 | FArates and signal temporal
uncertainty

There is long-standing precedent in the literature for cal-
culating d’ for detection of probe signals randomly posi-
tioned in long-duration maskers (Bonino et al., 2013;
Egan et al., 1961; Leibold & Buss, 2020; Lowe &
Earle, 1969; Sorkin, 1965; Werner et al., 2009). Egan et al.
(1961), for example, in an influential paper on temporal
uncertainty, estimated d's from hit and FA rates in a
single-interval signal-detection task for a 0.5 s tone pre-
sented at random (uncertain) times in an 8 s masking
noise. FA rates were calculated from ‘yes’ responses to
the full 8 s no-signal trials. Sorkin (1965) measured d’ for
signals with stimulus parameters nearly identical to ours
(and Sun et al.’s), that is, a 50 ms 1 kHz tone signal pre-
sented at random times within a 600 ms noise window in
a single-interval yes-no task. FAs were calculated form
‘yes’ responses during the 600 ms no-signal trials. Simi-
larly, Lowe and Earle (1969) measured d' in a single-
interval yes—no task from hit and FA rates for an 85 ms
1 kHz tone embedded at uncertain times within a 4s
noise masker. More recently, Werner et al. (2009)
reported d’'s estimated from hit and FA rates for a 300 ms
1 kHz tone positioned at random times in 4 s masking
noise, Bonino et al. (2013) measured d’ for a 120 ms
1kHz tone occurring at uncertain times in a 600 ms
masking interval and Leibold and Buss (2020) reported
d's for a 1 s 1 kHz frequency modulated (FM) tone pre-
sented at random times in a 4 s speech masking stream.
What all these studies (and many others) have in com-
mon is that d’ was estimated for brief tone pulses using
FA rates calculated from maskers that were up to 20 times
the duration of the signal.

What, however, is the consequence of calculating FA
rates based on ‘yes’ responses drawn randomly (and
independently) from ‘no-signal’ trials and assigned to a
given temporal position if there is reason to believe that
FA rates are not uniform throughout the duration of the
extended noise masker? How will this affect the current
analysis? One of two cases must be true about the experi-
mental paradigm used by Hickok et al., 2015 (and Sun
et al.): (1) There is no modulatory effect of the entraining
stimulus (i.e., the null hypothesis stands) yielding a uni-
form FA rate across all nine temporal positions
(no matter which part of the long-duration noise a sub-
ject attends to during the noise-alone trials). That is, if we
were to somehow sort out those noise-alone trials on
which the subject was attending to (or near) temporal
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FIGURE 4 d's determined from Monte Carlo simulations

using different approaches to calculating FA rates: (1) ideal
observer, (2) averaged FA rates and (3) shuffled FA rates

position 1, from those trials on which they were attend-
ing to position 2, or any other position, and calculate FA
rates precisely associated with that temporal position,
then under this scenario, all FAs would have the same
expected value, and therefore, random assignment of no-
signal trials to different temporal positions would be
entirely valid. (2) There is a modulatory effect of the
entraining stimulus that results in subsequent modula-
tion of the variance of internal noise that limits signal
detection in a manner that would yield modulatory FA
rates as a function of the temporal position to which the
subject (unknown to the experimenter) was attending.
What then is the effect of random assignment of no-
signal trials to different temporal positions on d’ mea-
surements given a true modulatory pattern of internal
noise? We show below that such random assignment
serves only to diminish any M-shaped pattern of d’
curves; that is, it works against our hypothesis and in
favour of the null.

We conducted ideal-observer analysis for the signal-
known-exactly (SKE) model in which the observer has
complete information about the statistics of the signal
and noise (Green & Swets, 1966; Hautus et al., 2021). To
maximize performance, the observer attends to specific
(and correct) temporal positions during the signal trials
but also to that position during the noise-alone trials
(true for all nine positions). This, by definition, allows
accurate estimates of hit and FA rates for each of the nine
temporal positions. Figure 4 shows results of Monte Carlo

T Wiy L

simulations based on 10,000 runs under each of three
conditions: (1) randomly assigned ‘no-signal’ trials to
each temporal position in calculating FA rates
(i.e., shuffled FAs), (2) averaging results for all no-signal
trials to calculate one grand FA rate applied to all tempo-
ral positions in calculating d’s and (3) ideal assignment of
trials assuming that there is in fact a modulatory effect of
internal noise on FA rates.

We found that the only effect of random assignment
of no-signal trials to different temporal position is to
diminish the M-shaped pattern of d'. In other words, ran-
dom assignment works in favour of the null hypothesis
and only serves to reduce the likelihood of obtaining a
bicyclic pattern, and for this reason, its usage to confirm
bicyclic effects is valid from a statistical inference stand-
point.° The fact that even after random assignment of
‘no-signal’ trials we still observe M-shaped patterns sup-
ports the conclusion that signal detection follows bicyclic
modulation. It is noteworthy that random assignment of
no-signal trials in estimating FA rates and averaging
results from all no-signal trials generate similar results,
though the former produces slightly higher d’s, possibly
because averaging no-signal trials introduces correlation
across temporal positions whose differences we are trying
to estimate. We should add here that in calculating d's
for individual subjects, Sun et al. used the exact same
procedure as we have in estimating FA rates by assigning
‘no-signal’ trials to different temporal positions based on
their own trial-by-trial labelled data (see their fig. S5 and
our footnote 2). In fact, our analysis perfectly reproduced
their 23-panel d’ curves. Surprisingly, Sun et al. only pub-
lished the individual-subject d’ curves (23 panels in their
fig. S5) but not the averaged d' curve (as they had for hit
rates) which would have produced the same bicyclic
curve shown in our Figure 3a.

To confirm that the observed bicyclic pattern in Sun
et al’s data is not the result of a particular random
assignment of ‘no-signal’ trials to different temporal

®We considered a number of additional modulatory patterns of internal
noise for no-signal trials, including patterns derived from Sun et al.’s
hit-rate data (because observers would not have a priori knowledge
whether or not a signal will occur on a given trial), a flat (unmodulated)
pattern and a counter-modulatory pattern. In all cases, M-shaped
patterns diminished relative to that of the ideal observer. It is of interest
to note that the slight rightward slant to the M-shaped functions
generated by the ideal observer (Figure 4) is also seen in Sun et al.’s
data (Figure 3a,b). This may be related to the fact that the 50 ms tone is
slightly off-centre (by 25 ms) relative to the expected modulation phase.
The offset occurs because the tone’s onset (not its centre) is aligned with
each temporal position (i.e., onset of the first tone, not its centre, is
positioned at temporal position 1 where the entraining modulation
ends).
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FA rates shuffled 10,000 times

2.6
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Sun et al.
241 (2021)
©
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FIGURE 5 Result of shuffling FA rates across temporal
position separately for each of 23 subjects. Average of 10,000 such
shuffles

positions, we conducted simulations in which the FA rate
for each subject at each temporal position was randomly
assigned to a different temporal position for that subject,
resulting in perturbation of FA rates across the nine posi-
tions. The mean d' curve (all 23 subjects) for the opti-
mum SNR condition calculated from the average of
10,000 such reshuffling of FA rates is shown in Figure 5.
Results suggest that the bicyclic pattern is robust and not
a consequence of an aberrant pattern of random assign-
ment of no-signal trials.”

"It is also worth considering how entrainment may affect a listener’s
decision criterion. If true sensitivity remains constant but criterion
modulates, random assignment of no-signal trials could potentially
manifest as modulation of detection performance. This, however, is
unlikely because the listener’s decision criterion, which is often
considered to be a more deliberative process that builds over time,
would have to shift multiple times (4 to 8 times) within a span of
approximately half a second to generate the observed cyclic pattern of
performance. Although evidence exists for rapid capture of transient
attention (Dugué et al., 2016; Landau & Fries, 2012; VanRullen

et al., 2007), no prior study has shown such remarkably rapid shifts in
decision processes. Nonetheless, the contributions of rapid shifts in
criterion can be empirically estimated in future studies by presenting an
unequal proportion of ‘signal-present’ trials at different temporal
positions. For example, by assigning a larger number of ‘signal’ trials to
positions at which we have observed poorer performance (the expected
modulation peaks), the participant’s criterion should shift to a higher
rate of ‘yes’ responses at those temporal positions and conversely a
lower ‘yes’ response rate at positions where high performance had been
observed. This should flatten out the previously observed cyclic curve.
We would, however, predict no effect of rapid criterion shift on forward
entrainment, that is, that the cyclic patterns observed in Figure 3 will
likely be preserved.

4F
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________________________ D--O---
] A -nmmnnennnaeo
b e Ay mmmmm e eeeeeaa
T MEAN
0 (23 Subjects)
1 2 3 4

Averaged SNR Threshold (dB)

FIGURE 6 SNR thresholds at 3 d’ levels calculated from
psychometric functions averaged across 23 subjects from Sun et al.
(2021) for each of two ‘phase categories’ (peak-phase = red;

trough = blue). Note that the peak-phase category requires a
higher SNR threshold to reach a performance level (d') equivalent
to that for the trough category (envelope minima). Legend is shown
in upper left (sinusoid).

3.2 | Inferences from psychometric
functions

We conducted additional analyses on the raw data of Sun
et al. that made use of a larger portion of their data set.
Specifically, we measured performance at expected peak-
phase compared to trough (envelope minima) target posi-
tions based not just on a single SNR but on 3-point psy-
chometric functions that made simultaneous use of three
SNRs, tripling the number of trials from which thresh-
olds are estimated. First, for each subject, we measured d’
psychometric functions for three peak-phase and two
trough-phase temporal positions (see sinusoidal legend in
Figure 6). We then averaged these functions across the
23 subjects as well as within a ‘phase category’ (peak or
trough). This resulted in two 3-point psychometric func-
tions, one for each phase category. We defined SNR
threshold to be the point at which regression fits to each
psychometric function crossed a specific performance
level (e.g., d = 1, 2 or 3). Results shown in Figure 6 dem-
onstrate that when performance is measured in d’' units
using a larger data set comprising three SNRs, temporal
positions at the expected dips of the modulation envelope
consistently generate better performance than those at
the peaks for any of the three d' levels at which perfor-
mance was estimated (i.e., a higher SNR value is needed
to reach an equivalent d’ performance level).

Sun et al. also performed a supplemental analysis of
hit-rate curves in which they excluded subjects with high
FA rates. The goal was to eliminate ‘biased subjects’.
This, however, misinterprets the meaning of bias in
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signal-detection terms. Bias here does not mean high
FAs. A subject could be biased against responding ‘yes’
and generate very low FA rates. Evaluating performance
based on hit rates is biased because it only examines one
aspect of performance (hits) and excludes the comple-
mentary and inherently linked FA rates. One without the
other is a meaningless measure. In a single-interval yes-
no task, the only truly unbiased case occurs when the
subject places their decision criterion at precisely the
intersection of the internal ‘noise-alone’ and ‘signal-plus-
noise’ probability distributions where the likelihood ratio
is equal to unity (Green & Swets, 1966; Hautus
et al., 2021). This is of course unknown to the experi-
menter and inconsistent across subjects, so the only way
to ensure unbiased measurements is to combine hit and
FA rates in estimating the detection index d’. Sun et al.
further justify their use of hit rates as their main
approach by noting ‘One might argue that when partici-
pants’ overall hit rate is too high (clearly above threshold)
or too low (clearly below threshold), it reduces the likeli-
hood of observing fluctuations across different temporal
positions ... If there was any truth in this conjecture, one
would expect to observe a clearer presence of the entrain-
ment effect across participants whose overall hit rate is con-
fined within a narrower range, ... we computed a range-of-
interest, ... then selected ... participants whose overall hit
rate ... was enclosed in this range ... Results from this more
restricted analysis showed that the average modulation
strength of selected data is not significantly above zero’.
The flaw in this logic can easily be demonstrated by com-
paring the unbiased performance of subjects who have
similar hit rates. Subjects 222 and 223 have identical hit
rates of 0.55556 but very different d’s (2.68 vs. 1.97) with
subject 222 significantly outperforming subject 223 in
detecting the signal. Therefore, it is not methodologically
valid to attempt to equate subject performance based on
hit rates or to define a range-of-interest hit rate in order
to eliminate ‘biased’ subjects or outliers with markedly
different performance levels.

4 | ERRORSIN CALCULATING
ENTRAINMENT STRENGTH

A second major flaw in Sun et al’s analysis has to do
with the way in which they define the magnitude of
entrainment, what they refer to as ‘modulation strength’,
on which they base nearly all of their analysis and from
which they draw nearly all of their conclusions. This
measure, which is the normalized Fourier transform of
the performance curves (mostly hit-rate curves), is not
only erroneously calculated but is also unreliable in esti-
mating the strength of entrainment. In defining
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‘modulation strength’, Sun et al. note that they ‘per-
formed Fourier transforms of the curves of target detectabil-
ity (hit rates) for each participant. Given that each curve
only contained 9 temporal locations covering a duration of
667 ms, a Fourier transform of these data only provided
accurate power estimation at 4 frequencies, corresponding
to 1.33 Hz, 2.67 Hz, 4 Hz, and 5.33 Hz. Among these four
frequencies, we selected 2.67 Hz—which is closest to the
modulation rate (3 Hz) in the experiment—to be the fre-
quency of interest and measured its power for each partici-
pant’. In over 30 places in their paper they note the use
of 2.67 Hz as their base analysis. Their Fourier transform
calculations, however, are in error. In Fourier analysis,
the frequency component spacing is derived from the
inverse of the duration of the function whose spectrum is
to be calculated. There are 9 points at which performance
is measured, temporally spaced at a quarter of a cycle of
the 3 Hz sinusoid with successive points separated by
83.33 ms. The ‘duration’ of the performance curve is
equal to exactly 2 cycles at 3 Hz, or 666.66 ... ms. The fre-
quency component spacing is therefore 1/0.666 ... or
exactly 1.5 Hz. Thus, the fast Fourier transform (FFT)
contains energy precisely at 1.5, 3 and 4.5 Hz (not 1.33,
2.67, 4 and 5.33 Hz). In fact, the discrete Fourier trans-
form of this function has no energy at 2.67 Hz to be mea-
sured. Because the sampling rate of the performance
curves is 12 Hz (4 points per cycle at 3 full cycles per sec-
ond), the frequencies at which spectral energy can be
reliably measured have to be below the Nyquist limit to
avoid aliasing (i.e., half the sampling rate), and therefore,
measurements are restricted to component frequencies
below 6 Hz (1.5, 3 and 4.5 Hz). We trace the error made
by Sun et al. to miscalculating the performance curve
‘duration’. They appear to have assumed that 9 points
result in 9 quarter-cycle segments (instead of n — 1 seg-
ments). Each segment is 83.33 ms in duration, hence
9 x 83.33 = 750 ms, the inverse of which is 1/0.75 or
1.33 Hz component spacing which results in the errone-
ous estimates of 1.33, 2.67, 4 and 5.33 Hz.® This

8The theorem we describe here is that the Fourier transform of a time
series is a decomposition of that function into sinusoids that are
harmonics of the fundamental frequency of the time series being
analysed (Korner, 1989; Rabiner & Gold, 1975). The critical factor here
is duration, the inverse of which is the waveform’s fundamental
frequency independent of the number of samples or sampling rate (the
latter variables may be used to determine duration). This can be
intuitively demonstrated by considering a 1 s waveform whose FFT
(or DFT) has component spacing of 1 Hz (1/duration). At a sampling
rate of 12 Hz (used in the current analysis), sample points occur at the
start of the waveform (¢t = 0) and at s period spacing of a 3 Hz
modulator thereafter. The approach employed by Sun et al. would
misidentify the true duration of the waveform by appending a 13th
point (within the 1 s frame) to the time series in calculating a frequency
resolution of 12/13 or 0.92 Hz. This is because the method double
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mathematical error has important implications. For
example, Sun et al. report data and statistical analyses on
modulation at 5.33 Hz and draw inferences as to presence
of harmonic energy in a subset of their subjects and
absence of harmonic effects in modulation in most sub-
jects. This analysis is entirely invalid as the correct rate of
modulation on which they have based their analysis is
6 Hz, which falls precisely on the Nyquist (folding) fre-
quency, and hence, the waveform for which they have
measured modulation strength cannot be unambiguously
reconstructed at the frequency of interest due to signal
aliasing.

Separate from this mathematical error, there is a
more fundamental concern with using the Fourier trans-
form to estimate ‘modulation strength’, one that Farah-
bod et al. (2020) had previously cautioned about. When
using very brief signals, such as the 2 cycle waveform
associated with behavioural performance curves, the
duration of the waveform itself (i.e., the analysis win-
dow), regardless of the shape of the waveform within that
window, will enhance energy at some regions of the spec-
trum and diminish energy at others. This can confound
‘modulation strength’ measurements. Theoretically, a
2 cycle sinusoid is generated by multiplying an infinitely
long sine wave with a rectangular (boxcar) window in
the time domain. The spectrum of such a waveform is
the convolution of the spectra of the infinitely long sinu-
soid (a vertical line with zero bandwidth) with that of the
rectangular window (the well-known sinc function). The
sinc function has zero-crossings in the magnitude spec-
trum at the inverse of the window’s duration (Rabiner &
Gold, 1975). The sinusoid’s frequency and the width of
the temporal window constraining that sinusoid jointly
determine the position of these zero-crossings in the
spectrum. The effects of the sinc function on the spec-
trum can constructively or destructively alter the ampli-
tude of frequency components used to measure
‘modulation strength’ (see Figure S2). Furthermore, for
very brief sinusoidal pulses, the starting phase itself
affects the spectral profile of that waveform, and because
the duration of the analysis window is a subharmonic of
the modulation rate under study (a duration equal to

counts the final point as both the last point of the 1 s segment and the
first point of the second 1 s segment (had the waveform continued).
Consequently, the component spacing of 1.33 Hz estimated by Sun et al.
for 2 cycles of a 3 Hz sinusoid erroneously leads to an expected
waveform duration of 750 ms. This clearly is false because the exact
duration is 2/3 (2 cycles of a 3 Hz modulator) generating the correct
spacing of 3/2 or 1.5 Hz (1/duration). For long-duration waveforms
(typical in auditory research), a single sample-point error out of tens of
thousands is insignificant, but for very brief temporal windows with
only a few points, one sample point is consequential and precision is
critical. [Correction added on 29 September 2022, after first online
publication: Footnote was corrected in this version. ]
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FIGURE 7 Potential flaws in using ‘modulation strength’ as a
measure of entrainment. The method is shown here to generate
weaker estimates at 3 Hz in response to a 3 Hz sinusoid than at

3 Hz in response to off-frequency sinusoids (2.67 and 9.33). Error
bars represent +1 standard deviation (see text and Figure S3 for
details).

exactly 2 cycles of modulation), by definition, spectral
energy will be generated at the expected modulation
rate.” These interactions may potentially produce false
positives or misses in identifying whether energy at a
given frequency component results from entrainment or
from signal-processing artifacts. For example, in our par-
adigm (and that of Sun et al.), a frequency of 2.67 Hz (the
value that Sun et al. erroneously calculated) or 9.3 Hz
(which is above the Nyquist limit) will generate ‘modula-
tion strength’ measurements at 3 Hz that are actually
stronger than that generated by a true 3 Hz sinusoid,
making such measurements potentially unreliable in esti-
mating entrainment (Figures 7 and S3). We therefore
caution against use of the discrete Fourier transform in
determining the strength of entrainment when analysing
very brief waveforms because their spectra are too
severely altered by the spectral profile of the rectangular
window that defines their duration.

What then is, in our opinion, a more appropriate
method for detecting forward entrainment in perfor-
mance curves? We have previously considered a number
of other measurement methods (e.g., FFT,

*We encountered this issue initially in Farahbod et al. (2020) where
forward entrainment was investigated as a function of modulation rates
from 2 to 32 Hz. Because in all cases the duration of the analysis
window was 2 cycles of the modulating rate under study (i.e., a
subharmonic of that rate), the length of the analysis window was a
scalar function of the modulation rate. This yielded spectral energy at

2 Hz when analysing entrainment to 2 Hz modulating noise and 32 Hz
when analysing entrainment to 32 Hz modulation. For this reason,
Farahbod et al. (2020) cautioned against use of FFTs as a method for
quantifying entrainment strength for very brief analysis windows.
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autocorrelation and cross-correlation with a single cycle
sinusoid as discussed in Farahbod et al., 2020), and others
have suggested a number of alternative methods based
on parametric regression-based methods (Zoefel
et al., 2019). We have come to the conclusion that the use
of parametric statistical models to determine overall
effects coupled with hypothesis-driven post hoc tests of
antiphasic (or other) effects is our preferred approach to
detection of psychophysical entrainment, at least when
considering the bicyclic antiphasic functions that we
have observed in several studies.

5 | ADDITIONAL
CONSIDERATIONS

There are a number of other observations about the find-
ings of Sun et al. that are worth considering here. Sun
et al. note that the methodological differences between
their two experiments (‘conceptual’ and ‘exact’ replica-
tion) are relatively minor and inconsequential. If this is
the case, then one has to explain several significant dif-
ferences in the results of these experiments. First, as they
acknowledge, the two experiments produced peak perfor-
mance at different temporal positions (time positions
5 and 6 in experiment 1 and positions 6 to 8 in experi-
ment 2). Second, the average starting phase of forward
entrainment, for the ~35% of subjects who showed
entrainment, was significantly different across the two
experiments. In their experiment 1, subjects had averaged
starting phases of 102° (0.6x rad), whereas those in their
experiment 2 had an average starting phase of 220°
(1.22n rad). Interestingly, the latter is less than a quarter
of a cycle (0.14 cycles) away from the antiphasic position
(270°, 1.5n) and approximately a 10th of a cycle away
from that reported by Hickok et al. (262°, 1.46x). Note
that the duration of the tonal signal (50 ms) is equivalent
to 0.15 cycles of modulation at 3 Hz, whereas the average
difference in starting phases of performance curves
between Hickok et al. (2015) and Sun et al. (2021) is 42°,
or 0.12 cycles at 3 Hz, less than the range of phases cov-
ered by the duration span of the 50 ms tone.

As mentioned above, a notable difference between
the findings of Hickok et al. (2015) and Sun et al. (2021)
is the significantly larger intersubject variability in the
latter study. Sun et al. contend that ‘larger cross-
participant variability is generally expected with increased
sample size’. Increasing subject sample size improves the
precision with which the population variance in perfor-
mance is estimated but has no systematic effect on the
comparative size of the variances of two samples if they
are unbiased estimators of the population variance. These
sample variances, however, will be different if the nature
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of the underlying populations from which they are sam-
pled are different. One potential population difference is
subject experience. Subjects in Hickok et al. (2015) were
highly experienced having previously participated in a
number of auditory psychophysical tasks (graduate stu-
dents and postdocs). Sun et al. do not report whether
their participants had extensive experience or were exper-
imentally naive (they used 47 subjects who completed
one or two experimental sessions). While we do not know
the level of prior psychophysical experience of their sub-
ject population, this may be a factor worth considering,
especially given new data from our lab that demonstrates
more variable patterns of performance for inexperienced
and perhaps less motivated subjects (Saberi &
Hickok, 2021).

An interesting finding reported by Sun et al. (2021) is
that ‘a subset of participants (~36%) exhibited the entrain-
ment effect in behavioral performance’ even when using
hit rates as a performance measure. Bauer et al. (2015)
similarly reported that 40 of their 140 subjects (28%)
showed forward entrainment in a pitch-discrimination
task. As noted earlier, if Sun et al.’s data are reanalysed
using d’, a bicyclic pattern with an antiphasic dip is
obtained at the full population level. Nonetheless, even
by their own measure of performance (hit rates), the find-
ing that a segment of the population does show the effect
and a segment does not is actually confirmation of the
existence of the effect in a subcategory of subjects and to
conclude that an absence of statistical significance at the
full sample population level is evidence against existence
of forward entrainment is misleading. There are several
auditory phenomena that are consistently observed in a
segment of normal-hearing populations and not in others
for reasons that may range from experience to genetics
(Assaneo et al., 2019; Chubb et al, 2013; Ho &
Chubb, 2020; Mednicoff et al., 2018).

As to where precisely should one expect to observe
the peaks and dips of performance curves in forward
entrainment, while the pattern of entrained activity for
simultaneous entrainment (in which the entraining and
entrained processes are concurrently active) may follow a
precise periodicity that mirrors that of the entraining
oscillator due to iterative phase resetting, in forward
entrainment, the oscillatory patterns will not necessarily
(and likely will not) have the periodicity precision of the
entraining oscillator. Performance curves in forward
entrainment are often not sinusoidal, they have sharp
peaks, the second peak is usually larger than the first, the
antiphasic dip is not as low as those associated with the
first and last temporal positions and the curves appear to
be phase modulated in which a drift of the second cycle
to a lower frequency may be observed (Farahbod
et al., 2020; Hickok et al., 2015; Saberi & Hickok, 2021).
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Evidence of a phase drift is also present in the visual
entrainment data of de Graaf et al. (2013; see their fig. 3).
Therefore, what one can say with certainty is that there is
a modulatory effect in performance after termination of
the entraining stimulus, but that the precise position of
peaks and dips (although consistent across listeners)
must be empirically measured given that there will likely
(and understandably) be a phase drift when the driving
modulator is removed and the system gradually reverts to
its default mode.

6 | CONCLUSIONS

Finally, we would also like to briefly comment on Sun
et al.’s speculation as to why there were contrasting find-
ings between their study and Hickok et al. (2015). They
attribute this to a number of potential factors, including
the details of the experimental environment, an acciden-
tal underrepresentation of listeners who do not exhibit
forward entrainment (note that even they report that 36%
of their subjects show entrainment) or subject-dependent
entrainment phases which would flatten out bicyclic
effects at the group level. They dismiss this latter explana-
tion, arguing that the previously reported subject-specific
phase dependency (Henry & Obleser, 2012) was observed
for FM sounds, whereas the maskers used in Hickok
et al. and Sun et al. were amplitude-modulated sounds
(AMs). However, there is significant evidence for FM-to-
AM conversion in the auditory periphery as the instanta-
neous frequency of an FM signal sweeps through the
passband of auditory filters (Henning, 1980; Hsieh
et al., 2010; Hsieh & Saberi, 2010; Saberi, 1998; Saberi &
Hafter, 1995). This conversion pattern is complex and
dependent on both the integration time constant of the
system and the relative position of an auditory filter to
that of the FM carrier. The induced-AM signal resulting
from a sinusoidal FM will have a rate that is twice that of
the FM at the output of a filter centred on the FM carrier
and match that of the FM rate if the sweep only passes
through the lower (or upper) skirt of an off-centre filter
(but not both). Off-frequency listening away from the
FM’s carrier frequency will therefore result in use of AM
cues equivalent to the entraining FM rate. Furthermore,
several subjects in the study by Henry and Obleser (2012)
show a clear antiphasic pattern of behavioural perfor-
mance relative to the entraining stimulus phase (their
figs 3 and S2), whereas others show an in-phase pattern
(or at a different phase). This may be partially related to
implicit subject-specific strategies in off-frequency listen-
ing at the output of a filter that is either above or below
the FM’s carrier frequency. Listening at the output of a
filter above the FM carrier when the instantaneous

frequency of the FM is at its lowest value (antiphasic)
will maximize SNR because the induced AM at the out-
put of that filter will be at its minimum amplitude. Off-
frequency listening at the output of a filter below the FM
carrier will generate the opposite pattern. Thus, there are
significant shared mechanisms in how the auditory sys-
tem processes FM and AM sounds and the subject-
specific phase dependency in entrainment reported for
FM sounds could have relevance to AM signal
processing.

Sun et al. further speculate on other potential factors
that may result in an absence of forward entrainment.
They suggest, citing Bauer et al. (2015), that when there
are conflicting spectrotemporal cues in the entrainment
process (as when the entraining stimulus and the signal
are not of the same stimulus class), one may fail to
observe forward entrainment. Sun et al. then note that
‘there is no direct correspondence between the spectral
content of the entraining signal (broadband noise) and
target stimulus (1 kHz tone)’ in their design or that of
Hickok et al. (2015). They conclude that it is therefore
unclear why an AM noise would trigger entrainment that
would facilitate the detection of a tone pulse
(i.e., different classes of sounds). Setting aside the fact
that the noise spectrum contains energy at the frequency
of the tone that it masks, what Sun et al. fail to recognize
is that the entraining AM noise, as suggested by Simon
and Wallace (2017), entrains against the noise that limits
signal detection. From this standpoint, the similarity in
spectral characteristics of the entrained and entraining
noise can facilitate better isolation of the target to be
detected during expected dips. Importantly, however, our
reanalysis of Sun et al.’s data using unbiased dependent
measures argues that appeal to such explanations is gen-
erally unnecessary as their study demonstrates forward
entrainment when appropriate dependent measures
are used.
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