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A flexible labor margin allows households to absorb shocks to asset values with changes in 
hours worked as well as changes in consumption. This ability to absorb shocks along both 
margins alters the household’s attitudes toward risk, as shown by Swanson (2012). In the 
present paper, I extend that analysis to the case of generalized recursive preferences, as 
in Epstein and Zin (1989) and Weil (1989), including multiplier preferences, as in Hansen 
and Sargent (2001). Understanding risk aversion for these preferences is important because 
they are a primary mechanism being used to bring macroeconomic models into closer 
agreement with asset prices. Traditional, fixed-labor measures of risk aversion show no 
stable relationship to the equity premium in a standard macroeconomic model, while the 
closed-form expressions I derive here match the equity premium closely.
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1. Introduction

A growing macro-finance literature focuses on bringing standard macroeconomic models into better agreement with 
basic asset pricing facts, such as the equity premium.2 In asset pricing models, a crucial parameter is risk aversion, the 
compensation that households require to hold a risky payoff. At the same time, a key feature of standard macroeconomic 
models is that households have some ability to vary their labor supply. A fundamental difficulty with this line of research, 
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Jesús Fernández-Villaverde, SungJun Huh, Ivan Jaccard, Dirk Krueger, Elmar Mertens, Adriano Rampini, Martin Schneider; and seminar participants at the 
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then, is that much of what is known about risk aversion has been derived under the assumption that household labor is 
exogenously fixed.3

Swanson (2012) addresses this problem when households have standard expected utility preferences. In the present 
paper, I extend that analysis to generalized recursive preferences, as in Epstein and Zin (1989) and Weil (1989), including 
multiplier preferences, as in Hansen and Sargent (2001) and Strzalecki (2011). These preferences are a primary mechanism 
being used to bring macroeconomic models into better agreement with asset prices, so understanding risk aversion in this 
framework is very important for the macro-finance field.4 In fact, there is no conventional wisdom as to what the formula 
for risk aversion should be for these preferences when labor supply can vary, with different authors using different ad hoc 
generalizations of the traditional, fixed-labor measure. In the present paper, I undertake a systematic and rigorous analysis 
of this important question.

Intuitively, a flexible labor margin allows households to absorb shocks to asset values with changes in hours worked as 
well as changes in consumption, which can greatly alter the household’s attitudes toward risk. For example, with expected 
utility and period utility function u(ct , lt) = c1−γ

t /(1 − γ ) − ηlt , the quantity −c u11/u1 = γ is often referred to as the 
household’s coefficient of relative risk aversion, but in fact the household is risk neutral with respect to gambles over asset 
values or wealth (Swanson, 2012). Intuitively, the household is indifferent at the margin between using labor or consump-
tion to absorb a shock to asset values, and the household in this example is clearly risk neutral with respect to gambles 
over hours.5 In the present paper, I rigorously derive closed-form expressions for wealth-gamble risk aversion in dynamic 
equilibrium models with generalized recursive preferences and arbitrary period utility function u, taking into account the 
effects of the household’s flexible labor margin, and I show that those effects can be significant.

I also show, theoretically and numerically, that risk premia on assets in a macroeconomic model are unrelated to tra-
ditional, fixed-labor measures of risk aversion unless labor is, in fact, fixed. By contrast, the closed-form expressions for 
wealth-gamble risk aversion I derive here match risk premia in a standard (flexible-labor) real business cycle model closely. 
Thus, taking the household’s labor margin into account is necessary for there to be a stable relationship between wealth-
gamble risk aversion and risk premia in the model.

1.1. Related literature

Arrow (1965) and Pratt (1964) define absolute and relative risk aversion, −u′′(c)/u′(c) and −c u′′(c)/u′(c), in terms of 
the household’s aversion to a fair gamble over a single good in a static, one-period model. When there are multiple goods, 
the literature has taken two different approaches to generalizing their definition. The first approach, which I follow in this 
paper, is to consider the household’s aversion to a fair gamble over money or wealth.6 This approach is taken by Stiglitz
(1969) in a static, multiple-good setting, and by Constantinides (1990), Campbell and Cochrane (1999), and others in a 
dynamic, single-good setting (in which the multiple goods are a single good consumed at different points in time). As 
shown in Swanson (2012) and in Section 3, below, this approach implies that the household’s coefficient of “wealth-gamble 
risk aversion” is related to the curvature of the household’s indirect utility function (in the static case) or value function (in 
the dynamic case).

The alternative approach, taken by Kihlstrom and Mirman (1974, 1981) and Nocetti and Smith (2011a, 2011b), defines a 
household’s attitudes toward risk solely as a function of its preferences over consumption and its total consumption bundle. 
Thus, other features of the economic environment that affect the household’s value function but not its utility function 
have no effect on the household’s attitudes toward risk in this approach. When there are multiple goods, the household’s 
Kihlstrom–Mirman attitudes toward risk are complicated and multi-dimensional, and cannot be summarized by a single 
“coefficient of risk aversion” except in very special cases. For example, in Kihlstrom and Mirman (1974), one agent cannot be 
said to be more or less risk averse than another unless both agents have identical ordinal preferences over all nonstochastic 
consumption bundles. Similarly, in Kihlstrom and Mirman (1981), increasing, constant, and decreasing relative risk aversion 
are only defined if the agent has preferences that are homothetic.

For clarity, I will use the phrase “wealth-gamble risk aversion” in this paper to emphasize that I am using the former 
definition of risk aversion and not the latter. The reason for focusing on wealth gambles is asset pricing: a household’s aver-
sion to a wealth gamble is always well-defined under the technical assumptions I make below (e.g., twice-differentiability) 
and is highly relevant for understanding the household’s aversion to holding a risky asset with monetary payoffs, such as 

3 For example, Arrow (1965) and Pratt (1964) define absolute and relative risk aversion, −u′′(c)/u′(c) and −c u′′(c)/u′(c), in a static model with a single 
consumption good (and no labor). Similarly, Epstein and Zin (1989) and Weil (1989) define risk aversion for generalized recursive preferences in a dynamic 
model without labor (or, equivalently, in which labor is fixed).

4 The vast majority of studies cited in footnote 2 take this approach, the exceptions being Boldrin et al. (2001), Rudebusch and Swanson (2008), and 
Palomino (2012). One of the main advantages of generalized recursive preferences is that they allow risk aversion to be modeled independently from the 
household’s other preference parameters, such as the intertemporal elasticity of substitution.

5 More generally, when u(ct , lt ) = c1−γ
t /(1 − γ ) − ηl1+χ

t /(1 + χ), the household’s wealth-gamble risk aversion equals (γ −1 + χ−1)−1, a combination of 
the parameters on the household’s consumption and labor margins, reflecting the fact that the household absorbs shocks along both margins.

6 Both Arrow (1965) and Pratt (1964) explicitly worked with a “utility function for money” (Pratt, 1964, p. 122) or wealth: “Let Y = wealth, U (Y ) =
total utility of wealth Y ” (Arrow, 1965, pp. 91–92), and defined risk aversion in terms of a fair gamble over money or wealth.
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a stock or bond.7 The Kihlstrom–Mirman (1974, 1981) approach is multi-dimensional in general and provides little insight 
into how much compensation a household would require to hold a risky asset with monetary payoffs, except in very special 
cases such as homothetic preferences.8

In addition to Swanson (2012), previous studies that consider how the household’s labor margin affects wealth-gamble 
risk aversion include Boldrin et al. (1997) and Uhlig (2007). Boldrin et al. consider some very simple endowment economies 
for which they can compute closed-form expressions for the value function, and hence wealth-gamble risk aversion. Uhlig
(2007) points out that when households have generalized recursive preferences, leisure affects asset prices because the 
value function V appears in the household’s stochastic discount factor, and V depends on leisure. My analysis here differs 
from theirs by deriving closed-form solutions for wealth-gamble risk aversion in dynamic equilibrium models in general, 
demonstrating the importance of the labor margin, and showing the tight link between wealth-gamble risk aversion and 
asset prices in these models.

There is also a large and growing body of empirical evidence that households vary their labor supply in response to 
financial shocks—i.e., that the wealth effect on labor supply is negative. Imbens et al. (2001) and Cesarini et al. (2017) find 
that households who win a prize in the lottery reduce their labor supply significantly, even for moderately-sized prizes. 
Cesarini et al. (2017) find that this adjustment takes place on both the intensive and extensive margins, and for spouses as 
well as lottery winners themselves. Coile and Levine (2009) document that older workers are less likely to retire after the 
stock market performs poorly, and Coronado and Perozek (2003) find that households retire earlier when the stock market 
performs well. Pencavel (1986) and Killingsworth and Heckman (1986) survey estimates of the wealth effect on labor supply 
and find it to be significantly negative.

The remainder of the paper proceeds as follows. Section 2 defines the dynamic equilibrium framework used in the 
analysis. Section 3 derives closed-form expressions for wealth-gamble risk aversion within this general framework. Section 4
demonstrates the close connection between wealth-gamble risk aversion and Lucas–Breeden asset prices in the model, both 
theoretically and with numerical examples. Section 5 verifies the accuracy of the closed-form expressions for wealth-gamble 
risk aversion using numerical methods. Section 6 extends the results to the case of balanced growth. Section 7 provides 
the corresponding expressions and additional discussion for the case of multiplier preferences. Section 8 discusses general 
implications and concludes. An Appendix provides details of proofs and numerical solutions that are outlined in the main 
text.

2. Dynamic equilibrium framework

2.1. Generalized recursive preferences and value function

Time is discrete and continues forever. At each time t , the household receives a utility flow u(ct, lt), where (ct, lt) ∈ � ⊆
R

2 denotes the household’s choice of consumption and hours worked in period t . I assume the period utility function u
satisfies the following regularity conditions:

Assumption 1. The function u : � → R is increasing in its first argument, decreasing in its second, twice-differentiable, and 
strictly concave.

The household faces a flow budget constraint in each period,

at+1 = (1 + rt)at + wtlt + dt − ct, (1)

and a no-Ponzi-scheme condition,

lim
T →∞

T∏
τ=t

(1 + rτ+1)
−1aT +1 ≥ 0, (2)

where at denotes beginning-of-period assets and wt , rt , and dt denote the real wage, real interest rate, and net transfer 
payments to the household, respectively. There is a finite-dimensional Markov state vector θt that is exogenous to the 
household and governs the processes for wt , rt , and dt . Before choosing (ct , lt) in each period t , the household observes θt

and hence wt , rt , and dt . The state vector and information set of the household’s optimization problem at each date t is 
thus (at; θt). Let X denote the domain of (at; θt), and � : X → � describe the set-valued correspondence of feasible choices 
for (ct, lt) for each given (at; θt).

7 The set of assets with monetary payoffs includes essentially all traded assets in the data, even “real” or “indexed” assets, since those assets’ payoffs are 
transacted in money. Even in the case of a real asset such as an oil well, whose payoffs are in barrels of crude, those payoffs are typically converted into 
money at a spot rate rather than consumed directly.

8 Note, however, that when the household has homothetic preferences and faces no constraints other than its budget constraint, the Kihlstrom–Mirman 
coefficient of risk aversion agrees with the coefficient of wealth-gamble risk aversion that I use in this paper—see Kihlstrom and Mirman (1974, Section 3.1).
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Let (ct , lt) ≡ {(cτ , lτ )}∞τ=t denote a state-contingent plan for household consumption and labor from time t onward, 
where the explicit state-dependence of the plan is suppressed to reduce notation. Following Epstein and Zin (1989) and 
Weil (1989), the household has preferences over state-contingent plans ordered by the recursive functional

Ṽ (ct , lt) = u(ct, lt) + β
[

Et Ṽ (ct+1, lt+1)1−α
]1/(1−α)

, (3)

where β ∈ (0, 1), α ∈ R, Et denotes the mathematical expectation conditional on the household’s information set at time t , 
and (ct+1, lt+1) denotes the state-contingent plan (ct , lt) from date t + 1 forward.9 Note that equation (3) has the same 
form as expected utility preferences, but with the expectation operator “twisted” and “untwisted” by the coefficient 1 − α. 
When α = 0, (3) reduces to the special case of expected utility. When α 	= 0, the intertemporal elasticity of substitution over 
deterministic consumption paths in (3) is the same as for expected utility, but the household’s risk aversion with respect to 
gambles over future utility flows is amplified (or attenuated) by the additional curvature parameter α.

The household’s “generalized value function” V : X → R is defined to be the maximized value of (3), subject to the 
budget constraint (1)–(2). V satisfies the recursive equation

V (at; θt) = max
(ct ,lt )∈�(at ;θt )

u(ct , lt) + β
(

Et V (at+1; θt+1)
1−α

)1/(1−α)
, (4)

where at+1 is given by (1). I discuss technical conditions for the existence and uniqueness of V shortly.
Note that many authors use an alternative notation for the generalized value function,

U (at; θt) = max
(ct ,lt )∈�(at ;θt )

[̃
u(ct, lt)

ρ + β
(

Et U (at+1; θt+1)
α̃
)ρ/α̃

]1/ρ

, (5)

where ρ ∈ R, ρ < 1. This specification follows Epstein and Zin’s (1989) original notation more closely, where those authors 
take ũ(ct , lt) = ct in their framework without labor. However, setting V = Uρ , u = ũρ , and α = 1 − α̃/ρ , this can be seen 
to correspond exactly to (4).10 Moreover, (4) has a much clearer relationship than (5) to standard dynamic programming 
results, regularity conditions, and first-order conditions: for example, (4) requires concavity of u while (5) requires concavity 
of ũρ , and the Benveniste–Scheinkman equation for (4) is the usual V 1 = (1 +rt)u1 rather than U1 = (1 +rt)U (1−ρ)/ρ ũρ−1ũ1. 
That is, the marginal value of wealth in (4) is just the usual marginal utility of consumption rather than something much 
more complicated.

I require a few technical conditions to ensure that (3)–(4) are well-defined. First, to avoid complex numbers:

Assumption 2. Either u : � → [ 0, ∞) or u : � → (−∞, 0 ].

In the latter case, it is natural to take Ṽ ≤ 0, V ≤ 0, and interpret (3) as

Ṽ (ct , lt) = u(ct, lt) − β
[

Et(−Ṽ (ct+1, lt+1))1−α
]1/(1−α)

, (3′)

and similarly for (4). Note that (5) requires this same restriction, for the same reasons.11

Technical conditions that ensure the existence and uniqueness of V are tangential to the main points of the present 
paper, so for simplicity I assume12:

Assumption 3. A solution V : X → R to the household’s generalized Bellman equation (4) exists and is unique, continuous, 
and concave.

The same technical conditions, plus Assumption 1, guarantee the existence of a unique optimal choice for (ct , lt) at 
each point in time, given (at; θt). Let c∗

t ≡ c∗(at; θt) and l∗t ≡ l∗(at; θt) denote the household’s optimal choices of ct and 
lt as functions of the state (at; θt). To avoid boundary solutions for c∗

t and l∗t that would make derivatives and first-order 
conditions problematic, I require these solutions to be interior:

9 The case α = 1 is understood to correspond to Ṽ (ct , lt ) = u(ct , lt ) + β exp
[

Et log Ṽ (ct+1, lt+1)
]
.

10 For the case ρ < 0, set V = −Uρ and u = −ũρ . The case ρ = 0 corresponds to multiplier preferences, which I consider in Section 7, below.
11 The assumption that either u ≥ 0 or u ≤ 0 is not very restrictive in practice. For example, restrictions can be placed on � or � and a constant added to 

u such that u never takes on negative (or positive) values. Alternatively, for local analysis around a steady state, the restriction is satisfied so long as u 	= 0
in steady state, since then u ≥ 0 or u ≤ 0 holds locally. Note that Assumption 2 is not required for multiplier preferences; see Section 7.
12 Stokey and Lucas (1989), Alvarez and Stokey (1998), and Rincón-Zapatero and Rodríguez-Palmero (2003) provide different sets of sufficient conditions 

that ensure Assumption 3 is satisfied for the case α = 0. Sufficient conditions for general α and general period utility functions u(ct , lt ) have not yet been 
derived in the literature, but there are proofs for important special cases. For example, Epstein and Zin (1989) prove the existence and uniqueness of V for 
general α when there is a single consumption good and no labor, which also applies here if consumption and leisure form an aggregate good, such as when 
u(ct , lt ) is Cobb–Douglas or CES. (In this case, we must include the household’s “full labor income” in its budget constraint, but Epstein and Zin (1991)
show how this can be handled within their framework.) Similarly, the results of Marinacci and Montrucchio (2010) for the case of a single consumption 
good also apply here when consumption and leisure form an aggregate good.
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Assumption 4. For any (at; θt) ∈ X , the household’s optimal choice (c∗
t , l∗t ) exists, is unique, and lies in the interior of 

�(at; θt).

Intuitively, Assumption 4 requires the partial derivatives of u to grow sufficiently large toward the boundary that only 
interior solutions for c∗

t and l∗t are optimal for any (at; θt) ∈ X .13

It follows that V can be written as

V (at; θt) = u(c∗
t , l∗t ) + β

(
Et V (a∗

t+1; θt+1)
1−α

)1/(1−α)
, (6)

where a∗
t+1 ≡ (1 + rt)at + wtl∗t + dt − c∗

t .
Assumptions 1–4 guarantee that V is continuously differentiable with respect to a and satisfies the Benveniste–

Scheinkman equation, but I will require slightly more than this below:

Assumption 5. For any (at; θt) in the interior of X , the second derivative of V with respect to its first argument, V 11(at; θt), 
exists.

Assumption 5 also implies differentiability of the optimal policy functions, c∗ and l∗ , with respect to at . Santos (1991)
provides relatively mild sufficient conditions for this assumption to be satisfied when α = 0; intuitively, u must be strongly 
concave.

2.2. Representative household and steady state assumptions

Up to this point, the analysis has focused on a single household in isolation, leaving the other households of the model 
and the production side of the economy unspecified. Implicitly, the other households and production sector jointly deter-
mine the process for θt (and hence wt , rt , and dt ) via general equilibrium, but the assumptions above and much of the 
analysis below does not depend on those details and can simply treat θt as an exogenous Markov process from the point 
of view of a single household. However, in order to move from more complicated, general expressions for wealth-gamble 
risk aversion to more concrete, closed-form expressions, I adopt three standard assumptions from the macroeconomics 
literature:14

Assumption 6. The household is infinitesimal.

Assumption 7. The household is representative.

Assumption 8. The model has a nonstochastic steady state, at which xt = xt+k for all k = 1, 2, . . . , and x ∈ {c, l, a, w, r, d, θ}.

Assumption 6 implies that an individual household’s choices for ct and lt have no effect on the aggregate quantities 
wt , rt , dt , and θt , determined in general equilibrium. Thus, Assumption 6 explicitly states an assumption that was already 
implicit in the framework above, in the statement that θt (and wt , rt and dt ) is exogenous to the household.

Assumption 7 is a restriction on the general equilibrium of the economy: that aggregate consumption demand and 
labor supply are determined by a household sector that has the same preferences as the given household. Assumption 7
implies that, when the economy is at the nonstochastic steady state, the given household will find it optimal to choose 
the steady-state values of c and l, given a and θ . (Throughout the text, a variable without a time subscript denotes its 
steady-state value).15

Finally, Assumption 8 is another restriction on the general equilibrium of the economy, in particular on how that equi-
librium behaves when there are no aggregate shocks and no aggregate uncertainty.

It’s important to note that Assumptions 7–8 do not prohibit offering an individual household a hypothetical gamble 
of the type described below. The steady state of the model serves only as a reference point around which the aggregate
variables w , r, d, and θ and the other households’ choices of c, l, and a can be predicted with certainty. This reference point 
is important because it is there that closed-form expressions for wealth-gamble risk aversion can be computed.

13 Interiority is a standard requirement for differentiability of the household’s optimal policy functions—see, e.g., Santos (1991). There are two main ways 
this assumption can be imposed: through Inada-type conditions on the period utility function u, or through restrictions on the domain X of the state 
variables at and θt . For example, if the household’s period utility function is Cobb–Douglas over consumption and leisure, u(ct , lt ) = cχ

t (1 − lt )1−χ , then 
the household’s optimal choices of ct and 1 − lt will be strictly positive by the Inada-type conditions. To ensure lt > 0 as well, the domain X must exclude 
cases where the household is so wealthy or wages are so low that the household would want to choose negative labor supply.
14 Alternative assumptions about the nature of the other households in the model or the production sector may also allow for closed-form expressions 

for wealth-gamble risk aversion. However, the assumptions used here are the most standard.
15 Let the exogenous state θt contain the variances of any shocks to the model, so that (a; θ) denotes the nonstochastic steady state, with the variances of 

any shocks (other than the hypothetical gamble described in the next section) set equal to zero; c(a; θ) corresponds to the household’s optimal consumption 
choice at the nonstochastic steady state, etc.
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Finally, many dynamic models do not have a steady state per se, but rather a balanced growth path, as in King et al.
(1988). The results below carry through essentially unchanged to the case of balanced growth. For ease of exposition, 
Sections 3–5 restrict attention to the case of a steady state, while Section 6 shows the adjustments required under the more 
general:

Assumption 8′ . The model has a balanced growth path that can be renormalized to a nonstochastic steady state after a suitable 
change of variables.

3. Wealth-gamble risk aversion

3.1. The coefficient of absolute wealth-gamble risk aversion

The household’s attitudes toward a risky wealth gamble at time t generally depend on the household’s state vector at 
time t , (at; θt). Given this state, I consider the household’s aversion to a hypothetical one-shot gamble in period t of the 
form

at+1 = (1 + rt)at + wtlt + dt − ct + σεt+1, (7)

where εt+1 is a random variable representing the gamble, with bounded support [ε, ε], mean zero, unit variance, indepen-
dent of θτ for all times τ , and independent of aτ , cτ , and lτ for all τ ≤ t . A few words about (7) are in order: First, the 
gamble is dated t + 1 to clarify that its outcome is not in the household’s information set at time t . Second, ct cannot be 
made the subject of the gamble without substantial modifications to the household’s optimization problem, because ct is a 
choice variable under control of the household at time t . However, (7) is clearly equivalent to a one-shot gamble over net 
transfers dt or asset returns rt , both of which are exogenous to the household.16 Indeed, thinking of the gamble as being 
over rt helps to illuminate the connection between (7) and the price of risky assets, which I will discuss further in Section 4. 
As shown there, the household’s aversion to the gamble in (7) is directly linked to the premium households require to hold 
risky assets.

Following Arrow (1965) and Pratt (1964), I ask what one-time fee μ the household would be willing to pay in period t
to avoid the gamble in (7):

at+1 = (1 + rt)at + wtlt + dt − ct − μ. (8)

Again following Arrow and Pratt, I define the quantity μ that makes the household just indifferent between (7) and (8), for 
infinitesimal σ and μ, to be the household’s coefficient of absolute wealth-gamble risk aversion. Formally, this corresponds 
to the following:

Definition 1. Let (at; θt) be an interior point of X . Let V̂ (at; θt; σ) denote the value function for the household’s optimization 
problem inclusive of the one-shot gamble (7), and let μ(at; θt; σ) denote the value of μ that satisfies V (at − μ

1+rt
; θt) =

V̂ (at; θt; σ). The household’s coefficient of absolute wealth-gamble risk aversion at (at; θt), denoted Ra(at; θt), is given by 
Ra(at; θt) = limσ→0 μ(at; θt; σ)/(σ 2/2).

In Definition 1, μ(at; θt; σ) denotes the household’s “willingness to pay” to avoid a one-shot gamble of size σ in (7). 
As in Arrow (1965) and Pratt (1964), Ra denotes the limit of the household’s willingness to pay per unit of variance as 
this variance becomes small. Note that Ra(at; θt) depends on the economic state because μ(at; θt; σ) depends on that state. 
Proposition 1 shows that V̂ (at; θt; σ), μ(at; θt; σ), and Ra(at; θt) in Definition 1 are well-defined and derives the expression 
for Ra(at; θt):

Proposition 1. Let (at; θt) be an interior point of X. Given Assumptions 1–6, V̂ (at; θt; σ), μ(at; θt; σ), and Ra(at; θt) exist and

Ra(at; θt) = −Et
[
V (a∗

t+1; θt+1)
−α V 11(a∗

t+1; θt+1) − α V (a∗
t+1; θt+1)

−α−1 V 1(a∗
t+1; θt+1)

2
]

Et V (a∗
t+1; θt+1)−α V 1(a∗

t+1; θt+1)
, (9)

where V 1 and V 11 denote the first and second partial derivatives of V with respect to its first argument. Given Assumptions 7–8, 
equation (9) can be evaluated at the nonstochastic steady state to yield:

Ra(a; θ) = −V 11(a; θ)

V 1(a; θ)
+ α

V 1(a; θ)

V (a; θ)
. (10)

16 In this case, the realized transfer dt + σεt+1, or asset return rt + σεt+1, would not be in the household’s time-t information set, (at ; θt ).
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Proof. See Appendix.17 �
Equation (9) is valid quite generally and requires only the technical Assumptions 1–5 on preferences and that θt is 

exogenous to the household. However, (9) is also quite complicated and can only be solved numerically in general; equa-
tion (10) is much simpler (and can be simplified further, below), which shows the benefits of assuming a representative 
agent nonstochastic steady state to use as a reference point.

Equation (10) can be decomposed into the sum of two components: the first term on the right-hand side is essentially 
intratemporal and does not depend on the parameter α, while the second term captures the household’s additional aversion 
to risky utility flows in the future and is closely related to α. For u, V ≥ 0, larger values of α imply higher levels of 
wealth-gamble risk aversion.18 For u, V ≤ 0, the opposite is true: lower values of α (especially negative values) imply higher 
levels of wealth-gamble risk aversion.

Definition 1 and Proposition 1 imply that wealth-gamble risk aversion is related to the curvature of the value function V
with respect to wealth rather than the curvature of period utility u with respect to consumption. Because the value function 
depends on the economic state θt (and, implicitly, on the stochastic process governing θt ), wealth-gamble risk aversion 
also depends on θt (and its stochastic process). This state-dependence is standard in the literature on wealth-gamble risk 
aversion: for example, Stiglitz (1969) defines risk aversion in terms of a fair gamble over money or wealth, with absolute 
and relative wealth-gamble risk aversion of −U yy/U y and −yU yy/U y , where the indirect utility function U “is a function 
of both [income] y and [prices] p: U = U (y, p). Arrow and Pratt assumed in effect that p is constant” (Stiglitz, 1969, 
footnote 11). In Stiglitz (1969), risk aversion clearly depends on the economic state—the price vector p—as well as the 
agent’s preferences and total consumption bundle. Constantinides (1990) and Campbell and Cochrane (1999) work in a 
dynamic framework, where the household’s aversion to money or wealth gambles implies that it is the value function that 
is relevant, as in the present paper: “I define the RRA coefficient in terms of an atemporal gamble that changes the current 
level of capital by the outcome of the gamble. . . R R A = −W V w w/V w . . . The RRA coefficient is a function of wealth and 
of the state variables x(t),” (Constantinides, 1990, p. 527); and “Risk aversion measures attitudes toward pure wealth bets 
and is therefore conventionally captured by the second partial derivative of the value function with respect to individual 
wealth. . . ” (Campbell and Cochrane, 1999, p. 243), and risk aversion “depends on individual wealth W and on aggregate 
variables that describe asset prices or investment opportunities. . . ” (Campbell and Cochrane, 1999, p. 244).19 Note that 
this state-dependence is not a feature of the Kihlstrom–Mirman (1974, 1981) approach to risk aversion mentioned in the 
Introduction; that approach defines the household’s attitudes toward risk in a multi-dimensional way that is independent 
of the economic state (and its stochastic process) and depends only on the household’s preferences and total consumption 
bundle.

Definition 1, above, is stated more formally than in Stiglitz (1969), Constantinides (1990), and Campbell and Cochrane
(1999), but the intuition is the same. The formalization in Definition 1 and Proposition 1 is important because there is 
no conventional wisdom for what the correct wealth-gamble risk aversion formula is in the case of generalized recursive 
preferences with multiple goods.

A practical difficulty with Definition 1 and Proposition 1 is that closed-form solutions for V do not exist in general, even 
for the simplest dynamic models with labor. I solve this problem by observing that V 1 and V 11 often can be computed even 
when closed-form solutions for V cannot be. For example, the Benveniste–Scheinkman equation,

V 1(at; θt) = (1 + rt) u1(c∗
t , l∗t ), (11)

states that the marginal value of a dollar of assets equals the marginal utility of consumption times 1 + rt (the interest 
rate appears here because beginning-of-period assets in the model generate income in period t).20 In (11), u1 is a known 
function. Although closed-form solutions for the functions c∗ and l∗ are not known in general, the points c∗

t and l∗t often 

17 When generalized recursive preferences are written in the form (5), the corresponding expressions are

Ra(at ; θt) = −Et
[
U (a∗

t+1; θt+1)α̃−1U11(a∗
t+1; θt+1) + (α̃ − 1)U (a∗

t+1; θt+1)α̃−2U1(a∗
t+1; θt+1)2

]
Et U (a∗

t+1; θt+1)α̃−1U1(a∗
t+1; θt+1)

and

Ra(a; θ) = −U11(a; θ)

U1(a; θ)
+ (1 − α̃)

U1(a; θ)

U (a; θ)
.

18 Sufficiently low or negative values of α imply risk-loving behavior, Ra(a; θ) < 0. The parameter α also determines the household’s preference for early 
vs. late resolution of uncertainty, as discussed in Kreps and Porteus (1978) and Epstein and Zin (1989). For u, V ≥ 0, the household prefers early resolution 
of uncertainty if α > 0, and late resolution if α < 0; for u, V ≤ 0, the household prefers early resolution if α < 0, and late resolution if α > 0. These 
conditions correspond to the criterion ̃α < ρ in (5), emphasized by Epstein and Zin (1989).
19 See also Farmer (1990) and Flavin and Nakagawa (2008), who use essentially the same definition and come to the same conclusions in their dynamic 

frameworks.
20 The Benveniste–Scheinkman equation (11) holds for generalized recursive preferences as well as expected utility. See the proof of Proposition 1 in the 

Appendix.
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are known—for example, when they are evaluated at the nonstochastic steady state reference point, c and l. Thus, we can 
compute V 1 at the nonstochastic steady state by evaluating (11) at that point. Similarly, we know V (a; θ) = u(c, l)/(1 − β)

at the nonstochastic steady state.
The second derivative V 11 can be computed by noting that (11) holds for general at ; hence we can differentiate it to 

yield:

V 11(at; θt) = (1 + rt)

[
u11(c∗

t , l∗t )
∂c∗

t

∂at
+ u12(c∗

t , l∗t )
∂l∗t
∂at

]
. (12)

Again, we can compute V 11 at the nonstochastic steady state reference point by evaluating the right-hand side of (12) at 
that point. All that remains is to find the derivatives ∂c∗

t /∂at and ∂l∗t /∂at .
I solve for ∂l∗t /∂at by differentiating the household’s intratemporal optimality condition,

−u2(c∗
t , l∗t ) = wt u1(c∗

t , l∗t ), (13)

with respect to at , and rearranging terms to yield:

∂l∗t
∂at

= −λt
∂c∗

t

∂at
, (14)

where

λt ≡ wt u11(c∗
t , l∗t ) + u12(c∗

t , l∗t )

u22(c∗
t , l∗t ) + wt u12(c∗

t , l∗t )
= u1(c∗

t , l∗t )u12(c∗
t , l∗t ) − u2(c∗

t , l∗t )u11(c∗
t , l∗t )

u1(c∗
t , l∗t )u22(c∗

t , l∗t ) − u2(c∗
t , l∗t )u12(c∗

t , l∗t )
. (15)

Note that, if consumption and leisure in period t are normal goods, then λt > 0, although I do not require this restriction 
below. It now only remains to solve for the derivative ∂c∗

t /∂at .
Intuitively, ∂c∗

t /∂at should not be too difficult to compute: it is just the household’s marginal propensity to consume 
today out of a change in assets, which can be deduced from the household’s Euler equation and budget constraint:

Lemma 2. Given Assumptions 1–8, the household’s marginal propensity to consume out of wealth, evaluated at the nonstochastic 
steady state, satisfies

∂c∗
t

∂at
= Et

∂c∗
t+1

∂at
= Et

∂c∗
t+k

∂at
, k = 1,2,3, . . . , (16)

and

∂c∗
t

∂at
= r

1 + wλ
. (17)

Proof. See Appendix.21 �
In other words, starting at the nonstochastic steady state, the household’s optimal change in consumption today in re-

sponse to an increase in assets must be the same as the expected change in consumption tomorrow, and the expected 
change in consumption at each future date t + k. Note that this equality does not follow from the steady-state assumption—
for example, in a model with internal habits, the individual household’s optimal consumption response to a change in assets 
increases gradually over time, even starting from steady state.

According to Lemma 2, the household’s optimal response to a unit increase in assets is to raise consumption in every 
period by the extra asset income, r (essentially the permanent income hypothesis), adjusted downward by the amount 
1 + wλ, which takes into account the household’s decrease in hours worked and labor income. Thus, Lemma 2 represents a 
modified permanent income hypothesis that takes into account the household’s labor margin.

We can now compute the household’s coefficient of absolute wealth-gamble risk aversion. Substituting (11), (12), (14), 
and (17) into (10) proves the following:

Proposition 3. Given Assumptions 1–8, the household’s coefficient of absolute wealth-gamble risk aversion, Ra(at; θt), evaluated at 
the nonstochastic steady state, satisfies

Ra(a; θ) = −u11 + λu12

u1

r

1 + wλ
+ α

r u1

u
, (18)

where u1 , u11 , and u12 denote the corresponding partial derivatives of u evaluated at the steady state (c, l), and λ is given by (15)
evaluated at steady state.

21 The notation ∂c∗
t+1 is taken to mean ∂c∗

t+1 da∗
t+1 = ∂c∗

t+1
[

1 + rt+1 + wt
∂l∗t − ∂c∗

t
]

, and analogously for ∂c∗
t+2 , ∂c∗

t+3 , etc.

∂at ∂at+1 dat ∂at+1 ∂at ∂at ∂at ∂at
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There are several features of Proposition 3 worth noting. First, when α = 0, equation (18) reduces to the expressions 
derived in Swanson (2012) for the case of expected utility. When α = 0 and labor is fixed (λ = 0), wealth-gamble risk 
aversion in (18) reduces further to −ru11/u1, which is just the usual Arrow–Pratt formula multiplied by r, a scaling factor 
that translates between units of wealth and current-period consumption.22 When u ≥ 0 everywhere, Ra is increasing in α, 
and when u ≤ 0, Ra is decreasing in α, as observed after Proposition 1. Multiplying u by a constant has no effect on Ra , 
but an additive translation of u does affect Ra if α 	= 0, because it changes the “twisted” expectation in equation (4).23

When λ 	= 0, households partially offset shocks to income through changes in hours worked. Even when consumption 
and labor are additively separable in u (so u12 = 0), c∗

t and labor supply are indirectly connected through the household’s 
budget constraint. When u12 	= 0, wealth-gamble risk aversion is further attenuated or amplified by the direct interaction 
between consumption and labor in utility, u12. Note, however, that regardless of the signs of λ and u12, Ra is always reduced 
when households can vary their labor supply:

Corollary 4.

Ra(a; θ) ≤ −ru11

u1
+ α

ru1

u
. (19)

Note that the right-hand side of (19) is the formula for wealth-gamble risk aversion when labor is exogenously fixed 
(λ = 0).

Proof. Substituting in for λ and w , the first term in (18) can be written as:

−ru11

u1

u11u22 − u2
12

u11u22 − 2 u2
u1

u11u12 + (u2
u1

)2
u2

11

= −ru11

u1

1

1 +
( u2
u1

u11 − u12
)2

u11u22 − u2
12

. (20)

Strict concavity of u implies u11u22 − u2
12 > 0, hence the right-hand side of (20) is less than or equal to −ru11/u1. �

The reduction in (20) can be substantial if the discriminant, u11u22 −u2
12, is small. The second term in (18)–(19), αru1/u, 

is not directly affected by a change from a fixed-labor to flexible-labor assumption, however.
I provide examples of wealth-gamble risk aversion calculations in Section 3.3, below, after first defining relative wealth-

gamble risk aversion.

3.2. The coefficient of relative wealth-gamble risk aversion

The distinction between absolute and relative wealth-gamble risk aversion lies in the size of the hypothetical gamble 
faced by the household. If the household faces a one-shot gamble of size At in period t ,

at+1 = (1 + rt)at + wtlt + dt − ct + Atσεt+1, (21)

or the household can pay a one-time fee Atμ in period t to avoid this gamble, then it follows from Proposition 1 that 
limσ→0 2μ(σ )/σ 2 for this gamble is given by

At Ra(at; θt). (22)

The natural definition of At , considered by Arrow (1965) and Pratt (1964), is the household’s wealth at time t . The gamble 
in (21) is then over a fraction of the household’s wealth and (22) is referred to as the household’s coefficient of relative 
wealth-gamble risk aversion.

In models with labor, however, total household wealth can be more difficult to define because of the presence of human 
capital. There are two natural definitions of human capital in these models, leading to two measures of household wealth 
At and hence two coefficients of relative wealth-gamble risk aversion (22). Note that the household’s financial assets at is 
not a good measure of wealth At , because at for an individual household may be zero or negative at some points in time.

22 A gamble over a lump sum of $x is equivalent here to a gamble over an annuity of $rx. Thus, even though V 11/V 1 differs from u11/u1 by a factor of r, 
this difference is exactly the same as a change from lump-sum to annuity units. Thus, the difference in scale is just one of units.

23 When generalized recursive preferences are written in the form (5), w = −ũ2 /̃u1, λ = wũ11 + ũ12

ũ22 + wũ12
, and

Ra(a; θ) =
[−ũ11 + λ̃u12

ũ1
+ (ρ − 1)

−ũ1 + λ̃u2

ũ

]
r

1 + wλ
+ (ρ − α̃)

r ũ1

ũ
.

This expression is somewhat more complicated than (18), owing to the more complicated derivatives of (5). When λ = 0 and ̃u = c, this reduces to 
(1 − α̃)/c, the traditional fixed-labor measure of absolute wealth-gamble risk aversion in Epstein and Zin (1989), Weil (1989), and Example 1, below.
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When the household’s time endowment is not well-defined, such as when u(ct , lt) = c1−γ
t /(1 − γ ) − ηl1+χ

t and no 
upper bound l̄ on lt is specified, or l̄ is specified but is arbitrary, it is most natural to define human capital as the present 
discounted value of labor income, wtl∗t . Equivalently, total household wealth At equals the present discounted value of 
consumption, which follows from the budget constraint (1)–(2). This leads to the following definition:

Definition 2. Let (at; θt) be an interior point of X . The household’s consumption-wealth coefficient of relative wealth-gamble 
risk aversion, denoted Rc(at; θt), is given by (22) with wealth At = Ac

t ≡ (1 + rt)
−1 Et

∑∞
τ=t mt,τ c∗

τ , the present discounted 
value of household consumption, where mt,τ denotes the stochastic discount factor 

∏τ−1
s=t ms+1, and ms+1 is given by (37).

The factor (1 + rt)
−1 in the definition expresses wealth Ac

t in beginning- rather than end-of-period-t units. In steady 
state, Ac = c/r and Rc(a; θ) is given by

Rc(a; θ) = −Ac V 11(a; θ)

V 1(a; θ)
+ α

Ac V 1(a; θ)

V (a; θ)
= −u11 + λu12

u1

c

1 + wλ
+ α

cu1

u
. (23)

Alternatively, when the household’s time endowment l̄ is well specified, it’s natural to define human capital as the 
present discounted value of the household’s time endowment, wtl̄. Equivalently, total household wealth At equals the 
present discounted value of consumption c∗

t plus leisure wt(l̄ − l∗t ), from (1)–(2). This corresponds to the following defi-
nition:

Definition 3. Let (at; θt) be an interior point of X . The household’s consumption-and-leisure-wealth coefficient of relative wealth-
gamble risk aversion, denoted Rcl(at; θt), is given by (22) with wealth At = Acl

t ≡ (1 + rt)
−1 Et

∑∞
τ=t mt,τ

(
c∗
τ + wτ (l̄ − l∗τ )

)
.

In steady state, Acl = (
c + w(l̄ − l)

)
/r, and

Rcl(a; θ) = −u11 + λu12

u1

c + w(l̄ − l)

1 + wλ
+ α

(
c + w(l̄ − l)

)
u1

u
. (24)

The closed-form expressions (23)–(24) are closely related, differing only by the ratio of the two gambles, (c + w(l̄ − l))/c.24

Assuming consumption and leisure are positive, |Rcl(at; θt)| > |Rc(at; θt)|, because the size of the gamble is larger.
For expositional purposes, define

Rfl(a; θ) ≡ −c u11

u1
+ α

c u1

u
, (25)

the coefficient of relative wealth-gamble risk aversion when labor is exogenously fixed (see Example 1, below). Rfl thus 
ignores the household’s ability to offset portfolio value shocks by varying labor supply. By Corollary 4, Rc(a; θ) ≤ Rfl(a; θ). 
However, Rcl(a; θ) may be greater or less than Rfl(a; θ), depending on the importance of leisure in the household’s total 
consumption bundle.

3.3. Examples

Example 1. Following Epstein and Zin (1989) and Weil (1989), consider the case where utility depends only on consumption,

u(ct, lt) = c1−γ
t

1 − γ
, (26)

with γ > 0, ct ≥ 0, and lt fixed exogenously at some l ∈ R for all t .25 Leisure is arbitrary in this example—any l̄ > l is 
observationally equivalent—so Rcl from Definition 3 is not well-defined, but from Definition 2 we have

Rc(a; θ) = −c u11

u1
+ α

c u1

u
= γ + α(1 − γ ) , (27)

which motivates the definition of Rfl above. Note that if the household’s generalized value function is written using (5)
rather than (4), with ρ ≡ 1 −γ , then 1 − α̃ = γ +α(1 −γ ) and Rc(a; θ) = 1 − α̃. This is the usual definition of risk aversion 
for generalized recursive preferences in an endowment economy.

24 Both Definitions 2 and 3 represent a proper generalization of the traditional definition of wealth-gamble risk aversion in an endowment economy. 
First, both definitions reduce to Rfl , defined below, when there is no labor in the model. Second, in steady state the household consumes exactly the 
flow of income from its wealth, r A, consistent with standard permanent income theory (where one must include the value of leisure w(l̄ − l) as part of 
consumption when the value of leisure is included in wealth).
25 In this example, Assumptions 1–8 need to be modified in a straightforward way to the one-dimensional case.
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Example 2. Following van Binsbergen et al. (2012), among others,26 a natural way to incorporate leisure into the preferences 
in (26) is to let

u(ct, lt) =
(
cχ

t (1 − lt)1−χ
)1−γ

1 − γ
, (28)

where γ > 0, γ 	= 1, χ ∈ (0, 1), ct > 0, and lt ∈ (0, 1).27 In this example, the household can be regarded as consuming 
a single, composite good in each period formed from the Cobb–Douglas aggregate of consumption and leisure. A natural 
definition of wealth-gamble risk aversion is thus γ +α(1 −γ ) = 1 − α̃, the coefficient of relative wealth-gamble risk aversion 
from Example 1 applied to the single, composite good. Indeed, this is the definition used by van Binsbergen et al. (2012). It 
is also the value implied by Definition 3 of the present paper, which includes the value of leisure in household wealth:

Rcl(a; θ) = −u11 + λu12

u1

c + w(1 − l)

1 + wλ
+ α

(
c + w(1 − l)

)
u1

u
= γ + α(1 − γ ) . (29)

The consumption-wealth coefficient Rc from Definition 2 excludes leisure from household wealth and thus is smaller 
than (29), because the gamble is smaller:

Rc(a; θ) = −u11 + λu12

u1

c

1 + wλ
+ α

c u1

u
= γχ + α(1 − γ )χ . (30)

In this example, the Cobb–Douglas functional form implies Rc(a; θ) = χ Rcl(a; θ).28 In the next section, I compare these two 
measures to the risk premium on an equity security in a standard macroeconomic model, solved numerically.

Note that neither (29) nor (30) corresponds to the fixed-labor measure of wealth-gamble risk aversion, Rfl(a; θ) =−c u11

u1
+ α

c u1

u
= (

1 − χ(1 − γ )
) + α(1 − γ ), a point emphasized by Swanson (2012) for the case of expected utility 

(α = 0). The fixed-labor measure Rfl ignores the household’s ability to offset portfolio value shocks by varying hours of 
work; as a result, Rfl does not generally correspond to the household’s willingness to hold a risky asset and is not closely 
related to the equilibrium prices of such assets, as I will show in the next section.

Finally, a number of other authors consider an alternative parameterization of (28),29

u(ct, lt) =
(
ct(1 − lt)ν

)1−γ

1 − γ
, (31)

where γ > 0, ν > 0, ct > 0, lt ∈ (0, 1), and γ > ν/(1 + ν) for concavity. For this parameterization, Rfl(a; θ) = γ +α(1 −γ ) =
1 − α̃, while

Rcl(a; θ) = (
1 − (1 − γ )(1 + ν)

) + α(1 − γ )(1 + ν) (32)

and

Rc(a; θ) = 1 − (1 − γ )(1 + ν)

1 + ν
+ α(1 − γ ) . (33)

These expressions follow from Definitions 2 and 3 directly, or from the fact that (31) can be rewritten as u(ct , lt) =(
c1/(1+ν)

t (1 − lt)ν/(1+ν)
)(1−γ )(1+ν)

.

Example 3. Following Rudebusch and Swanson (2009) and many authors in the New Keynesian DSGE literature,30 consider 
the additively separable period utility function

u(ct, lt) = c1−γ
t

1 − γ
− η

l1+χ
t

1 + χ
, (34)

26 See also Andreasen (2012a, 2012b), Gourio (2013), Colacito and Croce (2013), and Dew-Becker (2014).
27 When γ ∈ (0, 1), then u > 0, wealth-gamble risk aversion is increasing in α, and α > 0 corresponds to preferences that are more risk averse than 

expected utility. When γ > 1, then u < 0, wealth-gamble risk aversion is decreasing in α, and α < 0 corresponds to preferences that are more risk averse 
than expected utility.
28 That is, c/(c + w(1 − l)

) = χ . One might be surprised that Rc(a; θ) → 0 as χ → 0. However, as χ → 0, w/c → ∞, so consumption becomes trivial to 
insure with tiny variations in labor supply.
29 See Gourio (2012), Uhlig (2007), Backus et al. (2008), and Kung (2012).
30 See, e.g., Erceg et al. (2000), Woodford (2003), Christiano et al. (2005), and Galí (2008). These New Keynesian DSGE studies do not use generalized 

recursive preferences, however.
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where χ > 0, η > 0, ct > 0, lt > 0, and γ > 1.31 Leisure is essentially arbitrary in this example, since different assumptions 
regarding l̄ have essentially no effect on the equilibrium. Thus, Rcl(a; θ) is not well-defined, but

Rc(a; θ) = γ

1 + γ
χ

wl
c

+ α(1 − γ )

1 + γ −1
1+χ

wl
c

. (35)

As in Swanson (2012), we can simplify (35) a bit further by assuming c ≈ wl, an assumption made in this paragraph only
and nowhere else in the paper.32 In this case,

Rc(a; θ) ≈ γ

1 + γ
χ

+ α(1 − γ )

1 + γ −1
1+χ

. (36)

Equation (36) is less than Rfl(a; θ) = γ +α(1 − γ ), by an amount that can be dramatic if either of the denominators in (36)
is large. On the other hand, as χ → ∞, the household’s labor margin becomes inflexible and Rc → Rfl .

4. Wealth-gamble risk aversion and asset pricing

The analysis above shows that a household’s aversion to gambles over asset values or wealth depends on its ability 
to offset the outcome of those gambles with changes in hours worked. In this section, I show the relationship between 
wealth-gamble risk aversion and risk premia in the Lucas–Breeden stochastic discounting framework. Risk premia in this 
framework are closely related to the definition of wealth-gamble risk aversion in the previous section, and are generally 
unrelated to traditional measures of risk aversion that hold household labor fixed.

4.1. The SDF, risk premia, and wealth-gamble risk aversion

For generalized recursive preferences (4) with labor, Rudebusch and Swanson (2012) show that the household’s stochastic 
discount factor is given by

mt+1 ≡ β
u1(c∗

t+1, l∗t+1)

u1(c∗
t , l∗t )

V (a∗
t+1; θt+1)

−α(
Et V (a∗

t+1; θt+1)1−α
)−α/(1−α)

. (37)

Let pi
t denote the ex-dividend time-t price of an asset i that pays stochastic dividend di

t each period. In equilibrium, pi
t

satisfies

pi
t = Etmt+1(d

i
t+1 + pi

t+1). (38)

Let 1 + ri
t+1 denote the realized gross return on the asset,

1 + ri
t+1 ≡ di

t+1 + pi
t+1

pi
t

, (39)

and define the risk premium on the asset, ψ i
t , to be its expected excess return,

ψ i
t ≡ Etri

t+1 − r f
t+1 , (40)

where 1 + r f
t+1 ≡ 1/Etmt+1 denotes the risk-free rate. Then

ψ i
t = Etmt+1 Et(di

t+1 + pi
t+1) − Etmt+1(di

t+1 + pi
t+1)

pi
t Etmt+1

= −Covt(mt+1, ri
t+1)

Etmt+1
, (41)

where Covt denotes the covariance conditional on information at time t .

31 The last restriction ensures consistency with Assumption 2. Alternatively, one could impose restrictions on � such that u(·, ·) < 0 for all (ct , lt ) ∈ �. 
Under either of these assumptions, u < 0, wealth-gamble risk aversion is decreasing in α, and α < 0 corresponds to preferences that are more risk averse 
than expected utility.
32 In steady state, c = ra + wl + d, so c = wl holds exactly if there is neither capital nor transfers in the model. In any case, ra + d is typically small, since 

r ≈ .01.
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We can relate the stochastic discount factor to wealth-gamble risk aversion as follows.33 First, differentiate (37) at the 
nonstochastic steady state, conditional on information at time t , to yield

dmt+1 = β

u1

[
u11dc∗

t+1 + u12dl∗t+1] − αβ

V
dVt+1 (42)

to first order, where dxt ≡ xt − x, the time-t deviation of variable x from steady state. From the household’s intratemporal 
optimality condition (13),

dl∗t+1 = −λdc∗
t+1 − u1

u22 + wu12
dwt+1 (43)

to first order. In contrast to (14), in equation (43) I keep track of changes in wt+1 (and rt+1 and dt+1, below) because the 
asset return ri

t+1 may be correlated with these macroeconomic variables. Any such correlation will affect the risk premium 
ψ i

t through the covariance in (41).34

The corresponding expression for dc∗
t+1 is more complicated, so I state it as a lemma:

Lemma 5. To first order in a neighborhood of the nonstochastic steady state,

dc∗
t+1 = r

1 + wλ

[
dat+1 + Et+1

∞∑
k=1

1

(1 + r)k
(l dwt+k + ddt+k + adrt+k)

]

+ u1u12

u11u22 − u2
12

dwt+1 + −u1

u11 − λu12
Et+1

∞∑
k=1

1

(1 + r)k

(
rλ

1 + wλ
dwt+k − βdrt+k+1

)
. (44)

Proof. The expression follows from the household’s Euler equation, budget constraint, and equation (43). See the Appendix 
for details. �

Like (43), equation (44) keeps track of changes in wt+k , rt+k , and dt+k , because the asset return ri
t+1 may be correlated 

with these macroeconomic variables, which would affect ψ i
t through the covariance in (41). In the special case where ri

t+1
is uncorrelated with all macroeconomic variables, then these terms can be ignored and (43)–(44) reduce to (14) and (17).

The term in square brackets in (44) describes the change in household wealth—including nonfinancial wealth—and thus 
the first line of (44) describes the wealth effect on consumption. The last line of (44) describes the substitution effect: 
changes in consumption due to changes in current and future wages and interest rates.35

For notational simplicity, let dÂt+1 ≡ dat+1 + Et+1
∑∞

k=1(1 + r)−k(l dwt+k + ddt+k + adrt+k), the change in household 
wealth in (44). Then it’s straightforward to show:

33 Intuitively, one can start to see the close relationship between the risk premium and wealth-gamble risk aversion as follows: since u1(c∗
t , l∗t ) =

V 1(at ; θt )/(1 + rt ),

mt+1 = β
V 1(a∗

t+1; θt+1)

V 1(at ; θt)

V (a∗
t+1; θt+1)−α(

Et V (a∗
t+1; θt+1)1−α

)−α/(1−α)

1 + rt

1 + rt+1
.

Then, to first order around the nonstochastic steady state, conditional on information at time t ,

dmt+1 = β
V 11da∗

t+1 + V 12dθt+1

V 1
− αβ

V 1da∗
t+1 + V 2dθt+1

V
− β

drt+1

1 + r

= −βRa(a; θ)da∗
t+1 +

(
βV 12

V 1
− αβV 2

V

)
dθt+1 − β

drt+1

1 + r
,

assuming V is differentiable with respect to θ at the steady state. It follows that

ψ i
t ≈ Ra(a; θ)Covt(dri

t+1,da∗
t+1) +

(−V 12

V 1
+ α

V 2

V

)
Covt(dri

t+1,dθt+1) + β Covt(dri
t+1,drt+1)

near the steady state. Here, ψ i
t increases linearly with Ra , by an amount that depends on the covariance of the asset return with the household’s financial 

wealth.
However, this decomposition is problematic for several reasons. First, the covariance involving da∗

t+1 ignores the household’s nonfinancial wealth, such 
as the present value of future transfers and labor income. Instead, the asset’s covariance with nonfinancial wealth is relegated to the second term above, 
since θ determines the household’s current and future wages w and transfers d. But this covariance is expressed in terms of the “black box” state variable θ
rather than nonfinancial wealth itself, and the coefficient (−V 12/V 1 + αV 2/V ) on this covariance is neither clearly related nor unrelated to wealth-gamble 
risk aversion. Thus, the decomposition in the main text is more useful, albeit somewhat more complicated.
34 In contrast, the idiosyncratic gamble faced by the household in (7) was independent of all macroeconomic variables by assumption.
35 The household’s intertemporal elasticity of substitution is given by −u1/

(
c(u11 − λu12)

)
, so the last term in (44) describes intertemporal substitution 

effects on consumption of changes in future wages and interest rates.
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Lemma 6. To first order in a neighborhood of the nonstochastic steady state,

dVt+1 = u1(1 + r)dÂt+1. (45)

Proof. The expression follows from (6), (43), and (44). See the Appendix for details. �
Lemma 6 states that the change in household welfare equals the marginal utility of consumption times the change in 

household wealth. The factor 1 + r appears in (45) because a change in beginning-of-period-t assets produces 1 + r units of 
extra consumption in period t .

Equations (42)–(45) then imply the following decomposition:

Proposition 7. To first order in a neighborhood of the nonstochastic steady state,

dmt+1 = −Ra(a; θ)β dÂt+1 + β d�t+1 , (46)

where d�t+1 ≡ Et+1
∑∞

k=1(1 + r)−k
(
βdrt+k+1 − rλ

1+wλ
dwt+k

)
, the intertemporal substitution term from (44). To second order in a 

neighborhood of the nonstochastic steady state,

ψ i
t = Ra(a; θ) Covt(dri

t+1,dÂt+1) − Covt(dri
t+1,d�t+1) . (47)

Proof. Substituting (43)–(45) into (42) yields (46). Substituting (46) into (41) yields (47). (Recall that V = u/(1 − β) and 
β = Etmt+1 at steady state.) Finally, Cov(dx, dy) is accurate to second order when dx and dy are accurate to first order. �

The first term in (47) shows that ψ i
t increases locally linearly with Ra , by an amount that depends on the covari-

ance between the asset return and household wealth, including nonfinancial wealth. This link between risk premia and 
wealth-gamble risk aversion should not be too surprising: Propositions 1 and 3 described the risk premium for extremely 
simple, idiosyncratic gambles over household wealth, while Proposition 7 shows that the same coefficient also appears in 
the household’s aversion to more general financial market gambles that may be correlated with macroeconomic variables 
such as interest rates, wages, and transfers.

The second term in (47) corresponds to Merton’s (1973) “changes in investment opportunities” in the ICAPM framework. 
Even if Ra = 0—that is, even if the household is risk-neutral for money or wealth gambles—ψ i

t can be nonzero. This is 
because even a risk-neutral household can benefit from an asset that pays off well when the price of the household’s total 
consumption bundle is low. An asset that pays off well when current and future wages are low (and hence leisure is cheap) 
or current and future interest rates are high (and hence future consumption is cheap) is preferable to an asset that pays off 
poorly in those situations. Even a risk-neutral household is willing to pay a premium for such an asset—implying a lower 
ψ i

t —and this effect is captured by the second term in (47). The fact that the household faces a consumption-leisure tradeoff 
as well as a current-vs.-future consumption tradeoff implies that the second term in (47) is more general than just changes 
in the household’s investment opportunities. Indeed, the second term in (47) is better described as changes in purchasing
opportunities—opportunities to purchase leisure and future consumption more cheaply. An increase in Merton’s investment 
opportunities is just an opportunity to purchase future consumption more cheaply.

Finally, the decomposition (47) can be written in terms of relative rather than absolute wealth-gamble risk aversion 
using Definitions 2–3:36

Corollary 8. In terms of relative wealth-gamble risk aversion, the risk premium in (47) can be written as:

ψ i
t = Rc(a; θ) Covt

(
dri

t+1,
dÂt+1

Ac

)
− Covt(dri

t+1,d�t+1) (48)

or

ψ i
t = Rcl(a; θ) Covt

(
dri

t+1,
dÂt+1

Acl

)
− Covt(dri

t+1,d�t+1) , (49)

where Ac and Acl are as in Definitions 2–3.

36 Note that dÂt+1 differs slightly from dAc
t+1 and dAcl

t+1, which is why (48) and (49) are not written in terms of d log Ac
t+1 or d log Acl

t+1.
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4.2. Numerical examples

Two numerical examples help to illustrate the relationship between wealth-gamble risk aversion and risk premia derived 
above. Both examples use a standard real business cycle (RBC) model to generate the behavior of macroeconomic variables 
and the dividend on an equity security, which I take to be a consumption claim. This framework is both simple and very 
standard in the macro-finance literature cited in the Introduction.

The economy consists of a unit continuum of representative households and a unit continuum of perfectly competitive 
representative firms. Each household has optimization problem (1)–(4) and period utility function to be specified shortly. 
Each firm has production function

yt = Ztk
1−ζ
t lζt , (50)

where yt , kt , and lt denote firm output, beginning-of-period capital, and labor input, respectively. The productivity parameter 
Zt is common across firms and follows the exogenous process

log Zt = ρz log Zt−1 + εt, (51)

where εt is i.i.d. with mean zero and variance σ 2
ε . Labor and capital are supplied by households at the competitive wage 

and rental rates wt and rk
t . Capital is the only asset in the economy that is in nonzero net supply. Households accumulate 

capital according to

kt+1 = (1 + rt)kt + wtlt − ct, (52)

where rt ≡ rk
t − δ, δ is the capital depreciation rate, and ct denotes household consumption.

For simplicity, I define an equity security to be a claim on the aggregate consumption stream, where aggregate consump-
tion Ct = ct in equilibrium. The ex-dividend price of the equity claim, pt , then satisfies

pt = Etmt+1(Ct+1 + pt+1) (53)

in equilibrium, where mt+1 is given by (37). I define the equity premium, ψt , to be the expected excess return

ψt ≡ Et(Ct+1 + pt+1)

pt
− (1 + r f

t ) . (54)

I follow standard calibrations in the literature and take a period in the model to be one quarter in the data, set β to 
.99, δ to .025, ζ to .7, and σε to .01. I consider the cases ρz < 1 and ρz = 1 in the examples below. Once the period utility 
function is specified, I solve the model using perturbation methods, as in Rudebusch and Swanson (2012) and Swanson
(2012). This involves computing a nonstochastic steady state for the model (or transformed version of the model) and an 
nth-order Taylor series approximation to the true nonlinear solution for the model’s endogenous variables around the steady 
state.37 Additional details of the solution algorithm and computer code are provided in the Appendix and in Swanson et al.
(2006). Aruoba et al. (2006) solve a standard RBC model using a variety of numerical methods and find that a fifth-order 
perturbation solution is among the most accurate methods globally as well as being faster to compute than other standard 
methods.

Example 4. Consider first the additively separable period utility function from Rudebusch and Swanson (2009) and Exam-
ple 3,

u(ct, lt) = c1−γ
t

1 − γ
− η

l1+χ
t

1 + χ
. (55)

Set ρz = 0.9, γ = 5, χ = 1.5, and α = −10 as baseline values, and consider how the equity premium and wealth-gamble 
risk aversion vary as each of γ , χ , and α are varied in turn.38 For each set of parameter values, we can solve the model as 
described above.

Fig. 1 plots the equity premium and wealth-gamble risk aversion as functions of χ , γ , and α. The solid black line in 
each panel plots the equity premium, ψ , against the right axis. The equity premium in this model is very small, less than 
25 basis points per year in each of the panels; this is a manifestation of Rouwenhorst’s (1995) and Lettau and Uhlig’s (2000)
finding that the equity premium is an even larger puzzle in RBC models with endogenous labor than in an endowment 
economy, because households can endogenously smooth their consumption in response to shocks. The dashed blue line in 
each panel plots the coefficient of relative wealth-gamble risk aversion, Rc(a; θ) from equation (35), against the left axis. 

37 Results in the figures below are for n = 5, a fifth-order approximation, but results are very similar for n = 4 and n = 6, suggesting that the Taylor series 
has essentially converged by n = 5 for the range of state variables considered in the figures.
38 To allow for balanced growth or ρz = 1, the preference specification (55) would have to be modified, as in Rudebusch and Swanson (2012) and Swanson

(2017). For simplicity, I do not consider those modifications here.
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Fig. 1. The equity premium and wealth-gamble risk aversion in a real business cycle model with generalized recursive preferences and period utility 
u(ct , lt ) = c1−γ

t /(1 − γ ) − ηl1+χ
t /(1 + χ). Solid black lines depict the equity premium, dashed blue lines the coefficient of relative wealth-gamble risk 

aversion Rc , and dotted red lines the traditional, fixed-labor measure of risk aversion, Rfl = γ +α(1 −γ ) = 1 − α̃. In the top panel, χ ranges from .01 to 50 
while γ is fixed at 5 and α at −10; in the middle panel, γ ranges from 1.01 to 100 while χ is fixed at 1.5 and α at −10; in the bottom panel, α ranges 
from −50 to 0 while χ is fixed at 1.5 and γ at 5. In each panel, the equity premium is closely related to Rc and is essentially unrelated to Rfl . See text for 
details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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For comparison, the dotted red line in each panel plots the fixed-labor measure of risk aversion, Rfl(a; θ) = γ + α(1 − γ ), 
also against the left axis.

In each of the three panels in Fig. 1, the equity premium tracks Rc closely, and is essentially unrelated to Rfl . In the top 
panel, Rfl is independent of χ and thus is constant at 45, yet the equity premium varies by a factor of four, along with Rc . 
In the middle panel, Rfl increases linearly with γ , ranging from about 1 to 1090 (values above 32 are off the chart and not 
depicted), while the equity premium is a concave function of γ that corresponds closely to Rc . In the bottom panel, the 
equity premium varies about linearly with α and Rc , but grows more slowly than Rfl .39 Note that, in the bottom panel, more 
negative values of α imply greater wealth-gamble risk aversion because u ≤ 0; also, the equity premium does not converge 
to zero as Rc → 0 due to the additional ICAPM term in (47) reflecting changes in purchasing opportunities discussed earlier.

It’s important to note that varying χ , γ , and α in Fig. 1 has general equilibrium effects on the economy as well as 
effects on the household’s coefficients Rc and Rfl . For example, as the parameter χ or γ varies, the response of aggregate 
consumption to a productivity shock will typically change as well, which can change the covariance terms in (48) as well 
as the coefficient Rc . The equity premium in Fig. 1 will vary for both of these reasons—changes in Rc and changes in 
covariance due to general equilibrium effects—so we should not expect the equity premium to vary exactly in line with 
wealth-gamble risk aversion Rc . Nevertheless, Fig. 1 suggests that Rc is in fact closely related to the equity premium in this 
general equilibrium model, much more so than the traditional, fixed-labor coefficient Rfl .

Intuitively, lower values of χ imply a more flexible labor margin, which gives the household more ability to insure itself 
from consumption fluctuations. This can be seen clearly in Fig. 2, which plots first-order impulse response functions for 
consumption, labor, and the capital stock to a one percent positive shock to productivity Zt . In each panel, the solid black 
line depicts the impulse response for the baseline parameterization of the model and the dashed and dotted lines plot 
impulse response functions for the cases χ = 5 and χ = 0.1, respectively. For all three parameterizations, consumption rises 
in response to the productivity shock, labor rises on impact and then falls, and household savings increases (as evidenced 
by the rise in the capital stock). When χ is lower, the household’s labor margin is more flexible and the household reduces 
labor supply by more, on net, in response to the shock, thereby smoothing consumption. Note how this intuition holds 
despite the fact that labor initially rises on impact as a result of the substitution effect on labor supply. Thus, the fact that 
the short-run correlation between labor and consumption is positive in the model does not prevent the household from 
using labor supply to smooth its consumption in response to shocks.

Example 5. Next, consider the Cobb–Douglas preference specification from van Binsbergen et al. (2012) and Example 2,

u(ct, lt) =
(
cχ

t (1 − lt)1−χ
)1−γ

1 − γ
. (56)

Following Gourio (2013), set ρz = 1, γ = 0.5, χ = 0.3, and α = 19,40 and consider how the equity premium and wealth-
gamble risk aversion vary as χ , γ , and α are varied in turn. For each set of parameter values, I solve the model as described 
above.

Fig. 3 plots the equity premium and wealth-gamble risk aversion as functions of χ , γ , and α. As in Fig. 1, the solid black 
line in each panel depicts the equity premium, ψ , the dashed blue line plots the consumption-wealth coefficient of relative 
wealth-gamble risk aversion, Rc(a; θ), and the dotted red line graphs the traditional, fixed-labor risk aversion measure, 
Rfl(a; θ). As in Fig. 1, the equity premium in Fig. 3 tracks Rc closely, and is essentially unrelated to Rfl . In the top panel, 
Rfl is nearly constant at a value of about 10, yet the equity premium varies by a factor of about ten, along with Rc . (As in 
Fig. 1, the equity premium does not quite converge to zero along with Rc due to the changes in purchasing opportunities 
ICAPM term in (47).) In the middle panel, Rfl increases linearly as γ falls, ranging from about 1 to 19.5 (values above 12 
are not depicted), but the equity premium increases at a more moderate pace corresponding to Rc . For example, a value of 
ψ = 10 bp is associated with Rc ≈ 5 in the top panel of Fig. 3, while a value of ψ = 10 bp in the middle panel requires 
Rc ≈ 5 vs. Rfl ≈ 16, at γ ≈ .2. In the bottom panel, the equity premium increases about linearly with α and Rc , while Rfl

again grows too quickly. Thus, as in Fig. 1, the traditional, fixed-labor measure of risk aversion Rfl is unrelated to the equity 
premium in Fig. 3, while the coefficient of relative wealth-gamble risk aversion Rc tracks the equity premium closely.

Household leisure is well-defined in this example, so we can also plot the consumption-and-leisure-wealth coefficient of 
relative wealth-gamble risk aversion, Rcl(a; θ) = γ +α(1 − γ ) = 1 − α̃, as the dash-dotted green line in each panel of Fig. 3. 
Perhaps surprisingly, Rcl is not closely related to the equity premium ψ . In the top panel of Fig. 3, Rcl is independent of χ
and thus constant at 10, while ψ varies by a factor of about ten. In the middle and bottom panels, Rcl grows linearly along 
with Rfl at a rate much greater than ψ . The reason for this discrepancy in this example is that changes in χ , γ , and α have 
general equilibrium effects on macroeconomic variables like wt , rt , and aggregate consumption Ct . These effects change 
the covariance terms in (47)–(49) as well as the household’s wealth-gamble risk aversion coefficients, which can obscure 

39 The equity premium ψ , Rc , and Rfl all vary about linearly with α, but the magnitude of Rfl does not agree with ψ . For example, in the top panel of 
Fig. 1, an equity premium of about 14 bp corresponds to risk aversion around 45 by either measure Rc or Rfl . In the bottom panel of Fig. 1, ψ of about 14 
bp also corresponds to Rc of about 50 (at α ≈ −30), but would require Rfl ≈ 125.
40 Gourio sets 1 − α̃ = γ + α(1 − γ ) = 10.
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Fig. 2. Impulse response functions for (a) consumption, (b) labor, and (c) the capital stock to a 1% technology shock in the real business cycle model from 
Example 4 and Fig. 1, with generalized recursive preferences and period utility u(ct , lt ) = c1−γ

t /(1 − γ ) − ηl1+χ
t /(1 + χ). In each panel, γ = 5, α = −10, 

and χ ∈ {0.1, 1.5, 5}. When χ is lower, the household varies labor supply by more to smooth consumption, even though labor and consumption comove 
positively in the short run. See text for details.
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Fig. 3. The equity premium and wealth-gamble risk aversion in an RBC model with generalized recursive preferences and period utility u(ct , lt ) = (cχ
t (1 −

lt )1−χ )1−γ /(1 − γ ). Solid black lines depict the equity premium, dashed blue lines the coefficient of relative wealth-gamble risk aversion Rc , dotted red 
lines the fixed-labor measure of risk aversion Rfl , and dash-dot green lines the coefficient of relative wealth-gamble risk aversion Rcl . In the top panel, χ
ranges from .01 to .99 while γ is fixed at 0.5 and α at 19; in the middle panel, γ ranges from .01 to .99 while χ is fixed at 0.3 and α at 19; in the bottom 
panel, α ranges from 0 to 50 while χ is fixed at 0.3 and γ at 0.5. In each panel, the equity premium is closely related to Rc and is essentially unrelated to 
Rfl and Rcl . See text for details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the relationship between wealth-gamble risk aversion and the equity premium in the model. I now discuss those general 
equilibrium effects in more detail.

4.3. Rc vs. Rcl and the equity premium in general equilibrium

When studying an individual household, changes in the household’s preference parameters, such as χ , γ , and α, have no 
effect on aggregate variables, given the usual assumption that the household is infinitesimal. However, Examples 4–5 com-
pute the general equilibrium of a representative agent economy; thus, changes in the representative household’s preference 
parameters χ , γ , and α do affect macroeconomic variables in those examples.

Looking at Example 5 and Fig. 3 in particular, it may seem surprising that Rcl is not more closely related to the equity 
premium, given that consumption and leisure form a composite good in those preferences. Instead, the consumption-wealth 
coefficient Rc provides a better measure. Looking at the decomposition of the equity premium in Corollary 8, Fig. 3 says 
that the covariance Covt(dri

t+1, dÂt+1/Ac) is much closer to being invariant with respect to changes in χ , γ , and α than is 
the covariance Covt(dri

t+1, dÂt+1/Acl).41

Note first that—unlike the traditional, fixed-labor measure Rfl—both Rc and Rcl recognize that households will vary 
their labor supply to insure themselves from portfolio fluctuations. The issue here is simply whether the value of leisure 
should be included in household wealth when measuring relative wealth-gamble risk aversion, with Rcl including the value 
of leisure and Rc excluding it. In a model with two consumption goods (and no labor) and period utility u(c1t , c2t) =(
cχ

1tc1−χ
2t

)1−γ
/(1 − γ ), it would seem bizarre to equate household wealth to the present value of consumption of one of the 

goods, excluding the value of the other. Yet that is essentially what the results in Fig. 3 and Example 5 suggest.
The key difference in Example 5 is that consumption and leisure appear separately elsewhere in the model (e.g., in 

the production function), which is inconsistent with the composite good interpretation. In a model with two consumption 
goods, varying the parameter χ between 0 and 1 might change the relative sizes of the two consumption good sectors 
in steady state, but would not affect aggregate consumption or have any other aggregate general equilibrium implications. 
In contrast, varying the parameter χ in Example 5 has important general equilibrium effects on steady-state capital, labor, 
wealth, and other aggregate variables.42

To see the effects of χ on the steady state and the covariance term Covt(dri
t+1, dÂt+1) in Example 5, first note that the 

steady-state interest rate r = (1 − β)/β and marginal product of capital rk = (1 − ζ )y/k, so the output-capital ratio satisfies

y

k
= 1

1 − ζ

(
1 − β

β
+ δ

)
, (57)

which is independent of χ . From the production function, (l/k) = (y/k)1/ζ , and the aggregate resource constraint implies 
(c/k) = (y/k) + δ; thus, the ratios y/k, l/k, and c/k are all invariant with respect to χ , as is the steady-state wage w =
ζ

(y/k)

(l/k)
. Finally, the household’s period utility function implies χ w(1 − l) = (1 − χ)c, and thus

k = w

w (l/k) + 1 − χ

χ
(c/k)

. (58)

The wage w and ratios l/k and c/k are invariant with respect to χ , so the aggregate equilibrium level of k is increasing 
in χ , ranging from 0 to (y/k)−1/ζ as χ ranges from 0 to 1.

Thus, varying the parameter χ in Example 5 changes not just the composition of the consumption-leisure aggregate 
good, but also the equilibrium level of k and household wealth Ac and Acl , among other variables. This, in turn, affects the 
crucially important covariance Covt(dri

t+1, dÂt+1) in Proposition 7. In particular, Covt(dri
t+1, dÂt+1) is roughly proportional 

to steady-state k, because dÂt+1 = dat+1 + Et+1
∑∞

k=1(1 + r)−k(l dwt+k + adrt+k) scales about linearly with k.43

41 As discussed below, the second covariance term in Corollary 8, Covt (dri
t+1, d�t+1), does not vary much with changes in the household’s preference 

parameters in Fig. 3.
42 In partial equilibrium, the interpretation of consumption and leisure as a composite good for the household in Example 5 is valid. The issue is that 

the composite good interpretation is invalid in the general equilibrium model, because labor appears separately in the production function. Fig. 3 plots the 
general equilibrium relationship between the equity premium (and wealth-gamble risk aversion) and the parameters χ , γ , and α.
43 Household assets a = k and the ratio l/k is constant, so a and l scale linearly with k. (Labor scales linearly from l = 0 to 1, which are attained when 
χ = 0 and 1, respectively.) In contrast, drt+1 and dwt+1 hardly change with k because the marginal products of capital and labor, (1 − ζ )yt/kt and ζ yt/lt , 
are invariant to changes in steady-state k. The term dat+1 grows about linearly with k because technology shocks in the model are multiplicative, so the 
effects of technology shocks scale. Thus, dÂt+1 scales about linearly with k. The return ri

t+1 on the consumption claim hardly changes with k because both 
sides of the household’s Euler equation scale linearly with k. Thus, Covt(dri

t+1, dÂt+1) varies roughly linearly with k.
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Fig. 4. Coefficient of relative wealth-gamble risk aversion Rc as a function of the state (kt ; Zt ) in a real business cycle model with generalized recursive 
preferences and period utility u(ct , lt ) = c1−γ

t /(1 − γ ) − ηl1+χ
t /(1 + χ). Dashed black lines depict the closed-form, steady-state value Rc(k; Z), solid red 

lines the numerical solution for Rc(kt ; Zt ). In the left panel, log(kt/k) ranges from −0.38 to 0.38 while log Zt is fixed at 0; in the right panel, Zt ranges 
from −0.23 to 0.23 while kt is fixed at k. In both panels, Rc(kt ; Zt ) is close to Rc(k; Z) and never near the traditional, fixed-labor value of Rfl = 45. See 
text for details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Finally, household wealth Ac is proportional to k.44 As a result, Covt(dri
t+1, dÂt+1/Ac) in Corollary 8 is roughly invariant 

with respect to χ , implying a tight, linear relationship between Rc(a; θ) and the equity premium ψ .45 This close relationship 
is clearly visible in Fig. 3.

By contrast, Acl , the leisure-inclusive measure of household wealth, is not proportional to k. The value of leisure, w(1 −
l), decreases with k (because w is invariant and 1 − l decreases). As a result, Acl has no simple relationship to k and 
Covt(dri

t+1, dÂt+1/Acl) varies substantially with changes in χ . Thus, there is no stable relationship between Rcl and the 
equity premium in Corollary 8 and Example 5, as is evident in Fig. 3.

For any given macroeconomic model, the equity premium depends not just on Rc but also on the two covariance terms 
in Corollary 8—the covariance of the equity return with household wealth and with changes in purchasing opportunities. 
To the extent that these covariances change as parameters of the model are varied, the relationship between the equity 
premium and Rc will be weaker. Nevertheless, for standard macroeconomic models like those considered in this section, 
the wealth-gamble risk aversion measure Rc seems to provide a good benchmark, much more so than the traditional, 
fixed-labor risk aversion measure Rfl .

5. Wealth-gamble risk aversion away from the steady state

The closed-form expressions for wealth-gamble risk aversion derived in Section 3 hold exactly only at the model’s non-
stochastic steady state. For values of (at ; θt) away from steady state, these expressions are only approximations. In this 
section, I evaluate the accuracy of those approximations by computing wealth-gamble risk aversion numerically away from 
the steady state for the standard real business cycle model described above.

The setup and parameterization of the model are the same as described previously. I assume that households have 
the same additively separable preferences as in Examples 3–4, with parameter values γ = 5, χ = 1.5, and α = −10. The 
state variables of the model are kt and Zt .46 The household’s consumption-wealth coefficient of relative wealth-gamble risk 
aversion at the steady state, Rc(k; Z), is given by equation (35); for the parameter values above, this implies Rc(k; Z) =
17.76, a little more than one-third the traditional, fixed-labor measure of 1 − α̃ = γ + α(1 − γ ) = 45.

For values of (kt; Zt) away from the steady state, equations (9) and (11)–(15) remain valid, and can be used to compute 
Rc(kt; Zt) numerically. I append equations for Rc , V 1, V 11, λt , and ∂c∗

t /∂at to the standard set of RBC equilibrium conditions 
and solve them using the same fifth-order perturbation method as in the previous section. (See the Appendix for a complete 
list of equations and additional details regarding the numerical solution algorithm.)

Fig. 4 graphs the result as a function of log(kt/k) and log Zt over a wide range of values for these variables, about 
±10 standard deviations (equal to about ±38 percent and ±23 percent for log kt and log Zt , respectively).47 The horizontal 
dashed black lines in Fig. 4 report the constant, closed-form value for wealth-gamble risk aversion at the nonstochastic 

44 Because consumption and hence the present discounted value of consumption scale linearly with k.
45 The second covariance term in Corollary 8, Covt (dri

t+1, d�t+1), is not strictly invariant to changes in χ , but this term is much smaller than the first 
and thus does not have a substantial effect on ψ in Fig. 3.
46 The household’s endogenous state variable is its own holdings of capital, kt . The exogenous state variables of the model are Zt and the aggregate capital 

stock, Kt . Thus, the state vector of the household’s optimization problem could be written more precisely as (kt ; Zt , Kt ), or even (kt ; Zt , Kt , σ 2
ε ), since the 

nonstochastic steady state requires setting σ 2
ε = 0. However, in equilibrium, kt = Kt , so for simplicity I write the state vector in this example as (kt; Zt ).

47 The unconditional standard deviations of log Zt and log(kt/k) are about 2.3 and 3.8 percent, respectively. The ergodic mean of log Zt is zero and that 
of log(kt/k) is about .006, or 0.6 percent.
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Fig. 5. Coefficient of absolute wealth-gamble risk aversion Ra as a function of the state (kt ; Zt ) in a real business cycle model with generalized recur-
sive preferences and period utility u(ct , lt ) = c1−γ

t /(1 − γ ) − ηl1+χ
t /(1 + χ). Dashed black lines depict the closed-form, steady-state value Ra(k; Z), solid 

blue lines the numerical solution for Ra(kt ; Zt ). Absolute risk aversion is decreasing with both kt and Zt . See notes to Fig. 4 and text for details. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

steady state, Rc(k; Z), equal to 17.76. The solid red lines in the figure plot the numerical solution for Rc(kt; Zt) for general 
values of kt and Zt .48 The key point of Fig. 4 is that, even over the very wide range of values of the state variables 
considered, the household’s coefficient of relative wealth-gamble risk aversion ranges between about 17.5 and 18.1, very 
close to Rc(k; Z), and never near the traditional, fixed-labor value of Rfl = 45. Thus, the closed-form expressions in Section 3
seem to provide a good approximation to the household’s wealth-gamble risk aversion in a standard model even far away 
from steady state.

It’s also interesting that the household’s wealth-gamble risk aversion is countercyclical with respect to the state variables 
kt and Zt . This can be seen most clearly in Fig. 5, which depicts the household’s coefficient of absolute wealth-gamble risk 
aversion, Ra(kt; Zt), over the same range of values for kt and Zt as in Fig. 4. The absolute wealth-gamble risk aversion 
coefficient of .09 implies that the household is willing to pay about 9 cents to avoid a fair gamble with a standard deviation 
of one dollar. This willingness to pay varies from about 7 to 12 cents over the range of values for the state variables in 
Fig. 5, with higher values of the states corresponding to higher household wealth and lower risk aversion.

Looking back at Fig. 4, relative wealth-gamble risk aversion is not countercyclical in that figure with respect to kt because 
household wealth—and thus the size of the hypothetical gamble faced by the household—is increasing in kt and Zt . Indeed, 
for higher kt , the increase in wealth is sufficiently large that the household’s relative wealth-gamble risk aversion increases 
with kt , even though absolute wealth-gamble risk aversion decreases.

6. Balanced growth

In previous sections, I abstracted from growth for simplicity, but the results carry through essentially unchanged to the 
case of balanced growth. I briefly collect the corresponding expressions in this section and provide proofs in the Appendix.

King et al. (1988, 2002) provide a detailed discussion of balanced growth. Along a balanced growth path, x ∈ {l, r} satisfies 
xt+k = xt for k = 1, 2, . . . , and I drop the time subscript to denote the constant value. For x ∈ {a, c, w, d}, xt+k = Gkxt for 
k = 1, 2, . . . , for some G ∈ (0, 1 + r), and I use xbg

t to denote the balanced growth path value. For notational simplicity, I 
denote the balanced growth path value of θt by θbg

t , although the elements of θ may grow at different constant rates over 
time (or remain constant).

Lemma 9. Given Assumptions 1–7 and 8′ , for all k = 1, 2, . . . along the balanced growth path: i) λ
bg
t+k = G−kλ

bg
t , where λbg

t denotes the 
balanced growth path value of λt , ii) ∂c∗

t+k/∂at = Gk∂c∗
t /∂at , iii) ∂l∗t+k/∂at = ∂l∗t /∂at , and iv) ∂c∗

t /∂at = (1 + r − G)/(1 + wbg
t λ

bg
t ).

Proof. See Appendix. �
Note that wbg

t λ
bg
t in Lemma 9 is constant over time because w and λ grow at reciprocal rates. The larger is G , the 

smaller is ∂c∗
t /∂at , since the household chooses to absorb a greater fraction of asset shocks in future periods.

Proposition 10. Given Assumptions 1–7 and 8′ , absolute wealth-gamble risk aversion, evaluated along the balanced growth path, 
satisfies

48 The red lines do not intersect the black lines at the vertical axis because c∗
t and l∗t evaluated at kt = k and Zt = Z do not equal the nonstochastic steady 

state values c and l due to the presence of uncertainty (e.g., precautionary savings).
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Ra(abg
t ; θbg

t ) = −V 11(a
bg
t+1; θbg

t+1)

V 1(a
bg
t+1; θbg

t+1)
+ α

V 1(a
bg
t+1; θbg

t+1)

V (abg
t+1; θbg

t+1)
(59)

and

Ra(abg
t ; θbg

t ) = −u11 + λ
bg
t u12

u1

1+r
G − 1

1 + wbg
t λ

bg
t

+ α
(1 + r

G
− 1

)u1

u
, (60)

where ui and uij denote the corresponding partial derivatives of u evaluated at (cbg
t , l). If u(ct , lt) = log ct + v(l̄ − lt) for some 

function v, then u in (60) must be interpreted to mean log ct + v(l̄ − lt) + log G
1− G

1+r
.

Proof. See Appendix. �
Note that (60) agrees with Proposition 3 when G = 1. The larger is G , the smaller is Ra , since larger G implies greater 

household wealth and ability to absorb shocks to asset values.

Corollary 11. Given Assumptions 1–7 and 8′ , relative wealth-gamble risk aversion, evaluated along the balanced growth path, satisfies

Rc(abg
t ; θbg

t ) = −u11 + λ
bg
t u12

u1

cbg
t

1 + wbg
t λ

bg
t

+ α
cbg

t u1

u
(61)

and

Rcl(abg
t ; θbg

t ) = −u11 + λ
bg
t u12

u1

cbg
t + wbg

t (l̄ − l)

1 + wbg
t λ

bg
t

+ α

(
cbg

t + wbg
t (l̄ − l)

)
u1

u
. (62)

If u(ct , lt) = log ct + v(l̄ − lt) for some function v, then u in (61)–(62) must be interpreted to mean log ct + v(l̄ − lt) + log G
1− G

1+r
.

Proof. See Appendix. �
Thus, the expressions for relative wealth-gamble risk aversion are essentially unchanged by balanced growth.

7. Multiplier preferences

Multiplier preferences are a version of generalized recursive preferences defined by Hansen and Sargent (2001) and 
Strzalecki (2011). I briefly review those preferences here and derive the corresponding expressions for wealth-gamble risk 
aversion with labor.

Households with multiplier preferences order state-contingent consumption and labor plans according to the recursive 
functional

W̃ (ct , lt) = (1 − β) u(ct , lt) − βφ−1 log Et exp
( − φW̃ (ct+1, lt+1)

)
, (63)

rather than (3), where β is the household’s discount factor and φ ∈ R. The preferences (63) can be regarded as a special 
case of (5), corresponding to ρ = 0. Let W (at; θt) denote the maximized value of (63), subject to (1)–(2):

W (at; θt) = max
(ct ,lt )∈�(at ;θt )

(1 − β) u(ct , lt) − βφ−1 log Et exp
( − φW (at+1; θt+1)

)
. (64)

Hansen and Sargent (2001) show how (63)–(64) can be derived from microfoundations based on household optimization in 
the presence of concerns regarding model misspecification.49 Maximizing (64) instead of expected utility ensures that the 
household achieves a reasonable discounted sum of utility flows for a range of empirically plausible processes for θt .

As φ approaches 0, (64) converges to expected utility. For φ 	= 0, the intertemporal elasticity of substitution is the same as 
for expected utility, but the household’s wealth-gamble risk aversion is amplified (or attenuated) by the additional curvature 
parameter φ.

From a practical perspective, an advantage of multiplier preferences is that they are well-defined even when u takes on 
both positive and negative values, so Assumption 2 can be dropped. Modifying the other assumptions and definitions to 
correspond to W rather than V is straightforward and gives the following:

49 These microfoundations can be used to derive values of φ ≥ 0. The case φ < 0, corresponding to risk-loving behavior, cannot be microfounded this way.
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Proposition 12. Let (at; θt) be an interior point of X. Given Assumptions 1 and 3–6, Ŵ (at; θt; σ), μ(at; θt; σ), and Ra(at; θt) exist, 
and

Ra(at; θt) = −Et exp
( − φW (a∗

t+1; θt+1)
) [

W11(a∗
t+1; θt+1) − φW1(a∗

t+1; θt+1)
2
]

Et exp
( − φW (a∗

t+1; θt+1)
)
W1(a∗

t+1; θt+1)
. (65)

Given Assumptions 7–8, (65) can be evaluated at the steady state to yield:

Ra(a; θ) = −W11(a; θ)

W1(a; θ)
+ φW1(a; θ) . (66)

Proof. The proof follows along exactly the same lines as Proposition 1. �
Even though the preferences (64) can be derived from a concern for robustness rather than risk, the household acts in 

a way that is observationally equivalent to having higher wealth-gamble risk aversion. That is, if one confronts a Hansen–
Sargent household with the hypothetical gamble in (7), the household’s concerns about the stochastic process {θt} manifest 
themselves as an increased aversion to the gamble; as a result, the household behaves exactly as if it were certain about 
the economic environment but had a higher level of risk aversion governed by φ. Higher values of φ correspond to higher 
levels of wealth-gamble risk aversion, with sufficiently negative values of φ corresponding to risk-loving behavior.

Proposition 13. Given Assumptions 1 and 3–8, the household’s coefficient of absolute wealth-gamble risk aversion for multiplier 
preferences, evaluated at steady state, satisfies

Ra(a; θ) = −u11 + λu12

u1

r

1 + wλ
+ φ ru1. (67)

Proof. The proof follows along exactly the same lines as Proposition 3. �
Corollary 14. Given Assumptions 1 and 3–8, the household’s coefficients of relative wealth-gamble risk aversion for multiplier prefer-
ences, evaluated at steady state, satisfy

Rc(a; θ) = −u11 + λu12

u1

c

1 + wλ
+ φ cu1 (68)

and

Rcl(a; θ) = −u11 + λu12

u1

c + w(l̄ − l)

1 + wλ
+ φ

(
c + w(l̄ − l)

)
u1. (69)

A feature of multiplier preferences worth emphasizing is that wealth-gamble risk aversion depends on φu1 rather than 
φu1/u. As a result, additive shifts of the period utility function u have no effect on wealth-gamble risk aversion, while 
multiplicative scalings of u do affect wealth-gamble risk aversion, in a way that is isomorphic to varying φ.50

Importantly, the expressions (67)–(69) only hold when the period utility function u(ct , lt) is premultiplied by (1 − β), 
as in (63) and (64). Without that scaling factor, the second terms in (67)–(69) each need to be multiplied by (1 − β)−1. 
If β = .99, this is observationally equivalent to increasing φ by a factor of 100, an enormous increase in wealth-gamble 
risk aversion for what might seem like a simple renormalization. Note that some authors (e.g., Tallarini, 2000; Barillas et 
al., 2009) pre-multiply their period utility functions by a factor of (1 − β), while others (e.g., Boyarchenko, 2012; Bidder 
and Smith, 2013) do not, so there is no convention in the literature, and the discussion in these papers typically gives the 
reader no indication that wealth-gamble risk aversion differs by a factor of about 100 across the two alternatives. Thus, it’s 
important that researchers bear in mind the dramatic effect different scalings of u have on wealth-gamble risk aversion and 
risk premia in these models.

Example 6. Tallarini (2000) considers the multiplier specification (64) with period utility

u(ct, lt) = 1

1 + ξ
log ct + ξ

1 + ξ
log(l̄ − lt), (70)

where ξ ≥ 0.51 The household’s coefficients of relative wealth-gamble risk aversion are given by

50 For standard Epstein–Zin–Weil preferences, it is the other way around: multiplicative transformations of u have no effect on wealth-gamble risk 
aversion, while additive shifts do have effects.
51 Tallarini writes equation (64) in terms of Ut ≡ W (at ; θt )(1 − β)/(1 + ξ). Rewriting this equation in the form (64) gives period utility function (70).
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Rc(a; θ) = −u11 + λu12

u1

c

1 + wλ
+ φ cu1 = 1 + φ

1 + ξ
(71)

and

Rcl(a; θ) = −u11 + λu12

u1

c + w(l̄ − l)

1 + wλ
+ φ

(
c + w(l̄ − l)

)
u1 = 1 + φ . (72)

Neither of these equals the traditional, fixed-labor measure of risk aversion used by Tallarini,

R f l(a; θ) = −cu11

u1
+ φ cu1 = 1 + φ

1 + ξ
. (73)

This last measure ignores the fact that households will vary their labor endogenously in response to shocks. Note that 
Rc ≤ R f l , as always, although in this particular example the difference is not very large quantitatively—Tallarini calibrates 
ξ ≈ 3, implying Rfl − Rc ≈ 3/4.

8. Discussion and conclusions

There are four main points to take away from this analysis. First, I’ve derived closed-form expressions for household 
wealth-gamble risk aversion when the household has generalized recursive preferences and can vary its labor supply. Tra-
ditional studies of risk aversion, such as Arrow (1965), Pratt (1964), Epstein and Zin (1989), and Weil (1989), assume 
household labor is fixed; as a result, the risk aversion coefficients in those studies are not representative of the household’s 
aversion to holding risky assets when labor supply can vary. For reasonable parameterizations, the traditional, fixed-labor 
measure of risk aversion can overstate the household’s actual aversion to money or wealth gambles by a factor of as much 
as ten, as in Fig. 3. Fixed-labor measures of risk aversion are also unrelated to the equity premium in a standard RBC model, 
as shown in Section 4, while the flexible-labor measure Rc derived in this paper is closely related.

Second, for Hansen and Sargent (2001)-type multiplier preferences, including vs. excluding a factor of 1 − β in period 
utility leads to huge differences in wealth-gamble risk aversion, by a factor of about 100. Researchers must be very careful 
to account for any scale factor in utility when computing risk aversion in models with multiplier preferences.

Third, I’ve shown how the ICAPM generalizes to the case of endogenous labor. Expected excess returns on assets depend 
not only on their risk, but also on their correlation with the prices of future consumption and leisure.

Fourth and finally, the closed-form expressions for wealth-gamble risk aversion I derive above, and the methods of the 
paper more generally, are potentially useful for asset pricing in any dynamic model with multiple goods in the utility 
function. Models with home production, money in the utility function, or tradeable and nontradeable goods can imply very 
different household attitudes toward risk than traditional measures of risk aversion might suggest.

Appendix A. Proofs of propositions and numerical solution details

Proof of Proposition 1. Since (at; θt) is an interior point of X , V (at + σε
1+rt

; θt) and V (at + σε
1+rt

; θt) exist for sufficiently 
small σ , and V (at + σε

1+rt
; θt) ≤ V̂ (at; θt; σ) ≤ V (at + σε

1+rt
; θt), hence V̂ (at; θt; σ) exists. Moreover, since V (·; ·) is continuous 

and increasing in its first argument, the intermediate value theorem implies there exists a unique −μ(σ ) ∈ [σε, σε] with 
V (at − μ(σ)

1+rt
; θt) = V̂ (at; θt; σ).

For generalized recursive preferences, the household’s first-order optimality conditions for c∗
t and l∗t ,

u1(c∗
t , l∗t ) = β

(
Et V (a∗

t+1; θt+1)
1−α

)α/(1−α)
Et V (a∗

t+1; θt+1)
−α V 1(a

∗
t+1; θt+1), (A.1)

u2(c∗
t , l∗t ) = −βwt

(
Et V (a∗

t+1; θt+1)
1−α

)α/(1−α)
Et V (a∗

t+1; θt+1)
−α V 1(a

∗
t+1; θt+1), (A.2)

are slightly more complicated than the case of expected utility considered in Swanson (2012). Note that (A.1) and (A.2) are 
related by the usual u2(c∗

t , l∗t ) = −wt u1(c∗
t ; l∗t ), and when α = 0, (A.1) and (A.2) reduce to the standard optimality conditions 

for expected utility.
For an infinitesimal fee dμ in (8), the first-order change in household welfare (4) is given by

−V 1(at; θt)
dμ

1 + rt
. (A.3)

Differentiating (6) with respect to at yields

V 1(at; θt) = u1(c∗
t , l∗t )

∂c∗
t

∂at
+ u2(c∗

t , l∗t )
∂l∗t
∂at

+ β
(

Et V (a∗
t+1; θt+1)

1−α
)α/(1−α)

Et V (a∗
t+1; θt+1)

−α V 1(a
∗
t+1; θt+1)

[
(1 + rt) − ∂c∗

t + wt
∂l∗t

]
. (A.4)
∂at ∂at
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Applying (A.1)–(A.2) to (A.4) gives the envelope theorem,

V 1(at; θt) = β(1 + rt)
(

Et V (a∗
t+1; θt+1)

1−α
)α/(1−α)

Et V (a∗
t+1; θt+1)

−α V 1(a
∗
t+1; θt+1) (A.5)

and the Benveniste–Scheinkman equation (11),

V 1(at; θt) = (1 + rt)u1(c∗
t , l∗t ) . (A.6)

From (A.5), (A.3) equals

−β
(

Et V (a∗
t+1; θt+1)

1−α
)α/(1−α)

Et V (a∗
t+1; θt+1)

−α V 1(a
∗
t+1; θt+1)dμ. (A.7)

Turning now to the gamble in (7), the household’s optimal choices for consumption and labor in period t , c∗
t and l∗t , will 

generally depend on the size of the gamble σ —for example, the household may undertake precautionary saving when faced 
with this gamble. Thus, in this section we write c∗

t ≡ c∗(at; θt; σ) and l∗t ≡ l∗(at; θt; σ) to emphasize this dependence on σ . 
The household’s value function, inclusive of the one-shot gamble in (7), satisfies

V̂ (at; θt;σ) = u(c∗
t , l∗t ) + βEt

(
V (a∗

t+1; θt+1)
1−α

)1/(1−α)
, (A.8)

where a∗
t+1 ≡ (1 + rt)at + wtl∗t + dt − c∗

t + σεt+1. Because (7) describes a one-shot gamble in period t , it affects assets a∗
t+1

in period t + 1 but does not appear in future periods’ budget constraints and otherwise does not affect the household’s 
optimization problem from period t + 1 onward; as a result, the household’s value-to-go at time t + 1 is just V (a∗

t+1; θt+1), 
which does not depend on σ except through a∗

t+1.
Differentiating (A.8) with respect to σ , the first-order effect of the gamble on household welfare is:[

u1
∂c∗

∂σ
+ u2

∂l∗

∂σ
+ β

(
Et V 1−α

)α/(1−α)
Et V −α V 1 · (wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)]
dσ , (A.9)

where the arguments of u1, u2, V , and V 1 are suppressed to simplify notation. Optimality of c∗
t and l∗t implies that the 

terms involving ∂c∗/∂σ and ∂l∗/∂σ cancel, as in the usual envelope theorem (these derivatives vanish at σ = 0 anyway, 
for the reasons discussed below). Moreover, Et V −α V 1εt+1 = 0 because εt+1 is independent of θt+1 and a∗

t+1, evaluating the 
latter at σ = 0. Thus, the first-order cost of the gamble is zero, as in Arrow (1965) and Pratt (1964).

To second order, the effect of the gamble on household welfare is{
u11

(
∂c∗

∂σ

)2

+ 2u12
∂c∗

∂σ

∂l∗

∂σ
+ u22

(
∂l∗

∂σ

)2

+ u1
∂2c∗

∂σ 2
+ u2

∂2l∗

∂σ 2

+ αβ
(

Et V 1−α
)(2α−1)/(1−α)

[
Et V −α V 1 ·

(
wt

∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)]2

− αβ
(

Et V 1−α
)α/(1−α)

Et V −α−1
[

V 1 ·
(

wt
∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)]2

+ β
(

Et V 1−α
)α/(1−α)

Et V −α V 11 ·
(

wt
∂l∗

∂σ
− ∂c∗

∂σ
+ εt+1

)2

+ β
(

Et V 1−α
)α/(1−α)

Et V −α V 1 ·
(

wt
∂2l∗

∂σ 2
− ∂2c∗

∂σ 2

)}
dσ 2

2
. (A.10)

The terms involving ∂2c∗/∂σ 2 and ∂2l∗/∂σ 2 cancel due to the optimality of c∗
t and l∗t . The derivatives ∂c∗/∂σ and ∂l∗/∂σ

vanish at σ = 0 (there are two ways to see this: first, the linearized version of the model is certainty equivalent; alterna-
tively, if the distribution of ε is symmetric about zero, the gamble in (7) is isomorphic for positive and negative σ , hence 
c∗ and l∗ must be symmetric about σ = 0, implying the derivatives vanish). Finally, εt+1 is independent of θt+1 and a∗

t+1, 
evaluating the latter at σ = 0. Since εt+1 has unit variance, (A.10) reduces to

β
(

Et V 1−α
)α/(1−α)

(
Et V −α V 11 − αEt V −α−1 V 2

1

) dσ 2

2
. (A.11)

Equating (A.7) to (A.11) allows us to solve for dμ as a function of dσ 2. Thus, limσ→0 2μ(σ )/σ 2 exists and is given by

−Et V −α V 11 + αEt V −α−1 V 2
1

Et V −α V 1
. (A.12)

Since (A.12) is already evaluated at σ = 0, to evaluate it at the nonstochastic steady state, set at+1 = a and θt+1 = θ to 
get
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−V 11(a; θ)

V 1(a; θ)
+ α

V 1(a; θ)

V (a; θ)
. � (A.13)

Proof of Lemma 2. Equations (A.1), (A.4), and the envelope theorem imply the household’s intertemporal optimality (Euler) 
condition,

u1(c∗
t , l∗t ) = β

(
Et V (a∗

t+1; θt+1)
1−α

)α/(1−α)
Et V (a∗

t+1; θt+1)
−α(1 + rt+1) u1(c∗

t+1, l∗t+1). (A.14)

Differentiating (A.14) with respect to at at the nonstochastic steady state implies

u11

(
∂c∗

t

∂at
− Et

∂c∗
t+1

∂at

)
= −u12

(
∂l∗t
∂at

− Et
∂l∗t+1

∂at

)
(A.15)

in a neighborhood of the steady state, where the arguments of the uij are suppressed to reduce notation. Using (14), this 
implies

(u11 − λu12)

(
∂c∗

t

∂at
− Et

∂c∗
t+1

∂at

)
= 0 (A.16)

and thus

Et
∂c∗

t+1

∂at
= ∂c∗

t

∂at
, (A.17)

since u11 − λu12 < 0 by concavity. Equations (A.14)–(A.17) can be iterated forward to yield

Et
∂c∗

t+k

∂at
= ∂c∗

t

∂at
, k = 1,2, . . . , (A.18)

whatever the initial response ∂c∗
t /∂at . From (14) and (A.18), it also follows that

Et
∂l∗t+k

∂at
= ∂l∗t

∂at
, k = 1,2, . . . (A.19)

It remains to solve for ∂c∗
t /∂at . The household’s intertemporal budget constraint (1)–(2), evaluated at steady state, implies

1 + r

r

∂c∗
t

∂at
= (1 + r) + w

1 + r

r

∂l∗t
∂at

. (A.20)

Substituting (14) into (A.20) and solving for ∂c∗
t /∂at yields

∂c∗
t

∂at
= r

1 + wλ
. � (A.21)

Proof of Lemma 5. Differentiating the household’s Euler equation (A.14) at the nonstochastic steady state implies

u11(dc∗
t − Etdc∗

t+1) + u12(dl∗t − Etdl∗t+1) = βu1 Etdrt+1, (A.22)

which, applying (43), becomes

(u11 − λu12)(dc∗
t − Etdc∗

t+1) − u1u12

u22 + wu12
(dwt − Etdwt+1) = βu1 Etdrt+1. (A.23)

Note that (A.23) implies, for each k = 1, 2, . . . ,

Etdc∗
t+k = dc∗

t − u1u12

u11u22 − u2
12

(dwt − Etdwt+k) − βu1

u11 − λu12
Et

k∑
i=1

drt+i . (A.24)

Combining (1)–(2), differentiating, and evaluating at the nonstochastic steady state yields

Et

∞∑
k=0

1

(1 + r)k
(dc∗

t+k − wdl∗t+k − ldwt+k − ddt+k − adrt+k) = (1 + r)dat . (A.25)

Substituting (43) and (A.24) into (A.25), and solving for dc∗
t , yields
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dc∗
t = r

1 + r

1

1 + wλ

[
(1 + r)dat + Et

∞∑
k=0

1

(1 + r)k
(l dwt+k + ddt+k + adrt+k)

]

+ u1u12

u11u22 − u2
12

dwt + 1

1 + r

−u1

u11 − λu12
Et

∞∑
k=0

1

(1 + r)k

[
rλ

1 + wλ
dwt+k − βdrt+k+1

]
. � (A.26)

Proof of Lemma 6. Differentiating equation (6) and evaluating at the nonstochastic steady state implies

dVt = u1dc∗
t + u2dl∗t + βEtdVt+1. (A.27)

Solving (A.27) forward and applying (43) yields

dVt =
∞∑

k=0

βku1(1 + wλ)Etdc∗
t+k −

∞∑
k=0

βk u1u2

u22 + wu12
Etdwt+k . (A.28)

Substituting (A.24) into (A.28) and simplifying yields

dVt = 1 + r

r
u1(1 + wλ)dc∗

t − 1 + r

r

u2
1u12(1 + wλ)

u11u22 − u2
12

dwt

+
∞∑

k=0

βk u1(u1u12 − u2u11)

u11u22 − u2
12

Etdwt+k − u2
1(1 + wλ)

u11 − λu12

1

1 − β

∞∑
k=1

βk+1 Etdrt+k . (A.29)

Substituting (A.26) into (A.29) and simplifying gives

dVt = u1(1 + r)dat + u1 Et

∞∑
k=0

1

(1 + r)k
(ldwt+k + ddt+k + adrt+k). � (A.30)

Proof of Lemma 9. i) The household’s Euler equation (A.14), evaluated along the (nonstochastic) balanced growth path, 
implies

u1(cbg
t , l) = β(1 + r)u1(cbg

t+1, l) = β(1 + r)u1(Gcbg
t , l). (A.31)

Similarly, for labor,

u2(cbg
t , l) = β(1 + r)

wbg
t

wbg
t+1

u2(cbg
t+1, l) = β(1 + r)G−1u2(Gcbg

t , l). (A.32)

As in King et al. (2002), assume that preferences u are consistent with balanced growth for all initial asset stocks and 
wages in a neighborhood of abg

t and wbg
t , and hence for all initial values of (ct , lt) in a neighborhood of (cbg

t , l). Thus, (A.31)
and (A.32) can be differentiated to yield:

u11(cbg
t , l) = β(1 + r)G u11(Gcbg

t , l), (A.33)

u12(cbg
t , l) = β(1 + r) u12(Gcbg

t , l), (A.34)

u22(cbg
t , l) = β(1 + r)G−1 u22(Gcbg

t , l). (A.35)

Substituting (A.33)–(A.35) into (15) gives

λ
bg
t+1 = wbg

t+1u11(cbg
t+1, l) + u12(cbg

t+1, l)

u22(cbg
t+1, l) + wbg

t+1u12(cbg
t+1, l)

= G−1λ
bg
t , (A.36)

ii) Assumptions 1–6 imply (11)–(15) in the text and the Euler equation (A.14). Hence

(
u11(cbg

t , l) − λ
bg
t u12(cbg

t , l)
)∂c∗

t

∂at
= β(1 + r)

(
u11(cbg

t+1, l) − λ
bg
t+1u12(cbg

t+1, l)
)∂c∗

t+1

∂at
. (A.37)

Solving for ∂c∗
t+1/∂at and using (A.33)–(A.36) yields ∂c∗

t+1/∂at = G ∂c∗
t /∂at .

iii) Follows from (14), (A.33)–(A.36), and ii).
iv) Use the household’s budget constraint (1)–(2) and ii) to solve for ∂c∗

t /∂at . �
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Proof of Proposition 10. Proposition 1 implies (59). Assumptions 1–6 imply (11)–(15). Substituting (11)–(14) and 
Lemma 9(iv) into (59) gives

Ra(abg
t ; θbg

t ) = −u11(cbg
t+1, l) + λ

bg
t+1u12(cbg

t+1, l)

u1(cbg
t+1, l)

1 + r − G

1 + wbg
t+1λ

bg
t+1

+ α
(1 + r)u1(cbg

t+1, l)

V (abg
t+1; θbg

t+1)
. (A.38)

Expressing V (abg
t+1; θbg

t+1) in terms of period utility u is made slightly more complicated by the presence of balanced growth, 
since now the arguments of u are not constant but rather grow over time.

King et al. (1988, 2002) show that, to be consistent with balanced growth, u(ct , lt) must have the functional form

u(ct, lt) = c1−γ
t

1 − γ
v(l̄ − lt) (A.39)

or, as γ → 1,

u(ct, lt) = log ct + v(l̄ − lt), (A.40)

where v(·) in (A.39) or (A.40) is differentiable, increasing, and concave, but otherwise unrestricted. Since the balanced 
growth path is nonstochastic, the allowable functional forms for u(ct , lt) are the same for the case of generalized recursive 
preferences as they are for expected utility.

If u has the form (A.39), then

V (abg
t ; θbg

t ) = 1

1 − βG1−γ
u(cbg

t , l) (A.41)

and

βV (abg
t+1; θbg

t+1) = V (abg
t ; θbg

t ) − u(cbg
t , l) = βG1−γ

1 − βG1−γ
u(cbg

t , l). (A.42)

Moreover, β(1 + r) = Gγ . Substituting (A.31), (A.33)–(A.36), and (A.42) into (A.38) then completes the proof.
If u has the form (A.40), then

V (abg
t ; θbg

t ) = 1

1 − β
u(cbg

t , l) + β

(1 − β)2
log G, (A.43)

βV (abg
t+1; θbg

t+1) = β

1 − β
u(cbg

t , l) + β

(1 − β)2
log G, (A.44)

and β(1 + r) = G . Substituting (A.31), (A.33)–(A.36), and (A.44) into (A.38) yields

Ra(abg
t ; θbg

t ) = −u11 + λ
bg
t u12

u1

1+r
G − 1

1 + wbg
t λ

bg
t

+ α
(1 + r

G
− 1

) u1

u + 1+r
1+r−G log G

. (A.45)

This differs from (60) by the addition of the constant term log G
1− G

1+r
to u. Thus, in the case of log preferences, u in (60) must 

be interpreted to include the additive constant log G
1− G

1+r
. �

Proof of Corollary 11. As in Definitions 2–3, define wealth Abg
t in beginning- rather than end-of-period-t units; this requires 

multiplying by (1 + r)−1G rather than just (1 + r)−1. Then the present discounted value of consumption along the balanced 
growth path is given by Abg

t = cbg
t /

( 1+r
G −1

)
, and the present discounted value of leisure by wbg

t (l̄−l)/
( 1+r

G −1
)
. Substituting 

these into Proposition 10 completes the proof. �
Numerical solution procedure for Sections 4–5

The equations of the RBC model itself are standard:

Yt = Zt K 1−θ
t−1 Lθ

t , (A.46)

Kt = (1 − δ)Kt−1 + Yt − Ct, (A.47)

ηLχ
t /C−γ

t = wt, (A.48)

rt = (1 − θ)Yt/Kt−1 − δ, (A.49)

wt = θYt/Lt, (A.50)

log Zt = ρ log Zt−1 + εt, (A.51)



E.T. Swanson / Review of Economic Dynamics 28 (2018) 290–321 319
where, for concreteness, I use the additively separable preference specification from Examples 3 and 5 in (A.48) and through-
out this section. In equations (A.46)–(A.51), note that Kt−1 denotes the capital stock at the beginning of period t (or the end 
of period t − 1), so the notation differs slightly from the main text for compatibility with the numerical algorithm below.

Because of the generalized recursive structure of household preferences, the household’s Euler equation (A.14) involves 
the value function. Following Rudebusch and Swanson (2012), I use two equations to compute the value function in the 
model, as follows:

Vt = C1−γ
t

1 − γ
− η

L1+χ
t

1 + χ
+ β VTWIST1/(1−α)

t , (A.52)

VTWISTt = Et V 1−α
t+1 . (A.53)

The household’s Euler equation (A.14) then can be written as

C−γ
t = βEt(1 + rt+1)

(
Vt+1/VTWIST1/(1−α)

t

)−α
C−γ

t+1. (A.54)

To compute wealth-gamble risk aversion in the model, we can append the following auxiliary variables and equations to 
the system (A.46)–(A.54)52:

λt = (γ /χ)Lt/Ct, (A.55)

CARAt =
Et V −α

t+1

[
(1 + rt+1)(γ C−γ −1

t+1 DCDAt+1) + α(1 + rt+1)
2C−2γ

t+1 /Vt+1

]
V1EXPt

, (A.56)

V1EXPt = Et V −α
t+1(1 + rt+1)C−γ

t+1. (A.57)

−γ C−γ −1
t DCDAt = βEt

[ − γ VTWISTα/(1−α)
t V −α

t+1(1 + rt+1)C−γ −1
t+1 DCDAt+1

− αVTWISTα/(1−α)
t V −α−1

t+1 (1 + rt+1)
2C−2γ

t+1

+ αVTWIST(α/(1−α))−1
t V1EXP2

t

][
(1 + rt) − (1 + wtλt)DCDAt

]
, (A.58)

PDVCt = Ct + βEt C−γ
t+1/C−γ

t

(
Vt+1/VTWIST1/(1−α)

t

)−α
PDVCt+1. (A.59)

CRRAt = CARAtPDVCt /(1 + rt). (A.60)

Equation (A55) corresponds to (14), (A.56)–(A.57) to Proposition 1, and (A.59)–(A.60) to Definition 2. Equations (11)–(12)
are used to rewrite V 1 and V 11 in terms of derivatives of u. The variable DCDAt corresponds to ∂c∗

t /∂at ; equation (A.58) is 
the derivative of (A.14) with respect to at , which determines how ∂c∗

t /∂at evolves over time. Note that

∂c∗
t+1

∂at
= ∂c∗

t+1

∂a∗
t+1

[
(1 + rt) − wtλt

∂c∗
t

∂at
− ∂c∗

t

∂at

]
, (A.61)

which is used in (A.58).
We can then solve the system of equations (A.46)–(A.60) numerically using the Perturbation AIM algorithm of Swanson 

et al. (2006) to compute a fifth-order Taylor series approximate solution around the nonstochastic steady state. These nth-
order Taylor series approximations are guaranteed to be arbitrarily accurate in a neighborhood of the nonstochastic steady 
state, but importantly also converge globally within the domain of convergence of the Taylor series as the order of the ap-
proximation n becomes large. In practice, the solution seemed to converge globally over the range of values considered for 
the state variables in Figs. 1–5 by about the third or fourth order, so solutions higher than the fifth order are not reported. 
Aruoba et al. (2006) solve a standard real business cycle model like (A.46)–(A.60) using a variety of numerical methods, in-
cluding second- and fifth-order perturbation methods, and find that the perturbation solutions are among the most accurate 
methods globally, as well as being the fastest to compute.
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