Keith Küster and Volker Wieland's

Insurance Policies for Monetary Policy in the Euro Area

discussion by:

Eric Swanson Federal Reserve Bank of San Francisco http://www.ericswanson.pro

> AEA Meetings, Boston January 7, 2006

Related Literature

Levin-Wieland-Williams (Taylor 1999)

Levin-Wieland-Williams (AER 2003)

Levin-Williams (JME 2003)

This paper:

Applies LWW (1999) to the Euro Area incorporating Bayesian and Minimax analysis from LW (2003)

Four Models for Policy Analysis

- 1. AW: "Area-Wide" model
- 2. CW-T: Coenen-Wieland (2003) with Taylor contracts
- 3. CW-F: Coenen-Wieland (2003) with Fuhrer-Moore (1995) contracts
- 4. SW: Smets-Wouters (2004) model

Models closed with Taylor-type monetary policy rule:

$$r_t = \rho r_{t-1} + \alpha \pi_t + \beta y_t$$

Rules evaluated using Loss function:

$$Var(\pi) + \lambda_y Var(y) + \lambda_{\Delta r} Var(\Delta r)$$

	CW-F rule evaluated in		CW-T rule evaluated in					
λ_y	CW-T	SW	AWM	CW-F	SW	AW		
0.0	.15	.16	.56	1.13	.03	∞		
0.5	.10	.11	.79	1.03	.09	.34		
1.0	.13	.19	.93	1.57	.13	.55		
	SW r	SW rule evaluated in		AW ru	AW rule evaluated in			
λ_y	CW-F	CW-T	AW	CW-F	CW-T	SW		
0.0	2.06	.04	∞	.63	.12	.23		
0.5	.72	.16	2.06	1.50	.12	.28		

Table 4: Robustness of Model-Specific Rules: Implied Inflation Premia

Implied Inflation (Variability) Premium relative to first-best simple rule for each model (in percentage points). The notation " ∞ " indicates that the implemented rule results in instability; the notation "ME" indicates that the implemented rule results in multiple equilibria. Shown is the case $\lambda_{\Delta r} = 0.5$ for loss function (2).

Note: rules compared using "implied inflation premia" (= Δ s.s. π) units

The preceding is a Levin-Williams-Wieland type of result:

Result #1: "Optimized model-specific rules are not robust"

Obvious question: What is the optimal policy taking into account uncertainty across models?

Küster-Wieland (also Levin-Williams (2003)):

1a) Bayesian: specify flat priors across four models

or

1b) Minimax: minimize worst-case loss across models

and

2) commit forever to α , β , ρ no matter what you might learn in the future

Obviously, first-best policy is to optimally filter every period and update policy every period.

This is hard, but not totally intractable:

Bayesian:

Cogley, Colacito, Sargent (2005) Svensson-Williams (2005) Swanson (2005)

Minimax:

Hansen-Sargent (2005)

Levin-Williams (2003) and Küster-Wieland is second-best (?) approximation — can you tell a story that would help to rationalize the method?

Results:

	Inflation (Variability) Premium					
λ_y	CW-F	CW-T	SW	AW		
0.0	.07	.10	.16	.12		
0.5	.09	.08	.14	.26		
1.0	.11	.12	.21	.32		

Table 5: Flat Bayesian Priors versus Model-Specific Simple Rules

This yields a "super"-Levin-Williams (2003) type of result:

Result #2: "Optimized Bayesian rules perform very well"

What is optimal policy rule with Minimax loss across models?

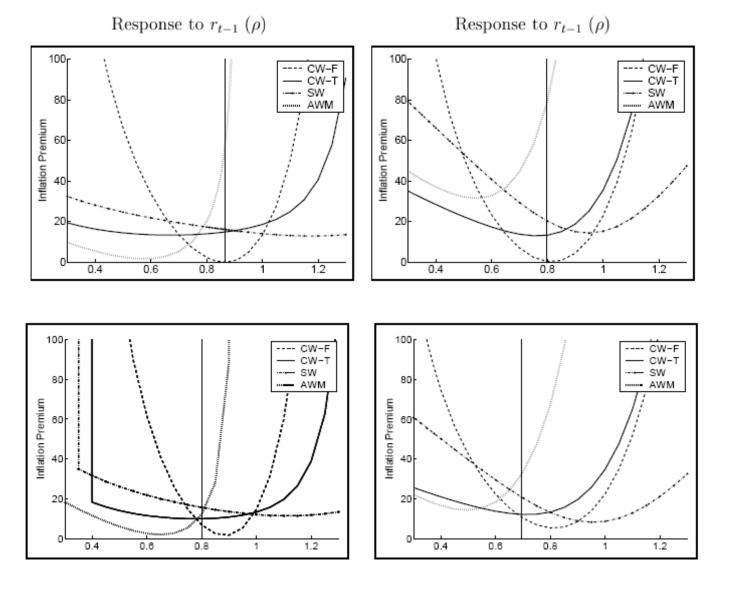
Note: Minimax is only *across* models, loss *within* each model is Bayesian:

$$\min_{\alpha,\beta,\rho} \max_{m \in M} \left\{ Var(\pi|m) + \lambda_{y} Var(y|m) + \lambda_{\Delta r} Var(\Delta r|m) \right\}$$

This "hybrid Minimax" loss unsatisfying in many ways:

- 1) policymakers have priors on parameters of any given model, but not across models—is there a story that would rationalize this?
- 2) can "back out" priors across models that would yield Minimax policy
 (because # models > # of first-order conditions) (only locally true, and not unique) (?)
- 3) ignoring policymaker learning seems particularly problematic here

Much better approach would be full Minimax (Hansen-Sargent) generalized to multiple reference models


λ_y	CW-F	CW-T	SW	AW
0.0	0	.15	.16	.57
0.5	0	.10	.11	.73
1.0	0	.13	.20	.77

Inflation (Variability) Premium

Table 6: Minimax Policy Relative to Model-Specific Rules

A Caveat: "Trembling Hand" Fault Tolerance

Bayesian:

The above yields a new result:

Result #3: "Optimal Minimax rules may not be trembling-hand-robust"

Additional extensions:

Ambiguity-averse policy:

$$\min\left\{(1-e)\sum_{m\in M}p_mL_m + e\max_{m\in M}L_m\right\}$$

Non-quadratic loss functions:

$$E|\pi|^{\xi} + \lambda_{y}E|y|^{\xi} + \lambda_{\Delta r}E|\Delta r|^{\xi}$$

Conclusions

- More attention should be directed toward computing *first-best* policy in the face of model uncertainty (e.g., Wieland (1995, JME 2000, JEDC 2000))
- Results in the paper are for policies that are very far from first-best Not clear how seriously we should take those results, given that:
 - policymakers will learn about the model over time
 - policymakers will revise their policies as new information comes in
 - true model may change over time (e.g., regime change)
- Implied Inflation Premium
- Trembling-Hand Fault Tolerance