SUPPLEMENTARY APPENDIX
TO “RISK AVERSION IN CONTESTS"

by Sterglos Skaperdas and Li Gan

In this Supplement we prove the results on Propositions not proven in the
main text or the Appendix; we state rigorously the conditions for existence
of pure-strategy equilibrium in sections II and IIl and prove that for

section II; and we include a few additional comments.

Before proving Proposition 2, we derive some other needed results.
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PROOF: (a) We just need to show that the function £(x) = —*_— is
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increasing. Note that f’(x) = (1~e *~Txe "X)/(1-¢ %)% =

(e™*-1-Tx)/(1-e" ™)%™ = 0 as required.
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{b} Similarly, let g(x} = xe " Then, it can be shown that
1-e”
g (x) = (e¥-1-Te™)/(*"-1)% < 0. "

PROOF OF PROPOSITION 2(a): First , let =B, and consider (x:,x:) such that
T, * * o 2, k% s s = . P .

ni(xl,xa}m né(x1’xa}_0' Defining y =x +3, letting {(by (1)) p yl/(y1+y2), and

substituting into (A3) with equality and its analogue for HZ, we obtain the

following unique (and symmetric) solution:
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By the proof of Propogition 1a, T, “ﬁ’ X, }J<0 and 1%2(%_,}%)<0 are,
L] *
respectively, equivalent to —p:1/ p: >B and ;bz/ga> r=f.
By (AB), both of these equations are equivalent to
1

—— >B <=> 201+ Ty > n(1-e"*") [where yr=x¥+3]

Yy

which is always true when msi. Thus, x: and x; in (AB) are local best
responges to each other. For {x:,x:) to be an equilibrium, the strategies
need to be global best responses. Suppose an ;1, other than XT, which is a
global best response to xz. There are two possible cases. (1) ;ie{O,Y).
Then, we would have ni(gl,xz) = 0. Since B=y and the payoff functions are
symmetric with xjmxz, we must also have nz(xz,;1)=6. But the solution to the
system “Z‘XZ';1)=° and ";(;1'X;} = 0 has the unique (symmetric) solution
described in (A5). Consequently, if ;i were at the interior it must coincide
with xtnx;. (ii) Either ;lﬁO or ;1=Y. If that were the case, and since x:
is a local maximum, there must be a point x;e(0,1) to the left (if ;lmo) of
x: or to its right (if ;1:Y) so that nl(xl,x;) attaing at least a local
minimum, and thus having n:(x;,x:) = 0. By an argument similar to that under
cage (1), Jjust above, x; must also equal x:, which is a local maximum.

Consequently, we have a contradiction for this case as well and, therefore,

x: is a global best response to x;. By an identical argument, x: is a global



best response to x: and, thus, (X:,X;) is an equilibrium,

Now, under (1) ni and nz are continuous functions of B8, 7, R and X,
(see A3). We can then use the implicit function theorem and show that the
best response functions are continuous in f and ¥. Since we have just found
an interior equilibrium for B=y, this continuity property of the best
response functions imply the existence of an interior equilibrium for ¥>8

when ¥ is sufficiently close to B.

PROOF OF PROPOSITION 2(b): At the interior equilibrium {x:,x;)
we have ni*zo and “2? =0, which imply, respectively, (see A4)

(AB2.) p1=B(pe”BT+ 1-p) where BmB/(lwe_BT)

¥T

{ABb) "Pzzf[(1~p)e_7T+p] where I'sy/(l-e °")

Dividing these two equations and then dividing both the numerator and the

denumerator by p, yields:
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where g=(1-p)/p [= (y:/yt)m where yfzx?+6i]. Suppose, contrary to what we

would like to prove, that the more risk averse agent puts more effort in

equilibrium (y:>yf). Then, we would have g= {y:/ytlm>1. Under (1), we also
- = vk uF o> % sy %) B < 3 - 3

have pI/( pz} yz/y1 (yz/yi) g since m=1. Since p1/( pz} is the

left-hand~side of (A7), we then have

B(e“BT+q)

F(qe—?T+1)

which is equivalent to:

(AB) re T o +(r-B)q - Be F' =0



Next, note that the positive solution to

{A9) re ¥ 22 +(r-B)z - Be P! =0 is

—(I'-B)+ sqrt{(r-3)2+4BFe“(B+v)T )

ore” T

By Lemma A2, (a), I'>B. Therefore

~(B+y)r]1/a 1/2

z < [4BTe s2re = [Be BT /re V2% 1
where the last ionequality follows by Lemma A2, (b). Now, (A8) and
(A2) imply:

r e 7 (q?-z%) + (I-B)(q-z)=0

Since, by lemma A2(a), I>B and I'e ¥L

>0, we must have g<z. Since z<1,
we then have g<l which contradicts our initial supposition of g>1.

* *
Thus, X > X, (yf > y;) and the less risk averse agent puts more effort in

equilibrium. »

PROOF OF PROPOSITION 3(a): It is straightforward to show that under

the CSF in (2) we have

(A10)  p = -p,,= {K%explk(x +x)1lexp(kx )-exp(kx )1}/ lexplkx )+exp(kx,)1®
which is negative if and only if x1<x2. Since P, and Py have opposite
signs, at least one of the conditions in Propostion i1 would always fail.
Consequently, by Proposition 1, an interior pure-strategy equilibrium cannot

exist for (2).

PROOF OF PROPOSITION 3(b): We will prove that X1xY is a best

response to x2=Y for agent 1; exactly the same steps can be used to
prove that Y is also a best response to Y for agent 2. First note that

n1(0,0)>0 is equivalent to: (see (A3))
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Thus, ni(Y,Y)=n2{0,0) > 0. Since, by supposition,
7Y, ¥) = n'(0,Y), x =Y is a best response to Y if there does not exist

x: «{0,Y} such that ni(x:,o) ani(Y,Y). Suppoze such an x: existed. Then,

we would have Hii(x:,o) s 0 and gf(%f,OJ = 0, (using {(A2’) with equality)

1 %oy L =BY=x ), =BT, % %
ull(xl,Y} = -e 3 7 (1-e Y P, plﬁ)

Note, by (Al0) and since x: <Y, that p:1>0. Since p?>0, we must have
n:1(x:,Y}>0 which is a contradiction. Hence, such x:e{O,Y} cannot exist and

Y is a best response to YV, =

To prove existence of pure-strategy equilibrium for the limited
liability contest (payoff functions in (8)-(7)), we need the following

condition (see also footnote #7):

(A12) p..p = p? [and, by symmetry, —pzz(lwp) = pz.}

11

PROPOSITION Al: Assume (A12). Then w'(1) is quasiconcave in %, for i=1,2



and a pure-strategy equilibrium exists,
PROOF: As we did in the Proof of Proposition la, we use Lemma Al
and, to show quasi-concavity of each agent’se payoff function in the agents’s
oun strategy, we just need to establish that m (1) =0 if = (1) =0 and
similarly for agent 2's payoff function.

Differentiation of 1's payoff function yields:

1 - - ¥
(A13) w (1) = p U~ pU

1 T "
{(A14) n11(1) ~p11U1" 2p1U1 P U1

If n:(l) = 0, then, by (Al3), we have Up, /p= U;. Using this

PP,

inequality in (Al4}), we obtain nil(l) s U { —2p1) + pU1". By

1
{A12), pllp/%_ = B and thus the first term in the right-hand gide of
this Iinequality is negative, whereas the second term is also negative gince

U;'< 0 and p>0. Therefore, we have nfl(l) = 0. |

PROPOSITION 8. Consider two situations with limited liability and identical
agents: One in which both agents have Von Neuman-Morgenstern utility
function U(+) and one in which both agents have Voﬁ Neuman—Morgenstern
utility function k{U{+)}., Assume a unique interior symmetric equilibrium in
both cases. Then, equilibrium effort will be higher when the itwo agents are

more risk averse.

PROOF: Denote by X" the equilibrium level of effort under U(+)} and by xk
the equilibrium effort under k(U{+)). Let r"(+) and r*(+) be the best

response functions under the two different utility functions. Clearly, we



have ri(xi) = xi for i = u,k. Since (xi,xi) is a unique equilibrium, (0,0)

cannot be an equilibrium, and thus we must have Pi{O) >0 for 1 = u,k.
Consequently, we must have
(A15) ri(x) > x for all %el0,x') and i = u,k

Along agent 1’s best response function we have

n:(ru(x},x;U} =pV - pu; =0 < plk(Ul) - pk’(Ul)U; = ni(ru(x),x;k(U))
where "U" and "k(U)" refer to the expected utility function used and with
the inequality following by (8). This inequality then implies that r (x) <
r¥(x) for all x.
Now, contrary to what we want to prove, suppose = x" Then, by (9)
and the inequality just derived, we have x* = r'(x*) < r¥(x¥*). But this

. k k, k k u X
contradicts ¥ = r {x ). Thus, we must have X > x as required. m]

To obtain a pure-strategy equilibrium in the contest in which the prize
is divisible, the following condition can be imposed on the sharing function

alp):

(A1) 0< alp) <1; &' (p) > 0; «"(p) =0
A stronger version of {Al12) is also needed:

(A17) p1150 and upzzso [Each agent’s probability of winning is concave

in the agent’s own effort.]

PROPOSITION A2: Consider the game with the payoff functions in (12)-{13) and
assume (A16)-(A17). Then for each i=1,2 ni{a) is concave in x1 and a
pure-strategy equilibrium exists.

{The proof is straightforward and is omitted.)



Note on sharing functions (section IIT):

For sharing rules other than the simple one we have discussed in the main
text, there are two issues of interest (but which are not rigorously
examined), Firsi, there is the issue of optimality of equilibrium efforis,
either from the agents’ perspective or from those who enjoy the benefits of
the efforts. From (13} it can be seen that, aside from the size of the prize
T, the factors influencing the size of equilibrium effort are «’(1/2) and the
derivatives of the CSF with respect to esach agent’s effort at a symmetric
point. Under (A2') the higher is the level of effort, the lower are the
derivatives of the CSF. Consequently, a higher o' (1/2}) would imply a higher
level of equilibrium effort by the contestants. Thus, other things being
equal, sharing rules with lower derivatives would be preferable from the
contestants’ point of view. An extreme case would be to follow the rule «(p)
= a where o is a constant. Then, putting zero effort would be an equilibrium
provided the constant @ is such that the threat points of both contestants
(either ni(0,0) or ui(0,0;l)) are smaller than their payoff when this sharing
rule is used.

The second issue of Interest is whelther o ls greater or less than 1/2 in
equilibrium. Axiomatic bargaining solutions and other bargaining games tend
to favor the less risk averse. o Our expectation is that sharing rules derived
from either the Nash or the Kalai-Smorodinsky solutions would favor the less

risk averée14 {(so that in equilibrium, given p=1/2, we would have «>1/2).

3 For the canonical setting see Roth (1878). For exceptions see OUsborne

{1885) and Roth and Rothblum (1882).

14 This expectation is partly based on the aforementioned results of

bargaining models and partly on our experimentation with specific parameter
values under {U) with w’'s ag the disegreement points. We have not been
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able to obtain analytical results even for this special case.




