Discussion of Gilchrist and Zakrajšek: "Credit Risk and the Macroeconomy"

Eric T. Swanson

Economic Research Federal Reserve Bank of San Francisco

Conference on "Financial Shocks and the Real Economy" UC Davis April 16, 2010

Gilchrist, Zakrajšek, et al.:

- Gilchrist and Zakrajšek (2007 NBERWP)
- Gilchrist, Yankov, and Zakrajšek (2009 JME)
- Gilchrist, Ortiz, and Zakrajšek (2008)
- Gilchrist and Zakrajšek (2010)

Gilchrist, Zakrajšek, et al.:

- Gilchrist and Zakrajšek (2007 NBERWP)
- Gilchrist, Yankov, and Zakrajšek (2009 JME)
- Gilchrist, Ortiz, and Zakrajšek (2008)
- Gilchrist and Zakrajšek (2010)

This paper (and project as a whole) has two general goals:

- 1. Provide better measure of firms' borrowing costs
- 2. Measure effect of firms' borrowing costs on macroeconomy

Gilchrist, Zakrajšek, et al.:

- Gilchrist and Zakrajšek (2007 NBERWP)
- Gilchrist, Yankov, and Zakrajšek (2009 JME)
- Gilchrist, Ortiz, and Zakrajšek (2008)
- Gilchrist and Zakrajšek (2010)

This paper (and project as a whole) has two general goals:

- 1. Provide better measure of firms' borrowing costs
- 2. Measure effect of firms' borrowing costs on macroeconomy

Gilchrist, Zakrajšek, et al.:

- Gilchrist and Zakrajšek (2007 NBERWP)
- Gilchrist, Yankov, and Zakrajšek (2009 JME)
- Gilchrist, Ortiz, and Zakrajšek (2008)
- Gilchrist and Zakrajšek (2010)

This paper (and project as a whole) has two general goals:

- 1. Provide better measure of firms' borrowing costs
- 2. Measure effect of firms' borrowing costs on macroeconomy

background: principal-agent problem, deadweight loss, bankruptcy, monitoring, adverse selection, etc.

- mix of seniorities
- mix of maturities
- mix of coupon rates

- mix of seniorities
- mix of maturities
- mix of coupon rates
- unweighted or weighted average

- mix of seniorities
- mix of maturities
- mix of coupon rates
- unweighted or weighted average, "bums problem"

- mix of seniorities
- mix of maturities
- mix of coupon rates
- unweighted or weighted average, "bums problem"
- include callable bonds
- include Yankee bonds

- mix of seniorities
- mix of maturities
- mix of coupon rates
- unweighted or weighted average, "bums problem"
- include callable bonds
- include Yankee bonds
- credit ratings may be stale, endogenous, smooth

Greek 2-yr. Bond Yield and S&P Credit Rating

Moody's Baa and Merrill Lynch BBB Indexes

The Gilchrist-Zakrajšek Spread

Computed as follows:

1. Restrict sample to nonfinancial senior unsecured bonds.

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

3. Define S_{it}^k = spread between yield-to-maturity on bond *k* for firm *i* relative to synthetic default-free benchmark.

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

3. Define S_{it}^k = spread between yield-to-maturity on bond *k* for firm *i* relative to synthetic default-free benchmark.

4. Define GZ spread = average of S_{it}^k .

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

3. Define S_{it}^k = spread between yield-to-maturity on bond *k* for firm *i* relative to synthetic default-free benchmark.

4. Define GZ spread = average of S_{it}^k .

Caveats:

- includes callable bonds
- wide mix of maturities (1 to 30 years)
- wide mix of default probabilities (0 to 40%)

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same promised cash flows.

3. Define S_{it}^k = spread between yield-to-maturity on bond *k* for firm *i* relative to synthetic default-free benchmark.

4. Define GZ spread = average of S_{it}^k .

Caveats:

- includes callable bonds
- wide mix of maturities (1 to 30 years)
- wide mix of default probabilities (0 to 40%)

1. Restrict sample to nonfinancial senior unsecured bonds.

2. For each bond, use Treasury yield curve to construct a synthetic default-free bond with same expected cash flows.

3. Define S_{it}^k = spread between yield-to-maturity on bond *k* for firm *i* relative to synthetic default-free benchmark.

4. Define GZ spread = average of S_{it}^k .

Caveats:

- includes callable bonds
- wide mix of maturities (1 to 30 years)
- wide mix of default probabilities (0 to 40%)

Going into Recession

maturity

EIIC I. SWAIISUII (FRDOF	Eric T.	Swanson (FRBSF
--------------------------	---------	-----------	-------

maturity

Eric T. Swanson (FRBSF)

maturity

maturity

Gürkaynak-Sack-Wright Zero Coupon Yield Curve

Eric T. Swanson (FRBSF)

Generalized Gürkaynak-Sack-Wright

Eric T. Swanson (FRBSF)

Discussion of Gilchrist-Zakrajšek

Generalized Gürkaynak-Sack-Wright

Eric T. Swanson (FRBSF)

Discussion of Gilchrist-Zakrajšek

Merton (1974) distance to default:

$$DD = \frac{\log(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V}$$

Merton (1974) distance to default:

$$DD = \frac{\log(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V}$$

Regress S_{it}^k on components of distance-to-default model:

$$\log S_{it}^{k} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^{k} + \epsilon_{it}^{k}$$

Merton (1974) distance to default:

$$DD = \frac{\log(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V}$$

Regress S_{it}^k on components of distance-to-default model:

$$\log S_{it}^{k} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^{k} + \epsilon_{it}^{k}$$

note: if bond *k* is callable, *x* includes level, slope, curvature, and volatility of Treasury yields.

Merton (1974) distance to default:

$$DD = \frac{\log(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V}$$

Regress S_{it}^k on components of distance-to-default model:

$$\log S_{it}^k = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k$$

note: if bond k is callable, x includes level, slope, curvature, and volatility of Treasury yields.

Excess bond premium: cross-sectional average of OLS residuals:

$$\mathsf{EBP}_t = \frac{1}{n_t} \sum_k \hat{\epsilon}_{it}^k$$

$$\log S_{it}^{k} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^{k} + \epsilon_{it}^{k}$$

Idea:

 S_{it}^{k} = expected losses from default + default risk premium

$$\log S_{it}^k = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k$$

Idea:

 S_{it}^{k} = expected losses from default + default risk premium

However, GZ expected default measure is very rough:

• why log S_{it}^k ?

$$\log S_{it}^{k} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^{k} + \epsilon_{it}^{k}$$

Idea:

 S_{it}^{k} = expected losses from default + default risk premium

However, GZ expected default measure is very rough:

- why log S_{it}^k ?
- Bharath-Shumway (2008 RFS)

$$\log S_{it}^{k} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^{k} + \epsilon_{it}^{k}$$

Idea:

 S_{it}^{k} = expected losses from default + default risk premium

However, GZ expected default measure is very rough:

- why log S_{it}^k ?
- Bharath-Shumway (2008 RFS)
- First-passage models (Black-Cox 1976, Duffie-Lando 2001, He-Xiong 2009)

$$\log S_{it}^k = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k$$

Idea:

 S_{it}^{k} = expected losses from default + default risk premium

However, GZ expected default measure is very rough:

- why log S_{it}^k ?
- Bharath-Shumway (2008 RFS)
- First-passage models (Black-Cox 1976, Duffie-Lando 2001, He-Xiong 2009)
- credit default swaps (Han-Zhou, 2008)
- hazard models, affine default models, ratings transition models

$$\log S_{it}^k = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^k + \epsilon_{it}^k$$

Idea:

 S_{it}^{k} = expected losses from default + default risk premium

However, GZ expected default measure is very rough:

- why log S_{it}^k ?
- Bharath-Shumway (2008 RFS)
- First-passage models (Black-Cox 1976, Duffie-Lando 2001, He-Xiong 2009)
- credit default swaps (Han-Zhou, 2008)
- hazard models, affine default models, ratings transition models

Moreover, default risk premium likely depends on V, σ_V , μ_V , x, ...

$$\log S_{it}^{k} = \beta_1 \log[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \log \sigma_{V_{i,t-1}} + \theta' x_{it}^{k} + \epsilon_{it}^{k}$$

Idea:

 S_{it}^{k} = expected losses from default + default risk premium

However, GZ expected default measure is very rough:

- why log S_{it}^k ?
- Bharath-Shumway (2008 RFS)
- First-passage models (Black-Cox 1976, Duffie-Lando 2001, He-Xiong 2009)
- credit default swaps (Han-Zhou, 2008)
- hazard models, affine default models, ratings transition models

Moreover, default risk premium likely depends on V, σ_V , μ_V , x, ...

Hard to interpret what GZ excess bond premium is exactly

Eric T. Swanson (FRBSF)

Excess Bond Premium in a VAR

Quarters after shock

Eric T. Swanson (FRBSF)

Excess bond premium is ordered last, but VAR contains three other financial market variables:

- stock prices
- federal funds rate
- 10-year Treasury yield

Excess bond premium is ordered last, but VAR contains three other financial market variables:

- stock prices
- federal funds rate
- 10-year Treasury yield

What does it mean to shock the EBP but not stock prices?

Excess bond premium is ordered last, but VAR contains three other financial market variables:

- stock prices
- federal funds rate
- 10-year Treasury yield

What does it mean to shock the EBP but not stock prices?

Questions about structural interpretation:

- risk premia are endogenous; what is the structural shock?
- is decrease in *I* due to tighter credit, or structural shock?

Excess bond premium is ordered last, but VAR contains three other financial market variables:

- stock prices
- federal funds rate
- 10-year Treasury yield

What does it mean to shock the EBP but not stock prices?

Questions about structural interpretation:

- risk premia are endogenous; what is the structural shock?
- is decrease in *I* due to tighter credit, or structural shock?

In Bernanke-Gertler-Gilchrist (1996), credit channel was an amplification mechanism. Not a shock.

Fig. 4. Output response - alternative shocks. All panels: time horizon in quarters.

Rudebusch-Sack-Swanson (2007)

Rudebusch-Sack-Swanson (2007)

- risk premium is endogenous
- may be positively or negatively correlated with output, depending on the structural shock

Eric T. Swanson (FRBSF)

GZ spread takes advantage of micro bond data, improves on Moody's, Merrill-Lynch indexes

GZ spread takes advantage of micro bond data, improves on Moody's, Merrill-Lynch indexes

• But there is still duration mismatch in GZ spread

GZ spread takes advantage of micro bond data, improves on Moody's, Merrill-Lynch indexes

- But there is still duration mismatch in GZ spread
- GZ could/should do more modeling of expected default
- GZ could/should do more zero-coupon analysis

GZ spread takes advantage of micro bond data, improves on Moody's, Merrill-Lynch indexes

- But there is still duration mismatch in GZ spread
- GZ could/should do more modeling of expected default
- GZ could/should do more zero-coupon analysis

Excess bond premium has high forecasting power

GZ spread takes advantage of micro bond data, improves on Moody's, Merrill-Lynch indexes

- But there is still duration mismatch in GZ spread
- GZ could/should do more modeling of expected default
- GZ could/should do more zero-coupon analysis

Excess bond premium has high forecasting power

- But what is it?
- Structural interpretation of shocks?
- VAR identification?