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I. Impact of changes in evidence potency parameter α on equilibrium resource 
spending and welfare when assumptions 2 and 6 hold and the persuasion function is 
given by (17) 

Hence using (6), (17) and the parametrization in assumptions 2 and 6, the first order 
conditions with respect to 1R and 2R are: 
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Using total differentiation and Cramer’s rule, we get,  
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1 Throughout this appendix, we abbreviate i

i
i

i hRhhRh ′=′= )(,)(  and i
i hRh ′′=′′ )( for 2 ,1=i  for ease 

of exposition. 
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Intuitively, an increase in α tends to increase the net marginal benefit from resource spending 
for both players and has a tendency to increase both 1R and 2R . However while an increase in 

1R induces 2R to increase even further, the opposite is true for 1R as 2R increases.  Hence while 

0
*
2 >
αd

dR , the sign of 
αd

dR*
1 turns out to be ambiguous. 
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the above expression, while the first two terms are positive, the sign of the last term depends 
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1 RR < , then 21 hh ′>′ so that all three terms are positive leading to 

aggregate resource expenditures increasing with α . However, when *
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that the last term in the numerator is negative. Given this, the sign of 
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indeterminate.  

Using the definition of U, (6), (17) and the parametrizations in assumptions 2 and 6 we get 
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The sign of the first component ω)( 2*1* hh −  is in general indeterminate as it depends on 
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indeterminate.2  

II. Impact of changes in evidence asymmetry parameter ∆  on equilibrium resource 
spending and welfare when the persuasion function is given by (17) and assumptions 2 
and 6 hold. 

Using the first-order conditions given by (I.1) and (I.2) and applying total differentiation and 
Cramer’s rule, we get, 
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2 If 0>ω  and *
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1 RR > , then 0)( 2*1* >− ωhh  so that an increase in α tends to contribute towards an 

increase in aggregate welfare by increasing the win probability of the player with the higher stake. However 
since it also leads to an increase in at least Player 2’s resource expenses that by itself contributes towards 

reducing aggregate welfare. Further, since the sign of 
αd

dR*
1 is indeterminate, we cannot be sure of the overall 

impact of an increase in α on aggregate welfare. 
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Since 0>D , the sign of 
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other things on the levels of 1h and 2h and therefore is generally indeterminate. Accordingly, 
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When there is considerable asymmetry in equilibrium resource spending where *
1R is 

sufficiently higher than *
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1  unambiguously and so the impact on aggregate 

resources remains ambiguous. Analogously, when *
1R is sufficiently lower than *
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 To examine the impact on aggregate welfare, observe that from (I.1), (I.2) and (I.5) it 
follows that, 
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Since by definition, 10 * <≤ ih , for 2 ,1=i , it follows that 02 2*1*2*1* >−+ hhhh . Also from 
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 for 2 ,1=i

unambiguously, the sign of the expression in (II.3) is in general indeterminate. Note that the 
first component in (II.3) suggests that an increase in ∆  by itself tends to increase welfare 
when Player 1 has a higher stake ( 0>ω ) as it contributes to increasing her win probability. 
However, the consequent changes induced to *

1R and *
2R potentially confound this effect when 

at least one of the players increases her expenditure.  

III. Impact of changes in prize asymmetry on equilibrium resource spending and 
welfare when the persuasion function is given by (17) and Assumption 6 holds. 

With asymmetric stakes we need to consider two possibilities. One possibility is that Player 
1, who has the evidence advantage, also has the higher stake so that as per Assumption 2, 

0>ω  (Case 1). The other possibility is that Player 1 has a lower stake so that 0<ω (Case 2). 
We explore both the cases. 

Case 1  

Totally differentiating the first order conditions (as given by (I.1) and (I.2)) and applying 
Cramer’s rule, we get: 
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 To examine the impact of a change in ω  on aggregate welfare observe that from (I.1), 
(I.2) and (I.5) it follows that,  
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Notice that *
2

*
1

2*1*2*1* 2)()( pphhhh −=∆−∆−−∆+ αα . Hence as long as Player 1 is the 
favorite in equilibrium ( *

2
*

1 pp > ), an increase in ω  tends to increase aggregate welfare. 
However, the second component in (III.3) is always negative while the last component cannot 

be signed. Hence the overall sign of 
ωd

dU *

 is ambiguous. Similarly, when *
2

*
1 pp < , the 

combined effect of the first two components in (III.3) is negative but the sign of the last term 
cannot be determined a priori. Hence the impact of an increase in ω  on aggregate welfare 
cannot be determined unequivocally.  

Case 2 

For ease of exposition, we modify Assumption 2 as follows: 

Assumption 7: Let ϖ−= vv1 , ϖ+= vv2 where 0>v  and v<≤ϖ0 .  

Given the above parameterization, the first order conditions are given by, 
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By totally differentiating the above conditions and applying Cramer’s rule, we get, 
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Notice that the denominator in both the above expressions is the same and it is positive. 
Hence the sign of both (III.6) and (III.7) is determined by the numerator term in the 
respective expressions. By inspection, it is apparent that the numerator in (III.6) is negative 

so that 0
*
1 <
ϖd

dR . The numerator in (III.7) is given by 
ϖ

ϖ
ϖ −

′′∆+
−

′+
′′

−
v

hhv
hv

h 21

1

1 )(4
)(

4 . It 

follows from monotonicity and strict concavity of (.)h  that while the first term is positive, the 
second term is negative. Hence the numerator cannot be signed unambiguously and therefore 

the sign of 
ϖd

dR*
2  is indeterminate. Accordingly, the sign of 

ϖd
RRd )( *

2
*
1 +  is also indeterminate.  
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Firstly notice that the second component in the above expression is always positive since 

0>
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ϖ
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v
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dR . Further, *
2

*
1

2*1*2*1* 2)()( pphhhh −=∆−∆−+∆+ αα . Hence when 

Player 1 is the favorite in equilibrium ( *
2

*
1 pp > ), an increase in ϖ  tends to decrease 

aggregate welfare via the first component in (III.8). However the second component works 
towards reversing this effect while the last component cannot be signed. When *

2
*

1 pp < , the 
first two components in (III.8) tend to increase aggregate welfare but the sign of the last term 
cannot be determined a priori. Hence the impact of an increase in ϖ  on aggregate welfare 
cannot be determined unequivocally in either of these scenarios and therefore is generally 
ambiguous.  

IV. Corner equilibria cannot exist when (.)h  is given by (8) and ip  is given by either (1) 
or (17)  

Recall that for ip  given by either (1) or (17), iR  = 0 is strictly preferred to ii vR ≥  for any jR  

2 ,1, =ji , ji ≠ . Hence the only feasible corner solution in the strategy space 
{ }[ ]21,max ,0 vvRi ∈ is one where iR  = 0.   

 Next we demonstrate that when (.)h  is given by (8) and ip is given by (1) or (17), 

0* =iR cannot be the solution to maximization of iii
i RvRRpRRU −= ),(),( 2121  with respect to 

iR  for 2 ,1=i .  

Suppose that ip is given by (1). In this case, the expected payoffs to the players are given by, 
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Using (IV.1), we obtain the net marginal benefit from iR  for each player 2 ,1=i , as shown 
below.  
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Notice that the above net marginal benefit approaches ∞ as iR tends to 0. Hence each player 
is always induced to increase her expenditure beyond 0. From this it follows that 0* ≠iR when 
persuasion function is given by (1).  

Suppose now that ip  is given by the persuasion function (17) and assumptions 2 and 6 
also hold.  In this case, using (6), the expected payoffs to the players are given by: 
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Using (IV.3) and (IV.4), we examine the net marginal benefit from iR  2 ,1=i  to each player, 
beginning with the Player 1 as given by (IV.5).  
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For any given 1R , the lowest value (IV.5) can take is,  
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Notice that the above net marginal benefit approaches ∞ as 1R tends to 0. Hence for any 
given 2R , Player 1 is induced to increase her expenditure beyond 0. Hence 0*

1 =R cannot be 
an equilibrium.  

The net marginal benefit of Player 2 from 2R  is given by: 
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The lowest value (IV.7) assumes for any given 2R is: 
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Notice that the net marginal benefit as given by (IV.8) approaches ∞ as 2R tends to 0. Hence 
for any given 1R , Player 2 is always induced to increase her expenditure beyond 0. Hence 

0*
2 =R cannot be an equilibrium. 

Hence it is clear from this section that when (.)h  is given by (8), corner equilibria can be 
ruled out when ip  is given by either (1) or (17).  

  

 


