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Abstract

I show that a simple, structural New Keynesian model with Epstein-Zin pref-
erences is consistent with a wide variety of asset pricing facts, such as the size
and variability of risk premia on equities, real and nominal government bonds,
and corporate bonds—the equity premium puzzle, bond premium puzzle, and
credit spread puzzle, respectively. I thus show how to unify a variety of asset
pricing puzzles from finance into a simple, structural framework. Conversely, I
show how to bring standard macroeconomic models into agreement with a wide
range of asset pricing facts.

JEL Classification: E32, E43, E44, E52, G12

Version 2.1

September 25, 2021

I thank Martin Andreasen, Ian Dew-Becker, Anthony Diercks, Leland Farmer, Andrew Glover,
SungJun Huh, Sebastián Infante, Hanno Lustig, Jean-Paul Renne, Anastasia Zervou, and semi-
nar participants at the Aarhus/CREATES Macro-Finance workshop, NBERSI DSGE Modeling
Meeting, Macro Modeling Workshop at the Banca d’Italia, EABCN-ECB-FRB Atlanta Nonlin-
earities in Macro Conference, SED Meetings, Econometric Society World Congress, UT Austin,
Bank of Canada/Federal Reserve Bank of San Francisco Conference on Fixed Income, and Santi-
ago Finance Workshop for helpful discussions, comments, and suggestions. The views expressed
in this paper, and any errors and omissions, should be regarded as those solely of the author and
are not necessarily those of the individuals or groups listed above.



1

1. Introduction

Traditional macroeconomic models, such as Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2007), ignore asset prices and risk premia and, in fact, do a notoriously poor job of

matching financial market variables (e.g., Mehra and Prescott, 1985; Backus, Gregory, and Zin,

1989; Rudebusch and Swanson, 2008). At the same time, traditional finance models, such as Dai

and Singleton (2003) and Fama and French (2015), ignore the real economy—even when these

models use a stochastic discount factor or consumption rather than a latent factor framework,

those economic variables are typically taken to be exogenous, reduced-form processes.

Yet despite this traditional separation, the linkages between the real economy and financial

markets can be very important. During the 2007–09 global financial crisis and 2010–14 European

sovereign debt crisis, declining asset values caused lending and the real economy to plummet, while

the deteriorating economy caused private-sector risk premia to increase and asset prices to spiral

further downward (e.g., Mishkin, 2011; Gorton and Metrick, 2012; Lane, 2012). These crises

also led to dramatic fiscal and monetary policy interventions that were well beyond the range

of past experience.1 Reduced-form finance models that perform well based on past empirical

correlations may perform very poorly when those past correlations no longer hold, such as when

there is a structural break or unprecedented policy intervention as observed during these crises.

A structural macroeconomic model is more robust to these breaks and can immediately provide

insights into their effects on financial markets and the real economy. Structural macroeconomic

models can also provide useful intuition about why output, inflation, and asset prices co-move in

certain ways and how that comovement may change after a novel policy intervention or structural

break.

In the present paper, I develop a simple, structural macroeconomic model that is consistent

with a wide range of asset pricing facts, such as the size and variability of risk premia on equities

and real, nominal, and defaultable debt. Thus, unlike traditional macroeconomic models, the

model I present here is able to match asset prices and risk premia remarkably well. Unlike

traditional finance models, the model here can provide insight into the effects of novel policy

1For example, the U.S. Treasury bought large equity stakes in automakers and financial institutions, and insured
money market mutual funds to prevent them from “breaking the buck.” The Federal Reserve purchased very large
quantities of longer-term Treasury and mortgage-backed securities and gave explicit forward guidance about the
likely path of the federal funds rate for years into the future. See, e.g., Mishkin (2011) and Gorton and Metrick
(2012). For Europe, the European Union established the European Stability Mechanism to provide quick financial
backing to member countries in need, while the European Central Bank provided large and unprecedented three-
year loans to banks and announced that it would purchase large quantities of euro area members’ bonds if the
yields on those bonds became excessively stressed (e.g., Wall Street Journal, 2012; European Central Bank, 2012).
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interventions and structural breaks on asset prices, and provides a unified structural explanation

for the behavior of risk premia for a variety of asset classes.

The model has two essential ingredients: generalized recursive preferences, as in Epstein and

Zin (1989) and Weil (1989), and nominal rigidities, as in the textbook New Keynesian models of

Woodford (2003) and Gaĺı (2008). Generalized recursive preferences allow the model to generate

substantial risk premia without greatly distorting the behavior of macroeconomic aggregates,

while nominal rigidities allow the model to match the behavior of inflation, nominal interest

rates, and nominal assets such as Treasuries and corporate bonds.

My results have important implications for both macroeconomics and finance. For macroe-

conomics, I show how standard dynamic structural general equilibrium (DSGE) models can be

brought into agreement with a wide variety of asset pricing facts. I thus address Cochrane’s

(2008) critique that a failure of macroeconomic models to match even basic asset pricing facts

is a sign of fundamental flaws in those models.2 Moreover, bringing those models into better

agreement with asset prices makes it possible to use those models to study the linkages between

risk premia, financial markets, and the real economy.

For finance, I unify a variety of asset pricing puzzles into a simple, structural framework.

This framework can then be used to study the relationships between the different puzzles with

each other and with the economy. For example, Backus, Gregory, and Zin (1989), Donaldson,

Johnsen, and Mehra (1990), and Den Haan (1995) argue that the yield curve ought to slope

downward on average because interest rates tend to be low during recessions, implying that bond

prices are high when consumption is low (which would lead to an insurance-like, negative risk

premium). According to the model here, the nominal yield curve can slope upward even if the real

yield curve slopes downward if technology shocks (or other “supply” shocks) are an important

source of economic fluctuations. Technology shocks cause inflation to rise when consumption

falls, so that long-term nominal bonds lose rather than gain value in recessions, implying a

positive risk premium. Similarly, the model I present here can be used to study the changes in

correlations between stock and bond returns documented by Baele, Bekaert, and Inghelbrecht

(2010), Campbell, Sundaram, and Viceira (2017), and others.

Previous macroeconomic models of asset prices have tended to focus exclusively on a single

2As Cochrane (2008) points out, asset markets are the mechansim by which marginal rates of substitution are
equated to marginal rates of transformation in a macroeconomic model. If the model is wildly inconsistent with
basic asset pricing facts, then by what mechanism does the model equate these marginal rates of substitution and
transformation?
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type of asset, such as equities (e.g., Boldrin, Christiano, and Fisher, 2001; Tallarini, 2001; Gu-

venen, 2009; Barillas, Hansen, and Sargent, 2009) or debt (e.g., Rudebusch and Swanson, 2008,

2012; Van Binsbergen et al., 2012; Andreasen, 2012). A disadvantage of this approach is that it’s

unclear whether the results in each case generalize to other asset classes. For example, Boldrin et

al. (2001) show that capital immobility in a two-sector DSGE model can fit the equity premium

by making the price of capital (and equity) more volatile, but this mechanism does not explain

subtantial risk premia on long-term government bonds, which involve the valuation of a fixed

stream of coupon payments. By focusing on multiple asset classes, I impose additional discipline

on the model and ensure that its results apply more generally. Matching the behavior of a variety

of assets also helps to identify model parameters, since different types of assets are relatively

more informative about different aspects of the model. For example, nominal assets are helpful

for identifying parameters related to inflation, and long-lived equities provide information about

the persistence of shocks and household’s generalized recursive preferences.

The four papers most closely related to my analysis are Tallarini (2001), Rudebusch and

Swanson (2012), Campbell, Pflueger, and Viceira (2020), and Pflueger and Rinaldi (2021). Tal-

larini (2001) incorporates Epstin-Zin-Weil preferences into a standard real business cycle model

to match the equity premium. Relative to Tallarini (2001), the model here matches nominal as

well as real features of the economy, explains the behavior of multiple assets (equities and real,

nominal, and defaultable debt), and works within a standard New Keynesian DSGE framework

rather than a real business cycle model, which allows monetary policy to have nontrivial effects on

asset prices and the economy. Rudebusch and Swanson (2012) incorporate Epstein-Zin-Weil pref-

erences into a standard New Keynesian DSGE model to match the behavior of nominal long-term

bonds.3 In contrast to Rudebusch and Swanson (2012), the model here is substantially simpler (to

clarify its essential features) and is extended to match the behavior of additional asset classes (eq-

uities, real debt, and defaultable debt). Campbell, Pflueger, and Viceira (2020, henceforth CPV)

study stock and bond prices in a New Keynesian model with fixed labor and Campbell-Cochrane

(1999) consumption habits. In contrast to CPV, I use Epstein-Zin-Weil (EZW) preferences rather

than Campbell-Cochrane habits; EZW preferences allow households to have essentially any period

utility function and any intertermporal elasticity of substitution (IES), while Campbell-Cochrane

habits require a very special, highly nonlinear period utility function with an extremely low IES.

Moreover, the results in CPV do not in general carry over to a model with flexible labor, since

3See also Van Binsbergen et al. (2012) and Andreasen (2012), who undertake similar analyses.
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households with Campbell-Cochrane habits and flexible labor typically vary their hours of work

endogenously to smooth consumption, so much so that risk premia are essentially eliminated

(Lettau and Uhlig, 2000; Rudebusch and Swanson, 2008). Finally, Pflueger and Rinaldi (2021)

address the shortcomings of CPV by considering a fully structural New Keynesian model with

flexible labor, Campbell-Cochrane habits, and Greenwood, Hercowitz, and Huffman (1988) prefer-

ences; the use of GHH preferences removes households’ incentive to vary labor supply in response

to asset value shocks, allowing their model to match risk premia even with flexible labor. Like

Pflueger and Rinaldi (2021), I work with a fully structural New Keynesian model with flexible

labor; unlike those authors, I use EZW preferences rather than Campbell-Cochrane habits to

match the data, which have the advantages discussed above.

A number of other papers have studied stock and bond prices jointly in a reduced-form affine

framework (e.g., Eraker, 2008; Bekaert, Engstrom, and Grenadier, 2010; Lettau and Wachter,

2011; Ang and Ulrich, 2013; Koijen, Lustig, and Van Nieuwerburgh, 2013).4 Some of these

studies work with latent factors, ignoring the real economy, while others relate asset prices to the

reduced-form behavior of consumption; however, none of them use a structural macroeconomic

model, which has the advantages described above. Although reduced-form models sometimes

fit the data better than structural macroeconomic models, this can simply be a tautological

implication of Roll’s (1977) critique (that any mean-variance efficient portfolio perfectly fits the

mean returns of all assets), as noted by Cochrane (2008). It is only the correspondence of financial

risk factors to plausible economic risks that makes reduced-form financial factors interesting.

Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), and

Chen (2010) model equity and corporate bond prices jointly in an endowment economy. Those

authors undertake a more detailed, structural analysis of the corporate financing decision than I

consider here, but at a cost of working in a much simpler, reduced-form macroeconomic environ-

ment. In other words, I use a simple, reduced-form model of the firm in order to better focus on

the structural behavior of the economy, while those authors use a simple, reduced-form model of

the macroeconomy to better focus on the structural finance behavior of the firm. The advantages

of the structural macroeconomic approach I take here are discussed above.

Throughout the present paper, a recurring theme is the simplicity of the model, in the

interest of clarity and to help provide intuition for the underlying mechanisms. Thus, the model

4See also Campbell, Sundaram, and Viceira (2017), who price stocks and bonds jointly in a quadratic latent-
factor framework.
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here is not designed to match very detailed features of the economy or asset prices; indeed, if one

pushes the model far enough, it is certain to fail at matching some features of financial markets

or the macroeconomy. Thus, the model here should be viewed as a “proof of concept” that the

standard New Keynesian DSGE framework can be adapted to match asset prices quite well and

shows a great deal of promise for future development in this direction. The approach I take here

is thus analogous to Kydland and Prescott (1982), who showed that the stochastic growth model

could be extended to match key features of business cycle fluctuations; their stylized model failed

to match many details of business cycles (e.g., unemployment, inflation), but provided a first step

toward the equilibrium modeling of these phenomena.

The remainder of the paper proceeds as follows. In Section 2, I develop a simple New

Keynesian DSGE model with Epstein-Zin preferences, show how to solve the model, and discuss

the calibration of the model and its implications for macroeconomic quantities. In Section 3,

I derive the prices of stocks and real, nominal, and defaultable bonds within the framework of

the model, and compare the behavior of those asset prices to the data. In Section 4, I discuss a

number of important features of the model, such as endogenous conditional heteroskedasticity and

endogenous uncertainty vs. exogenous uncertainty shocks. Section 5 concludes. Two Appendices

present all the equations of the model, discuss the numerical solution method in more detail, and

provide additional figures and analysis of the basic results.

2. A Simple Macroeconomic Model

In this section, I develop a simple dynamic macroeconomic model with generalized recursive

preferences and nominal rigidities. Generalized recursive preferences, as in Epstein and Zin (1989)

and Weil (1989), are required for the model to match the size of risk premia in the data.5 Nominal

rigidities are necessary for the model to match the basic behavior of inflation, nominal interest

rates, and nominal assets such as Treasuries and corporate bonds.

Throughout this section, I strive to keep the model as simple as possible while still matching

the essential behavior of macroeconomic variables and asset prices. The goal is to maximize

intuition and insight into the relationships between the macroeconomy and asset prices, and

avoid tangential complications. For this reason, I deliberately follow the very simple, “textbook”

5See Lettau and Uhlig (2000) and Rudebusch and Swanson (2008) for a discussion of why habits in household
preferences, such as Campbell and Cochrane (1999), are unable to match the size of risk premia in DSGE models
with flexible labor.
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New Keynesian models of Woodford (2003) and Gaĺı (2008), extended to the case of generalized

recursive preferences. In principle, more realistic, medium-scale New Keynesian models such as

Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007) could also be extended

to the case of Epstein-Zin preferences to achieve an even better empirical fit to the data, but at

the cost of being much more complicated.

2.1 Households

Time is discrete and continues forever. There is a unit continuum of representative households,

each with generalized recursive preferences as in Epstein and Zin (1989) and Weil (1989). In each

period t, the representative household receives the utility flow

u(ct, lt) ≡ log ct − η
l1+χ
t

1 + χ
, (1)

where ct and lt denote household consumption and labor in period t, respectively, and η > 0

and χ > 0 are parameters. Note that equation (1) differs from Epstein and Zin (1989) and Weil

(1989) in that period utility depends on labor as well as consumption.

The assumption of additive separability in (1) follows Woodford (2003) and Gaĺı (2008) and

simplifies many aspects of the model. For example, the household’s intertemporal elasticity of

substitution is unity, its Frisch elasticity of labor supply is 1/χ, and its stochastic discount factor

(defined below) is related to ct+1/ct; without additive separability, the expressions for these

quantities would all be much more complicated. The similarity of the stochastic discount factor

to versions of the model without labor also facilitates comparison to the finance literature. In

addition, assuming logarithmic preferences over consumption ensures that the model is consistent

with balanced growth (King, Plosser, and Rebelo, 1988, 2002) and is a standard benchmark in

macroeconomics (e.g., King and Rebelo, 1999).

Households can borrow and lend in a default-free one-period nominal bond market at the

continuously-compounded interest rate it. The use of continuous compounding simplifies the

bond-pricing equations below and enhances comparability to the finance literature. Each period,

the household faces a flow budget constraint

at+1 = eitat + wtlt + dt − Ptct, (2)

where at denotes beginning-of-period nominal bonds, wt and dt denote the nominal wage and

exogenous transfers to the household, respectively, and Pt denotes the price of consumption. The
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household faces a standard no-Ponzi-scheme constraint,

lim
T→∞

Et

T∏
τ=t

e−iτ+1aT+1 ≥ 0. (3)

Let (ct, lt) ≡ {(cτ , lτ )}∞τ=t denote a state-contingent plan for household consumption and

labor from time t onward, where the explicit state-dependence of the plan is suppressed to reduce

notation. Following Epstein and Zin (1989), Weil (1989), and Tallarini (2001), I assume that the

household has preferences over state-contingent plans ordered by the recursive functional

Ṽ (ct, lt) = (1− β) u(ct, lt) − βα−1log
[
Et exp

(−αṼ (ct+1, lt+1)
)]
, (4)

where β ∈ (0, 1) and α ∈ R are parameters, Et denotes the mathematical expectation conditional

on the state of the economy at time t, and (ct+1, lt+1) denotes the state-contingent plan (ct, lt)

from date t + 1 onward. The case α = 0 in (4) is defined by letting α → 0 and corresponds to

the special case of expected utility preferences. When α �= 0 in (4), the expectation operator is

effectively “twisted” and “untwisted” by the exponential function with coefficient −α. This leaves
the household’s intertemporal elasticity of substitution in (4) the same as for expected utility, but

amplifies (or attenuates) the household’s risk aversion with respect to gambles over future utility

flows by the additional curvature parameter α, with larger values of α corresponding to greater risk

aversion. Thus, generalized recursive preferences allow the household’s intertemporal elasticity of

substitution and coefficient of relative risk aversion to be parameterized independently. Following

Hansen and Sargent (2001), the specific form of generalized recursive preferences in (4) is often

referred to as “multiplier preferences”.

In each period, the household maximizes (4) subject to the budget constraint (2)–(3). The

state variables of the household’s optimization problem are at and Θt, where the latter is a

vector denoting the state of the aggregate economy at time t. The household’s “generalized value

function” V (at; Θt) satisfies the generalized Bellman equation

V (at; Θt) = max
(ct,lt)

(1− β) u(ct, lt) − βα−1log
[
Et exp

(−αV (at+1; Θt+1)
)]
, (5)

where at+1 is given by (2).

It’s straightforward to show (e.g., Rudebusch and Swanson, 2012), that the household’s

stochastic discount factor is given by

mt+1 ≡ β
ct
ct+1

exp
(−αV (at+1; Θt+1)

)
Et exp

(−αV (at+1; Θt+1)
) . (6)
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Let rt denote the one-period continuosly-compounded risk-free real interest rate. Then

e−rt = Etmt+1. (7)

2.2 Firms

The economy also contains a continuum of infintely-lived monopolistically competitive firms in-

dexed by f ∈ [0, 1], each producing a single differentiated good. Firms hire labor from households

in a competitive market and have identical Cobb-Douglas production functions,

yt(f) = Atk
1−θlt(f)

θ, (8)

where yt(f) denotes firm f ’s output, At is aggregate productivity affecting all firms, k and lt(f)

denote the firm’s capital and labor inputs at time t, respectively, and θ ∈ (0, 1) is a parameter.

For simplicity, following Woodford (2003) and Gaĺı (2008), I assume that firms’ capital stocks are

fixed, so that labor is the only variable input to production. Intuitively, movements in the capital

stock are small at business-cycle frequencies and are dominated by fluctuations in labor.6

Technology, At, follows an exogenous AR(1) process,

logAt = ρA logAt−1 + εAt , (9)

where ρA ∈ (−1, 1], and εAt denotes an i.i.d. white noise shock with mean zero and variance σ2
A.

For simplicity and comparability to the finance literature, I set ρA = 1 in the baseline calibration

of the model, below, but consider alternative values of ρA as well. For simplicity and ease of

exposition, I also abstract from trend technology growth—i.e., the mean of log(At/At−1) is 0.
7

Firms set prices optimally subject to nominal rigidities in the form of Calvo (1983) price

contracts, which expire with exogenous probability 1 − ξ each period, ξ ∈ [ 0, 1). Each time a

Calvo contract expires, the firm sets a new contract price p∗t (f) freely, which then remains in effect

for the life of the new contract, with indexation to the (continuously-compounded) steady-state

6Woodford (2003, p. 167) compares a model with fixed firm-specific capital to a model with endogenous capital
and investment adjustment costs and finds that the basic business-cycle features of the two models are very similar.
In models with endogenous capital (e.g., Christiano et al., 2005; Smets and Wouters, 2007; Altig et al., 2011),
investment adjustment costs are typically included to keep the capital stock stable at higher frequencies. Thus,
one can think of the fixed-capital assumption as a simple way of achieving the same result. Woodford (2003) and
Altig et al. (2011) also show that firm-specific capital stocks help generate inflation persistence that is consistent
with the data (see particularly Woodford, 2003, pp. 163-173).

7 If the mean rate of technology growth is μA, then the firm-specific capital stocks k must also grow at rate
μA/θ in order for the model to have balanced growth.



9

inflation rate π each period.8 In each period τ ≥ t that the contract remains in force, the firm

must supply whatever output is demanded at the contract price p∗t (f)e(τ−t)π, hiring labor lτ (f)

from households at the market wage wτ .

Firms are jointly owned by households and distribute all profits and losses back to house-

holds each period in an aliquot, lump-sum manner. When a firm’s price contract expires, the

firm chooses the new contract price p∗t (f) to maximize the value to shareholders of the firm’s cash

flows over the lifetime of the contract,9

∞∑
j=0

ξjEt

{
mt,t+j(Pt/Pt+j)

[
pt+j(f)yt+j(f)− wt+j lt+j(f)

] ∣∣∣ pt+j(f)= p∗t (f)e
jπ
}
, (10)

where mt,t+j ≡
∏j

i=1mt+i denotes shareholders’ stochastic discount factor from period t+ j back

to t and yt+j(f) and lt+j(f) denote the firm’s output and labor in period t + j, respectively,

conditional on the contract price p∗t (f) still being in effect.

The output of each firm f is purchased by a perfectly competitive final goods sector, which

aggregates the differentiated goods into a single final good using a CES production technology,

Yt =

[∫ 1

0

yt(f)
1/λdf

]λ
, (11)

where Yt denotes the quantity of the final good and λ > 1 is a parameter. Each intermediate firm

f thus faces a downward-sloping demand curve for its product with elasticity λ/(λ− 1),

yt(f) =

(
pt(f)

Pt

)−λ/(λ−1)

Yt, (12)

where pt(f) denotes the price in effect for firm f at time t (so pt(f) = p∗τ (f)e
(t−τ)π̄, where

τ ≤ t denotes the most recent period in which firm f reset its contract price), and Pt is the CES

aggregate price of the final good,

Pt ≡
[∫ 1

0

pt(f)
1/(1−λ)df

]1−λ

. (13)

Differentiating (10) with respect to p∗t (f) and setting the derivative equal to zero yields the

standard New Keynesian price optimality condition,

p∗t (f) = λ

∑∞
j=0 ξ

jEt

{
mt,t+j(Pt/Pt+j)yt+j(f)μt+j(f)

∣∣ pt+j(f)= p∗t (f)ejπ
}∑∞

j=0 ξ
jEt

{
mt,t+j(Pt/Pt+j)yt+j(f)ejπ̄

∣∣ pt+j(f)= p∗t (f)ejπ
} , (14)

8The assumption of indexation keeps the model well-behaved with respect to changes in steady-state inflation.
The continuous compounding is notationally simpler for some of the equations below.

9Equivalently, the firm can be viewed as choosing a state-contingent plan for prices that maximizes the value
of the firm to shareholders.
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where μt(f) denotes the nominal marginal cost for firm f at time t,

μt(f) ≡ wtlt(f)

θyt(f)
. (15)

That is, the firm’s optimal contract price p∗t (f) is a monopolistic markup λ over a discounted

weighted average of expected future marginal costs over the lifetime of the contract.10

2.3 Aggregate Resource Constraints and Government

Let Lt denote the aggregate quantity of labor demanded by firms,

Lt =

∫ 1

0

lt(f)df. (16)

Then Lt satisfies

Yt = Δ−1
t AtK

1−θLθ
t , (17)

where K =
∫ 1

0 k df = k denotes the aggregate capital stock and

Δt ≡
[∫ 1

0

(
pt(f)

Pt

)λ/((1−λ)θ)

df

]θ

(18)

measures the cross-sectional dispersion of prices across firms. Δt has a minimum value of unity

when pt(f) = Pt for all firms f ; a greater degree of cross-sectional price dispersion increases Δt

and reduces the economy’s efficiency at producing final output.11

Labor market equilibrium requires that Lt = lt, firms’ labor demand equals the aggregate

labor supplied by households. Equilibrium in the final goods market requires Yt = Ct, where

Ct = ct denotes aggregate consumption demanded by households. For simplicity, there are no

government purchases or investment in the baseline version of the model.

Finally, there is a monetary authority that sets the one-period nominal interest rate it

according to a Taylor (1993)-type policy rule,

it = r + πt + φπ(πt − π) +
φy
4
(yt − yt), (19)

10To be more precise, p∗t (f) is a weighted average of marginal costs deflated by the inflation index rate,

μt+j(f)/e
jπ̄ . In addition, the weights in (14) depend on yt+j(f), which depend on the left-hand-side variable

p∗t (f), so (14) is not a closed-form solution for p∗t (f). However, the closed-form solution for p∗t (f), reported in the
Appendix, has the same form as (14).

11See Section 4.1 for additional discussion of price dispersion in the model.
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where r = − log β denotes the continuously-compounded steady-state real interest rate, πt ≡
log(Pt/Pt−1) denotes the inflation rate, π the monetary authority’s inflation target, yt ≡ log Yt,

yt ≡ ρȳyt−1 + (1− ρȳ)yt (20)

denotes a trailing moving average of log output, and φπ, φy ∈ R and ρȳ ∈ [ 0, 1) are parameters.12

The term (πt − π) in (19) represents the deviation of inflation from policymakers’ target and

(yt − yt) is a measure of the “output gap” in the model.13

2.4 Solution Method

To solve the model, I first write each equation in recursive form, dividing nonstationary variables

(Yt, Ct, wt, etc.) by At so that the resulting ratios have a nonstochastic steady state.14 I then

use the method of local approximation around the nonstochastic steady state, or perturbation

methods, to compute a numerical solution to the model. The complete set of recursive equations

that define the model and additional discussion are provided in Appendix A.

Macroeconomic models similar to the one developed above are typically solved using a first-

order approximation (a linearization or log-linearization), but this solution method reduces all

risk premia in the model to zero.15 A second-order approximation to the model produces risk

premia that are nonzero but constant over time (a constant function of the variance σ2
A). In order

for risk premia in the model to vary with the state of the economy, the model must be solved

to at least third order around the steady state. Note that second- and third-order terms in the

12Note that interest rates and inflation in (19) are at quarterly rather than annual rates, so φy corresponds to
the sensitivity of the annualized short-term interest rate to the output gap, as in Taylor (1993). I also exclude a
lagged interest rate “smoothing” term on the right-hand side of (19) for simplicity. Rudebusch (2002) argues that
the degree of federal funds rate smoothing from one quarter to the next is essentially zero, and that instead the
residuals εit in the Taylor rule (19) are serially correlated.

13This is an empirically motivated definition of the output gap: it implies that the central bank will raise short-
term nominal interest rates when output rises above its recent history and lower rates when output falls below that
history, all else equal. The behavior of monetary policy is very important for the sign and size of risk premia on
nominal and real bonds in the model. In order for the model to match these risk premia in the data, it’s important
that monetary policy act in a way that is consistent with the data. Defining the output gap to be the deviation
of output from flexible-price output implies that interest rates would behave in an opposite manner, and generally
would not allow the model to match empirical risk premia on nominal and real bonds.

14The equity price pet (defined below) is normalized by Aν
t rather than At, where ν denotes the degree of leverage.

The value function Vt is normalized by defining Ṽt ≡ Vt − logAt.

15 In the finance literature, it is standard to log-linearize the model and then take expectations of all variables
assuming joint lognormality. This approximate solution method produces nonzero (but constant) risk premia,
but effectively treats higher-order moments of the lognormal distribution on par with first-order economic terms.
Standard perturbation methods (e.g., Judd, 1998; Swanson, Anderson, and Levin, 2006) explicitly relate higher-
order moments of the shock distribution to the corresponding order of the state variables (so variance is a second-
order term, skewness a third-order term, etc.), because their magnitudes are the same in theory.
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model solution can be non-negligible as long as the model is sufficiently “curved”, which is the

case when risk aversion (related to the Epstein-Zin parameter α) is sufficiently large.

I compute third- and higher-order solutions of the model using the Perturbation AIM al-

gorithm of Swanson, Anderson, and Levin (2006), which can compute general nth-order Taylor

series approximate solutions to discrete-time recursive rational expectations models. The model

above has two state variables (Δt, yt) and a single shock (εAt+1) and thus can be solved to third

order very quickly, in just a few seconds on a personal computer. To obtain greater accuracy

over a wider range of values for the state variables, the model can be solved to higher order;

the results reported below are for the fifth-order solution unless stated otherwise. (Results for

fourth- and sixth-order solutions are very similar, suggesting that the Taylor series has essentially

converged over the range of values considered for the state variables.) Aruoba et al. (2006) com-

pare a variety of numerical solution techniques for standard macroeconomic models and find that

higher-order perturbation solutions are among the most accurate globally as well as being the

fastest to compute. Corhay et al. (2019) solve a New Keynesian model with Epstein-Zin prefer-

ences and high risk aversion using both global projection and third-order perturbation methods,

and find that the two methods produce numerically very similar solutions. Swanson, Anderson,

and Levin (2006) provide details of the algorithm and discuss the global convergence properties

of nth-order Taylor series approximations.

A noteworthy feature of the nonlinear solution algorithm I use here, relative to the loglinear-

lognormal approximation typically used in finance, is that second- and higher-order terms of the

Taylor series display endogenous conditional heteroskedasticity. Letting xt denote a generic state

variable and εt+1 a generic shock, the second-order Taylor series solution has terms of the form

xtεt+1, which have a one-period-ahead conditional variance that depends on the economic state xt

(that is, Vart(xtεt+1) depends on xt). Thus, even though the model’s exogenous driving shocks

εAt+1 are homoskedastic, the nonlinear solution algorithm I use here preserves the endogenous

conditional heteroskedasticity that is naturally generated by the nonlinearities in the model.

2.5 Calibration

The model described above is meant to be illustrative rather than provide a comprehensive empir-

ical fit to the data, so I calibrate rather than estimate its key parameters. The baseline calibration

is reported in Table 1, and is meant to be standard, following along the lines of parameter val-

ues estimated by Smets and Wouters (2007), Altig et al. (2011), and Del Negro, Giannoni, and
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Table 1: Parameter Values, Baseline Calibration

β 0.9923 θ 0.6 φπ 0.5
χ 3 ξ 0.8 φy 0.75
η 0.545 λ 1.1 π 0.008

RRA(Rc) 60 ρA 1 ρȳ 0.9
σA 0.007

K/(4Y ) 2.5

Schorfheide (2015) using quarterly U.S. data.

I set the household’s discount factor, β, to .9923, implying a nonstochastic steady-state real

interest rate of about 3 percent per year. Although this might seem a bit high, households’ risk

aversion drives the unconditional mean of the risk-free real rate down to about 2 percent in the

stochastic case.

The household’s logarithmic preferences over consumption imply an intertemporal elasticity

of substitution of unity, which is higher than estimates based on aggregate data (e.g., Hall, 1988),

but is similar to estimates using household-level data (e.g., Vissing-Jorgensen, 2002). Bansal and

Yaron (2004) and Dew-Becker (2014) argue that estimates based on aggregate data are biased

downward, providing further support for the value of unity used here. In addition, logarith-

mic preferences over consumption are a standard benchmark in macroeconomics (e.g., King and

Rebelo, 1999).16

The calibrated value of χ = 3 implies a Frisch elasticity of labor supply of 1/3, consistent

with estimates in MaCurdy (1980) and Altonji (1986). I set the parameter η so as to normalize

L = 1 in steady state.

The parameter α is calibrated to imply a coefficient of relative risk aversion Rc = 60

in steady state, using the closed-form expressions derived in Swanson (2018) for models with

labor.17 Although this value is high, it is a well-known byproduct of the model’s simplicity:18

16My results are not sensitive to setting the IES equal to unity. For example, specifications with u(ct, lt) =

c1−γ
t /(1−γ)−ηl1+χ/(1+χ) produce very similar results when γ is set to 0.9 or 1.1. Of course, these specifications
do not satisfy balanced growth and are nonstationary in response to permanent technology shocks.

17Swanson (2018) derives the coefficient of relative risk aversion for generalized recursive preferences with flexible
labor and arbitrary period utility function u(ct, lt). For multiplier preferences with period utility function (1) and
l = 1 in steady state, risk aversion is given by Rc= α+ (1+(η/χ))−1. In general, risk aversion is lower when labor
supply can vary because the household is better able to insure itself from asset value shocks.

18For example, Piazzesi and Schneider (2006) estimate a value of 57, Rudebusch and Swanson (2012) a value of
110, Van Binsbergen et al. (2012), Andreasen (2012), and Campbell and Cochrane (1999) a value of about 80, and
Tallarini (2001) a value of about 50. The nonstationarity of technology implied by ρA = 1 in the present paper
increases the quantity of risk in the model here relative to Rudebusch and Swanson (2012), which allows for a
lower coefficient of relative risk aversion than in that paper.
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for example, households in the model have perfect knowledge of all the equations, parameter

values, shock dynamics, and shock distributions, so the quantity of risk in the model is very

small relative to the actual U.S. economy. As a result, the household’s aversion to risk in the

model must be correspondingly larger to fit the risk premia seen in the data. As an alternative

to high risk aversion, one could increase the quantity of risk in the model, such as by introducing

long-run risk as in Bansal and Yaron (2004), disaster risk as in Rietz (1988) and Barro (2006),

parameter uncertainty as in Weitzman (2007), or model uncertainty as in Barillas, Hansen, and

Sargent (2009). Barillas et al. (2009) in particular show that high risk aversion in an Epstein-Zin

specification is isomorphic to a model in which households have low risk aversion but a moderate

degree of uncertainty about the economic environment.19

Turning to the production side of the economy, I set the elasticity of output with respect

to labor θ = 0.6. I calibrate the Calvo contract parameter ξ = 0.8, implying an average contract

duration of five quarters, consistent with the estimates in Altig et al. (2010) and Del Negro et

al. (2015). I calibrate the monopolistic markup λ for intermediate goods to 1.1, consistent with

the estimates in Smets and Wouters (2007) and Altig et al. (2010). The technology process At

is calibrated to be a random walk, ρA = 1, as a baseline. The standard deviation of technology

shocks, σA, is set to .007, as estimated by King and Rebelo (1999). The steady-state ratio of the

capital stock to annualized output is calibrated to 2.5.

The response of monetary policy to inflation, φπ, is set to 0.5, as in Taylor (1993, 1999).

I set φy = 0.75, between the values of 0.5 and 1 used by Taylor (1993) and Taylor (1999). I set

the monetary authority’s inflation target π to 0.8 percent per quarter, implying a nonstochastic

steady-state inflation rate of about 3.2 percent per year. Although this is higher than the value of

about 2 percent used by many central banks as their current official inflation target, there are two

reasons why a higher number is appropriate here: First, a steady-state inflation rate of 2 percent

is too low to explain the historical average level of nominal yields in the U.S. and U.K. (and many

other countries), even over relatively recent samples such as 1990–2019, as I show below. Second,

households’ risk aversion drives the unconditional mean of inflation in the stochastic version of

the model a bit below the nonstochastic steady-state value. Finally, I calibrate ρȳ = 0.9, implying

19See also Campanale, Castro, and Clementi (2010), who emphasize that the quantity of consumption risk
in a standard DSGE model is very small, and thus the risk aversion required to match asset prices must be
correspondingly larger. The simplifying representative-household assumption can also be relaxed. Mankiw and
Zeldes (1991), Parker (2001), and Malloy, Moskowitz, and Vissing-Jorgensen (2009) show that the consumption of
stockholders is more volatile (and more correlated with the stock market) than the consumption of nonstockholders,
so the required level of risk aversion in a representative-agent model is higher than it would be in a model that
recognized that stockholders have more volatile consumption (Guvenen, 2009).
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that the monetary authority uses the deviation of current output from its average level over the

past roughly 2.5 years to approximate the output gap.

2.6 Impulse Response Functions

Figure 1 plots impulse response functions for the model to a one-standard-deviation (0.7 percent)

positive technology shock, under the baseline calibration described above. The dashed red lines

in each panel report standard impulse response functions for the first-order (log-linear) solution

to the model, while the solid blue lines report impulse response functions for the nonlinear, fifth-

order Taylor series solution.20 I start by describing the linear impulse response functions (dashed

red lines), and then describe how the fifth-order impulse response functions (solid blue lines) differ

from their linear counterparts.

The top left panel of Figure 1 reports the impulse response function for consumption, Ct, to

the shock. Consumption jumps upward on impact, as higher productivity increases the supply of

output and makes households wealthier in present-value terms, increasing consumption demand.

The first-order impulse response function for Ct does not jump all the way to its new long-run

level on impact, however, because of the increase in the real interest rate (described shortly).

Instead, consumption continues to increase gradually over time toward its new steady state.

The top right panel reports the impulse response for inflation, πt. The higher level of

productivity reduces firms’ marginal costs of production, and monopolistic firms set their price

equal to a constant markup λ over expected future marginal costs, whenever they are able to reset

their price. Thus, inflation falls on impact (by about 0.5 percent at an annualized rate) as those

firms who are able to reset their prices do so. The response of inflation is persistent, however, as

firms’ price contracts expire only gradually.

The nominal interest rate it, in the middle left panel, is set by the monetary authority as

a function of output and inflation according to the policy rule (19). Interest rates respond more

20The impulse response functions for the fifth-order solution to the model are computed as follows: The state
variables of the model are initialized to their nonstochastic steady-state values. The impulse response function is
computed as the period-by-period difference between a “one-shock” and a “no-shock” (baseline) scenario. In the
one-shock scenario, εAt is set equal to .007 in period 1, and equal to 0 from period 2 onward. In the no-shock

scenario, εAt is set equal to 0 in every period. Agents in the model do not have perfect foresight, so they still act
in a precautionary manner even though the realized shocks turn out to be deterministically equal to 0 from period
2 onward. In principle, this nonlinear impulse response function can vary as one varies the initial point of the
simulation, or may scale nonlinearly with the size of the shock εAt . In practice, however, the impulse responses in
Figure 2 do not vary much with the initial point and do not display much nonlinearity in the size of the shock. For
example, the fifth-order impulse response functions to a negative 0.7 percent technology shock, which are reported
in Figure B1 in Appendix B, look very similar to the negative of the blue lines in Figure 1, although they are a
bit larger in magnitude.
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Figure 1. First-order (dashed red lines) and fifth-order (solid blue lines) impulse response functions for
consumption Ct, inflation πt, short-term nominal interest rate it, short-term real interest rate rt, labor
Lt, and price dispersion Δt to a one-standard-deviation (0.7 percent) positive technology shock in the
model. See text for details.
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strongly to inflation than to output, causing the nominal interest rate to decline moderately,

on net, in response to the shock, about 40 basis points (at an annual rate) on impact before

gradually returning to steady state. However, the nominal interest rate falls by less than inflation

in response to the shock, so the real interest rt rises about 5 basis points (at an annual rate) on

impact, as can be seen in the middle right panel.21 The real rate then gradually falls back to

steady state.

The response of labor, Lt, is plotted in the bottom left panel. After the technology shock,

households are wealthier in present value terms and want to consume more leisure; this tends to

push labor downward. However, because prices are sticky and firms are monopolistic, firms hire

whatever labor is necessary to satisfy output demand, which tends to push labor upward. For

the simple model here, solved to first order, the former effect dominates, causing labor to decline

slightly on net; indeed, this result is common in simple New Keynesian models, as pointed out

by Gaĺı (1999).22

However, this is no longer true for the fifth-order solution of the model, as can be seen by

comparing the solid blue and red dashed lines in the bottom left panel. There are two main reasons

for this difference: first, price dispersion Δt increases in response to the shock—as shown in the

bottom right panel of Figure 1—but only for the nonlinear solution, because the linearized version

of equation (18) implies shocks have no effect on Δt.
23 The increase in price dispersion reduces

the economy’s productive efficiency and increases the amount of labor required to produce any

given quantity of output (see equation 17). Indeed, the hump shape in dispersion is clearly visible

in the nonlinear impulse response function for labor (and to a lesser extent, consumption).24

Second, the positive technology shock reduces the volatility of households’ stochastic discount

factor (SDF), for reasons discussed in detail in Section 4, below. The lower volatility of the

SDF makes households effectively less risk averse and reduces their demand for precautionary

savings, leading to an extra increase in consumption Ct (as can be seen in the top-left panel).

21Recall rt is the ex ante real interest rate, so rt = it − Etπt+1 to first order.

22 In more complicated, realistic models, such as Altig et al. (2011), increased demand for investment following
the technology shock is typically enough to make the increase in firms’ labor demand dominate. Alternatively,
a stronger monetary policy response that drives the short-term real interest rate down in response to the shock
would cause consumption to jump above 0.7 percent on impact and lead to an increase in labor.

23The linearized version of equation (18) is Δt = ξΔt−1, which implies Δt is invariant to shocks.

24The effect is essentially symmetric for a negative technology shock—i.e., Δt decreases in response to a negative
technology shock (see Figure B1 in Appendix B). In the stochastic version of the model, inflation is often below
the nonstochastic steady state value (due to precautionary behavior by firms, discussed below), so even if there
are no shocks, Δt > 1 will hold. Negative technology shocks can thus decrease Δt.
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Households’ greater demand for consumption requires firms to hire more labor, putting further

upward pressure on Lt in the bottom-left panel.25

3. Asset Prices and Risk Premia

The stochastic discount factor implied by the simple macroeconomic model above can now be

used to price any asset in the model. In particular, we can derive the implications of the model

for the prices of equity and real, nominal, and defaultable debt.

3.1 Equity

I define an equity security in the model to be a levered claim on the aggregate consumption

stream. The definition of equity as a consumption claim maximizes comparability to the finance

literature and simplifies the intuition in the model; the results are very similar if equity is instead

defined to be a claim on the profits of the monopolistic intermediate firm sector.26 Each period,

equity pays a dividend equal to Cν
t , where ν is the degree of leverage. Consistent with Abel

(1999) and Bansal and Yaron (2004), I calibrate ν = 3. Note that ν can be interpreted as the

sum of operational and financial leverage in the economy, where operational leverage results from

any fixed costs of production for firms (Gourio, 2012).

Let pet denote the ex-dividend price of an equity security at time t. In equilibrium,

pet = Etmt+1(C
ν
t+1 + pet+1). (21)

Let Re
t+1 denote the realized gross return on equity,

Re
t+1 ≡ Cν

t+1 + pet+1

pet
. (22)

I define the equity premium at time t, ψe
t , to be the expected excess return to holding equity for

one period:

ψe
t ≡ EtR

e
t+1 − ert . (23)

25The higher level of consumption in the nonlinear case also causes the real interest rate to rise by more in
the middle-right panel. The higher level of labor in the nonlinear case increases firms’ marginal costs, which puts
upward pressure on inflation. Inflation nevertheless falls a bit more on impact in the nonlinear case for reasons
discussed in Section 4, below. The response of the nominal interest rate it in the nonlinear case follows in a
straightforward manner from Ct and πt, given the policy rule (19).

26This is because consumption, output, and monopolistic firm profits are very highly correlated in the model:
Yt = Ct, and firms’ profits are essentially a levered claim on the output stream.
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Table 2: Equity Premium as a Function of Risk Aversion and Shock Persistence

Risk aversion Rc Shock persistence ρA Equity premium ψe

10 1 0.62
30 1 1.96
60 1 4.19

90 1 6.70

60 .995 1.86
60 .99 1.08

60 .98 0.53
60 .95 0.17

Model-implied equity premium ψe, in annualized percentage points, for different values of relative risk
aversion Rc and technology shock persistence ρA, holding the other parameters of the model fixed at
their baseline values from Table 1. State variables of the model are evaluated at the nonstochastic steady
state. See text for details.

Note that

ψe
t =

Etmt+1Et(C
ν
t+1 + pet+1)−Etmt+1(C

ν
t+1 + pet+1)

petEtmt+1

=
−Covt(mt+1, R

e
t+1)

Etmt+1

= −Covt

( mt+1

Etmt+1
, Re

t+1

)
, (24)

where Covt denotes the covariance conditional on information at time t.27

The recursive equity pricing and equity premium equations (21)–(23) can be appended to

the equations of the macroeconomic model in the previous section, allowing the equity premium

(23) to be solved numerically along with the rest of the model. For the baseline calibration of the

model in Table 1, solved to fifth order, the expected excess return on equity is about 1.05 percent

per quarter (4.19 percent per year), evaluating the model’s state variables at their nonstochastic

steady-state values. Empirical estimates of the equity premium typically range from about 3

to 6.5 percent per year (e.g., Campbell, 1999, Fama and French, 2002), so the equity premium

implied by the model is in line with the data.

The model-implied equity premium is very sensitive to both the level of risk aversion Rc

and the persistence of the technology shock ρA. Table 2 reports values for the equity premium

for several different values of Rc and ρA, holding the other parameters of the model fixed at their

27 If mt+1 and Re
t+1 are jointly lognormally-distributed, as is typically assumed in the finance literature, then

the equation Etmt+1R
e
t+1 = 1 implies Etret+1− rt = −Covt(logmt+1, r

e
t+1)− 1

2
Vartret+1, where ret+1≡ logRe

t+1.

Equation (24) says essentially the same thing without assuming joint lognormality.
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Figure 2. Nonlinear impulse response functions for the equity price pet and equity premium ψe
t to a one-

standard-deviation (0.7 percent) positive technology shock in the model, with state variables initialized
to their nonstochastic steady state values. See text for details.

baseline values in Table 1. The equity premium increases about linearly along with the household’s

coefficient of relative risk aversion, Rc, consistent with the analysis in Swanson (2018).28 Perhaps

more surprising is the substantial drop in the equity premium for values of ρA that are only

slightly less than unity—for example, reducing ρA from 1 to .995 reduces the equity premium by

more than half, and reducing ρA from .995 to .99 cuts the equity premium almost in half again.

There are two reasons why ψe is so sensitive to ρA: first, equity is very long-lived, so it is sensitive

to changes in the consumption dividend even at distant horizons; second, the household’s value

function Vt, which enters into the stochastic discount factor (6), is also sensitive to consumption

at long horizons. Reductions in ρA below unity have a very large effect on consumption at distant

horizons, and thus significantly attenuate the response of both the equity price and the SDF to

a technology shock. The subsantially lower covariance between these two variables reduces the

equity premium (equation 24). (Note that the long-run risks literature, beginning with Bansal

and Yaron, 2004, assumes that long-run consumption is even more volatile than my baseline

calibration of ρA = 1; as a result, their models imply a larger equity premium than the model

here, or a similar-sized equity premium with a lower degree of risk aversion.)

The equity premium in the model also varies substantially over time. Figure 2 plots the

nonlinear, fifth-order impulse response functions for the equity price pet and the equity premium

ψe
t to the technology shock, computed in the same way as the nonlinear impulse response functions

28The equity premium increases linearly with risk aversion to second order around the nonstochastic steady
state. The equity premium in Table 2 is computed to fifth order and thus is not strictly linear in risk aversion,
but the intuition from the analysis in Swanson (2018) still holds.
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in Figure 1. The left-hand panel of Figure 2 depicts the response of the equity price, which jumps

about 2.5 percent in response to the technology shock on impact. The risk-neutral increase in

the equity price would be about 2.1 percent (the leverage ratio times the increase in dividends

of about 0.7 percent every period); the additional 0.4 percent increase in the price is due to the

decline in the risk premium that investors require to hold the risky asset. This can be seen in

the right-hand panel of Figure 2, where the equity premium drops about 60 basis points (bp)

at an annual rate on impact before rising slowly back toward its initial level. Thus, the model

produces an equity premium that is countercyclical, consistent with conventional wisdom in the

literature (e.g., Fama and French, 1989; Campbell and Cochrane, 1999; Cooper and Priestley,

2008; Atanasov, Moller, and Priestley, 2020). The reason for this countercyclicality is that the

volatility of the households’ stochastic discount factor falls after a positive technology shock (and

increases after a negative shock), for reasons I discuss shortly below. Over the course of a year,

the standard deviation of the equity premium in the model is about 103 bp, obtained by summing

the squares of the first four quarters of the impulse response and taking the square root. (Note

that this is the standard deviation of the expected excess return on equity; I discuss the standard

deviation of the ex post excess return shortly.)

To compare the model-implied time variation in the equity premium to the data, it is

useful to compute the model-implied Sharpe ratio, ψe
t

/√
Vartret+1 . The average quarterly (non-

annualized) Sharpe ratio in the model is 1.05/2.5 = 0.42, compared to typical estimates of 0.2 to

0.4 in the literature (e.g., Campbell and Cochrane, 1999; Lettau and Ludvigson, 2010). The fact

that the model’s Sharpe ratio is at the high end of this range is not surprising, since the model

is driven by a single shock and thus understates the overall volatility of equity prices; adding a

monetary policy shock to the model, for example, would increase the volatility of equity without

much altering its excess return (because monetary policy shocks are much less persistent than

technology shocks and have only a small effect on the equity premium), and lead to a lower Sharpe

ratio more in line with the middle of the range of empirical estimates.

The quarterly standard deviation of the (non-annualized) Sharpe ratio in the model is about

0.62/2.5 = 0.25. Again, this is about in line with estimates in the literature, which range between

0.09 and 0.47 (e.g., Campbell and Cochrane, 1999; Lettau and Ludvigson, 2010, Table 11.7).

The ex post excess return on equity in the model has a quarterly standard deviation of

about 2.5 percent per quarter, or 5 percent per year. Empirical estimates are typically in the

range of 6 to 12 percent per quarter, or 12 to 24 percent per year (e.g., Campbell, 1999; Lettau
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and Ludvigson, 2010), so the model-implied volatility for equity returns is substantially lower

than the data; however, this is again not too surprising, given that the model is driven by a single

shock. Adding additional shocks to the model, such as fiscal or monetary policy shocks as in

the New Keynesian DSGE literature (e.g., Smets and Wouters, 2007), would bring equity price

volatility closer to the data.

From equation (24), the decline in the model-implied equity premium in Figure 2 must be

due to a drop in the conditional covariance of the equity price with the stochastic discount factor.

In other words, the model generates endogenous conditional heteroskedasticity in response to

shocks, even though the exogenous technology shock is homoskedastic. This is a striking and

important feature of the model. I discuss this heteroskedasticity in moe detail in Section 4, below

(and see also Section 2.4, above), but the key factor is the behavior of price dispersion Δt. In

response to a technology shock, price dispersion moves in the same direction as the shock (see the

bottom-right panels of Figures 1 and B1). Because greater price dispersion reduces output and

aggregate productivity (see equation 17), the response of price dispersion to a technology shock

dampens the responses of the model’s other variables to the shock. In addition, the sensitivity

of price dispersion to a technology shock is greater if there has been a positive technology shock

in the recent past—see Section 4, below. Thus, a positive technology shock today leads to a

greater sensitivity of price dispersion Δt to future shocks, which reduces the volatility of the

other variables of the model (such as consumption and the SDF) to future shocks.

The result is that the stochastic discount factor displays substantial endogenous conditional

heteroskedasticity. In a perfectly homogeneous, homoskedastic model—such as the ones typically

used in finance that have no labor and no nominal rigidities—there is no endogenous conditional

heteroskedasticity. The only way to generate a time-varying equity premium in those models is

to assume that the exogenous driving shock itself is conditionally heteroskedastic (as in Bansal

and Yaron, 2004, for example).

3.2 Real and Nominal Default-Free Bonds

A default-free zero-coupon real bond in the model pays one unit of consumption at maturity. Let

p̃
(n)
t denote the nominal price of an n-period zero-coupon real bond, and p

(n)
t ≡ p̃

(n)
t /Pt its real

price, with p
(0)
t ≡ 1. Then for n ≥ 1,

p
(n)
t = Etmt+1p

(n−1)
t+1 (25)
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in equilibrium in each period t. In particular, p
(1)
t = e−rt .

A default-free zero-coupon nominal bond pays one nominal dollar at maturity. Let p
$(n)
t de-

note the nominal price of an n-period zero-coupon nominal bond, with p
$(0)
t ≡ 1. Then for n ≥ 1,

p
$(n)
t = Etmt+1e

−πt+1p
$(n−1)
t+1 (26)

in each period t. In particular, p
$(1)
t = e−it .

Let r
(n)
t denote the n-period continuously-compounded yield to maturity on a real zero-

coupon bond, and i
(n)
t the corresponding yield on an n-period nominal bond. Then

r
(n)
t = − 1

n
log p

(n)
t (27)

and

i
(n)
t = − 1

n
log p

$(n)
t . (28)

Note that even though these bonds are free from default, they are risky in the sense that their

prices can fluctuate in response to shocks, for n > 1.

The risk premium on a bond is typically written as a term premium, the difference between

the yield to maturity on the bond and the hypothetical, risk-neutral yield to maturity on the

same bond. The risk-neutral real price p̂
(n)
t of an n-period zero-coupon real bond is given by

p̂
(n)
t = e−rtEt p̂

(n−1)
t+1 , (29)

where p̂
(0)
t ≡ 1. The n-period real term premium ψ

(n)
t is then

ψ
(n)
t ≡ 1

n

(
log p̂

(n)
t − log p

(n)
t

)
(30)

The formula for the term premium on a nominal n-period bond, ψ
$(n)
t , is analogous.

Note that, to first order, ψ
(n)
t ≈ (p̂

(n)
t − p

(n)
t )/ (np(n)) , where p(n) denotes the steady-state

real bond price, and

p̂
(n)
t − p

(n)
t = Etmt+1Etp̂

(n−1)
t+1 − Etmt+1p

(n−1)
t+1

= −Covt
(
mt+1, p

(n−1)
t+1

)
+ e−rtEt

(
p̂
(n−1)
t+1 − p

(n−1)
t+1

)
= −Et

n−1∑
j=0

e−rt,t+jCovt+j

(
mt+j+1, p

(n−j−1)
t+j+1

)
, (31)
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where rt,t+j ≡
∑t+j

τ=t+1 rτ and the last line of (31) follows from forward recursion.29 Equation (31)

shows that, even though the bond price depends only on the one-period-ahead covariance between

the stochastic discount factor and next period’s bond price, the risk premium on the bond depends

on this covariance over the entire lifetime of the bond. The term premium ψ
(n)
t then satisfies

ψ
(n)
t ≈ − 1

np(n)
Et

n−1∑
j=0

e−rt,t+jCovt+j

(
mt+j+1, p

(n−j−1)
t+j+1

)
. (32)

Intuitively, the term premium is larger the more negative the covariance between the SDF and

the price of the bond over the lifetime of the bond.

The bond pricing and bond yield equations (25)–(30) are recursive and can be appended to

the macroeconomic model described above and solved numerically along with the macroeconomic

variables, equity price, and equity premium. (Note that, to consider a bond with n periods to

maturity, n − 1 bond pricing equations must be appended to the model, one for each maturity

from 2 to n.)

Table 3 reports the real yield curve implied by the model, along with the corresponding

average real yields estimated from inflation-indexed government bonds in the U.S. and U.K. over

various sample periods. Data for U.S. inflation-indexed Treasuries (TIPS) are taken from the

updated Gürkaynak, Sack, and Wright (2010) dataset on the Federal Reserve Board’s web site.

The first TIPS were issued in 1998, and a yield curve for maturities of 5 years or more can be

estimated beginning in 1999. The first row of Table 3 thus reports average TIPS yields from

1999 to 2019, about 1.1 to 1.6 percent per year. Zero-coupon yields for shorter-maturity TIPS

(down to 2 years; neither Gürkaynak et al., 2010, nor the Bank of England report zero-coupon

real yields with maturity less than 2 years) can be estimated beginning in 2004, and are reported

in the second row of Table 3, along with the averages for longer maturities over the same sample.

This sample also excludes the period of lower TIPS liquidity in the first few years after they were

introduced. Over this sample, average real yields are lower, between about 0.15 and 1.05 percent.

However, the period from 2008–15 is unusual in that the financial crisis and severe recession led

the Federal Reserve to reduce short-term interest rates to record lows, and the financial crisis may

have led to unusually large liquidity premia in for longer-term TIPS (Fleckenstein, Longstaff, and

Lustig, 2014). Thus, the third row of Table 3 reports results from 2004–19 excluding 2008–15.

Over this sample, real yields average between about 0.75 and 1.3 percent.

29The first-order approximation in equation (31) is only used to gain intuition. To compute the numerical results
in the tables and figures below, I use the nonlinear equations (25)–(30).
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Table 3: Real Zero-Coupon Bond Yields, Data vs. Model

2-yr. 3-yr. 5-yr. 7-yr. 10-yr. (10y)−(3y)

US TIPS, 1999–2019a 1.11 1.34 1.59

US TIPS, 2004–2019a 0.14 0.26 0.53 0.77 1.06 0.80
US TIPS, 2004–2007 ∪ 2016–2019a 0.74 0.83 1.01 1.16 1.32 0.39
UK indexed gilts, 1983–1995b 6.12 5.29 4.34 4.12 −1.17

UK indexed gilts, 1985–2019c 1.41 1.57 1.68 1.78 0.37
UK indexed gilts, 1990–2007 ∪ 2016–2019c 1.84 1.89 1.92 1.96 0.12

macroeconomic model 1.82 1.81 1.81 1.81 1.81 0.00

aFederal Reserve Board web site.
bEvans (1999).
cBank of England web site.

Estimated zero-coupon real yields from inflation-indexed bonds in the U.S. and U.K., and zero-coupon
real yields implied by the macroeconomic model presented above. The last column reports the difference
between the 10-year and 3-year yields in each row. See text for details.

The next three rows of Table 3 report average real yields on inflation-indexed gilts in the

U.K., for which we have a longer sample. Evans (1999) estimates real zero-coupon U.K. yields

from 1983 to 1995, reported in the fourth row of Table 3, which average between about 4 and

6 percent over that sample. Interestingly, the real U.K. gilt yield curve slopes downward rather

than upward over this period, by about 100–200 basis points. However, as in the U.S., the early

years of the U.K. indexed gilt market may have suffered from low liquidity; thus, the fifth row of

Table 3 reports average real yields from 1985 to 2019, from the Bank of England’s web site. Over

this longer sample, real gilt yields average about 1.4 to 1.8 percent, and the yield curve sloped

upward by about 37 bp. The sixth row of Table 3 reports results for the U.K. excluding both

the early years of the sample and the financial crisis and recession period. Over this sample, real

yields in the U.K. are a bit higher, averaging about 1.9 percent, and the yield curve is about flat,

sloping upward by 0.1 percent.

While the exact level and slope of the real yield curve depend on the sample period and

country considered, the overall pattern suggests an average real yield of a bit less than 2 percent

per year, with a slope that is relatively flat—neither strongly upward-sloping nor downward-

sloping on average. The macroeconomic model developed in this paper fits these features well:

real yields in the model average a bit less than 2 percent in the baseline calibration,30 and the

30Note that the baseline value of β from Table 1 implies a real yield of a little more than 3 percent in the
nonstochastic steady state. However, the real yield rt = 1/Etmt+1, and Etmt+1 is substantially greater than 1/β
in the stochastic case due to Jensen’s inequality. Intuitively, households’ risk aversion drives up their demand for
precautionary savings in the riskless asset, lowering the risk-free rate below its nonstochastic steady-state value.
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Figure 3. Nonlinear impulse response functions for real long-term bond price p
(40)
t and real term premium

ψ
(40)
t to a one-standard-deviation (0.7 percent) positive technology shock in the model, with state variables

initialized to their nonstochastic steady state values. See text for details.

real yield curve is essentially flat.

Figure 3 reports the model-implied nonlinear impulse response functions for the 10-year

real bond price and term premium, computed in the same way as in Figures 1 and 2. The bond

price falls only about 0.2 percent on impact, due to the small increase in short-term real rates in

Figure 1, and the offsetting fall in the real term premium (right-hand panel of Figure 3). The

real term premium declines in response to the shock, but by much less than the equity premium,

only about 5 bp.

The small response of long-term real bond prices in Figure 3 explains why the model-implied

yield curve in Table 3 is so flat on average. Intuitively, the price of real long-term bonds is fairly

stable, leading to a small covariance in equation (32) and a small risk premium on average.

Table 4 compares the nominal yield curves in the model to the data. Gürkaynak, Sack,

and Wright (2007) estimate zero-coupon nominal Treasury yields for the U.S. back to 1961 for

maturities out to 7 years, and back to 1971 for maturities up to 10 years (updated versions of the

data are available on the Federal Reserve Board’s web site). From 1961 to 2019, nominal yields

average about 5 to 5.9 percent. From 1971 to 2019, the average is a bit higher, about 5.1 to 6.35

percent, with an average yield curve slope of about 125 bp. However, the period from 2008–15

may not be representative because short-term nominal interest rates were constrained by the zero

lower bound; the “Great Inflation” period in the 1970s and early 1980s may also be problematic

since there is evidence that monetary shifted to a more anti-inflationary stance since then (e.g.,

Clarida, Gaĺı, and Gertler, 2000). Thus, the third row of Table 4 reports average yields from

1990–2019, excluding 2008–15. Over this sample, nominal Treasury yields averaged about 4 to
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Table 4: Nominal Zero-Coupon Bond Yields, Data vs. Model

1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. (10y)−(1y)

US Treasuries, 1961–2019a 5.02 5.24 5.42 5.70 5.91

US Treasuries, 1971–2019a 5.10 5.33 5.53 5.84 6.09 6.35 1.25
US Treasuries, 1990–2007 ∪ 2016–2019a 4.00 4.27 4.48 4.81 5.06 5.35 1.35
UK gilts, 1970–2019b 6.41 6.58 6.73 6.98 7.17 7.37 0.96

UK gilts, 1990–2007 ∪ 2016–2019b 5.16 5.24 5.33 5.44 5.50 5.54 0.38

macroeconomic model 5.02 5.27 5.48 5.77 5.95 6.12 1.10

aFederal Reserve Board web site.
bBank of England web site.

Empirical estimates of zero-coupon nominal yields from government bonds in the U.S. and U.K., and
zero-coupon nominal yields implied by the macroeconomic model presented above. The last column
reports the difference between the 10-year and 1-year yield in each row. See text for details.

5.35 percent, with a slope of about 135 bp.

The Bank of England also reports estimated zero-coupon yield curves for the U.K. going

back to 1970. From 1970 to 2019, nominal gilt yields averaged about 6.4 to 7.4 percent, with a

yield curve slope of about 95 bp, as reported in Table 4. Restricting attention to the period from

1990 to 2019, excluding the financial crisis, average U.K. nominal yields are somewhat lower,

about 5.15 to 5.55 percent, with a slope of about 40 bp.

Again, the exact level and slope of the nominal yield curve depends on the sample period

and country considered, but nominal yields seem to average about 5 to 6 percent and have an

upward slope of about 100 bp. The model is able to reproduce these features of the data well:

the model-implied average level of nominal yields is between about 5 and 6.1 percent, with an

upward slope of 110 bp. Thus, although the model-implied real yield curve is flat, the implied

nominal yield curve slopes upward substantially. As in Rudebusch and Swanson (2012), this is

because technology shocks in the model make nominal bonds risky: a negative technology shock

causes inflation to rise persistently at the same time that consumption falls; as a result, long-term

nominal bonds in the model lose value in recessions. This implies that long-term nominal bonds

should carry a substantial risk premium, about 106 bp over the corresponding risk-neutral yield.

Thus, the simple model presented here provides a straightforward answer to the puzzle posed by

Backus, Gregory, and Zin (1989), Donaldson, Johnsen, and Mehra (1990), and Den Haan (1995):

namely, why does the nominal yield curve slope upward? The answer is technology shocks, or more

generally, any “supply shock” that causes inflation and output to move in opposite directions,

such as an oil price shock or markup shock.
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Figure 4. Nonlinear impulse response functions for nominal long-term bond price p
$(40)
t and term

premium ψ
$(40)
t to a one-standard-deviation (0.7 percent) technology shock in the model, with state

variables initialized to their nonstochastic steady state values. See text for details.

Of course, the larger and more important are technology or supply shocks in the model,

the larger will be the term premium on nominal bonds. Thus, if supply shocks were relatively

larger in the 1970s and early 1980s than in the 1960s or more recently, the model predicts that

we should see a larger term premium on nominal bonds in those periods. In fact, this prediction

is consistent with the data: Rudebusch, Sack, and Swanson (2007) graph several measures of

the term premium—from a VAR, affine no-arbitrage models, and the Cochrane-Piazzesi (2005)

“tent-shaped” factor—and for all of these measures, the estimated term premium on long-term

nominal U.S. bonds is higher in the 1970s and early 1980s than in the 1960s or more recently.

Campbell, Sundaram, and Viceira (2017) also document changes in the correlation between

stock and nominal bond returns over time. Although the baseline calibration of the model here has

only a single shock, making it stochastically singular, extending the model to include fiscal and/or

monetary policy shocks is straightforward and is standard in the medium-scale New Keynesian

DSGE literature (e.g., Smets and Wouters, 2007). In these models, if the relative importance of

technology or supply shocks is varied, then the correlation between stock and bond returns will

vary as well. Thus, changing correlations between stock and bond returns can be mapped back

to more structural features of the model.

Figure 4 plots the nonlinear impulse response functions for the 10-year nominal bond price

and term premium to a one-standard-deviation positive technology shock, computed in the same

way as in Figures 1–3. As discussed above, a positive technology shock causes inflation and the

short-term nominal interest rate to fall (Figure 1) and the nominal long-term bond price to rise
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substantially (Figure 4), about 1.7 percent on impact before gradually returning back to steady

state. The nominal term premium falls about 24 bp on impact, so part of the strong bond price

response is due to the fall in the term premium. The reason for that fall is essentially the same as

for the equity premium: the volatility of the households’ stochastic discount factor declines after

a positive technology shock. Thus, the model’s prediction of a countercyclical term premium is

consistent with conventional wisdom in the literature (e.g., Fama and French, 1989, Campbell

and Cochrane, 1999, Cooper and Priestley, 2008, Piazzesi and Swanson, 2008). Over the course

of a year, the standard deviation of the term premium is about 40 bp, in line with estimates from

affine term structure models (e.g., Kim and Wright, 2005).

3.3 Defaultable Bonds

In the interest of simplicity, I model a defaultable bond as a depreciating nominal consol that has

some probability of defaulting each period, an approach that has also been used in finance (e.g.,

Leland, 1994, 1998; Duffie and Lando, 2001; Chen, 2010). The credit spread in the model is the

difference in yield between the defaultable consol and an otherwise identical consol that is free

from default. I consider two cases in the analysis below: first, where the probability of default

and the recovery rate given default are constant over time, and second, where those quantities

vary cyclically in line with the data.

A default-free depreciating nominal consol is an infinitely-lived bond that pays a geometri-

cally declining coupon of δn−1 dollars in each period n = 1, 2, . . . after issuance. The equilibrium

ex-coupon price pct of the consol in period t is given by

pct = Etmt+1e
−πt+1(1 + δpct+1), (33)

where the size of the next coupon payment is normalized to one dollar. The very simple recursive

structure of (33) makes this type of long-term bond extremely convenient to work with in a

model.31 When δ = 0, the consol reduces to a one-period zero-coupon bond, and when δ = 1,

it behaves like a traditional nondepreciating consol. By choosing δ appropriately, the consol can

be given any desired Macauley duration and made to behave very similarly to the corresponding

zero-coupon bond.

31Leland (1994), Duffie and Lando (2001), and Chen (2010) use a nondepreciating consol to model corporate
bonds, while Leland (1998) uses a depreciating consol. Rudebusch and Swanson (2008) use a (default-free) depre-
ciating consol to study the long-term bond premium puzzle. The behavior of the depreciating consol in the simple
model above and in Rudebusch and Swanson (2008) is very similar to that of a zero-coupon bond with the same
Macauley duration.
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The continuously-compounded yield to maturity, ict , for the consol satisfies

pct =
1

ei
c
t
+

δ

e2i
c
t
+

δ2

e3i
c
t
+ · · · , (34)

implying

ict = log
( 1

pct
+ δ

)
. (35)

The Macauley duration of the consol is

−d log p
c
t

dict
= 1 + δpct . (36)

When calibrating the model below, I set δ so that the consol has a Macauley duration of 10 years,

corresponding to the approximate duration of the longer-term coupon bonds in Moody’s indexes.

A defaultable consol pays a nominal coupon each period in the same way as a default-free

consol, but in addition there is a chance each period that the bond will default and cease paying

interest forever. In the event of default, bondholders receive a recovery rate times the previous

value of the bond, which we can calibrate to the data. Thus, the defaultable consol price pdt

satisfies

pdt = Etmt+1e
−πt+1

[
(1− 1d

t+1)(1 + δpdt+1) + 1d
t+1 ωt+1 p

d
t

]
, (37)

where 1d
t is an indicator variable equal to 1 if the bond defaults in period t and 0 otherwise, and

ωt denotes the recovery rate on the bond in the event of default. The yield to maturity idt of the

defaultable bond is defined by equation (35), with pdt in place of pct , and the credit spread is the

yield differential, idt − ict .

It remains to calibrate Prt{1d
t+1 = 1} and ωt in (37). The average rate of default for bonds

initially rated Baa or BBB is about 0.6 percent per year (Moody’s, 2006; Standard & Poor’s, 2014),

and the average recovery rate on defaulted bonds is about 42 percent (Chen, Collin-Dufresne, and

Goldstein, 2009; Chen, 2010).32 As a first calibration, I set Prt{1d
t+1 = 1} to a constant rate of

0.15 percent per quarter and ωt to a constant of 42 percent.

The credit spread implied by the model for this calibration is reported in the first row of

Table 5. With a constant average annual default probability of 0.6 percent, the model-implied

credit spread is about 34 bp. This is essentially the risk-neutral expected loss each period from

32The default rate on bonds currently rated Baa/BBB is much lower, about 0.15 percent per year on average.
However, these bonds also lose value when they are downgraded, which happens with much higher probability
than default. Rather than keep track of credit ratings, the probability of downgrades, and capital losses in the
event of downgrade, I simply keep track of the default rate for bonds initially rated Baa/BBB.



31

Table 5: Model-Implied Credit Spread on Defaultable Bonds

average ann. cyclicality of average cyclicality of credit
default prob. default prob. recovery rate recovery rate spread (bp)

.006 0 .42 0 34.0

.006 −0.3 .42 0 130.9

.006 −0.3 .42 2.5 143.1

.006 −0.15 .42 2.5 78.9

.006 −0.6 .42 2.5 367.4

.006 −0.3 .42 1.25 137.0

.006 −0.3 .42 5 155.2

Model-implied credit spread idt − ict for defaultable vs. default-free depreciating consols with Macauley
duration of 10 years. Average annualized default probability is calibrated to bonds initially rated Baa.
Cyclicality of default probability and recovery rate are the loadings on the output gap, yt − yt. See text
for details.

default, (.006)(.58) = 34.8 bp, and is far less than the historical average credit spread on Baa-

rated bonds of about 120 bp (e.g., Chen, Collin-Dufresne, and Goldstein, 2009; Chen, 2010).33

Intuitively, if the risk of default in the model is uncorrelated with the stochastic discount factor,

there is no additional risk premium attached to losses from default.

Empirically, however, corporate bond defaults are highly countercyclical and recovery rates

highly procyclical (e.g., Chen, 2010; Giesecke, Longstaff, Schaefer, and Strebulaev, 2011; Standard

& Poor’s, 2011). For example, as reported by Chen (2010), the default rate averages about 0.9

percent for all bonds over the postwar period, but spikes to about 3.7 percent in 1990, 4 percent

in 2001, and 5.5 percent in 2009, with smaller increases in earlier recessions (and a spike to 8.5

percent in 1933). In boom years, the default rate falls to essentially zero. Recovery rates average

about 42 percent, but drop to about 20–25 percent in 1990, 2001, and 2009, and rise to 50–60

percent in boom years.

Thus, the next rows of Table 5 consider cases where the default rate, recovery rate, or

both are correlated with the output gap in the model, yt − yt. I calibrate the cyclicality of the

model’s annualized default rate to −0.3, which implies a drop in output of 5 percent below trend

is associated with an increase in the default rate of about 1.5 percentage points.34 While this

33This is the average difference between the yield on Moody’s Baa and Aaa seasoned corporate bond indexes
from 1921–2013. The average spread over alternative sample periods is similar. The spread between Baa-rated
corporate bonds and U.S. Treasuries is even larger, about 185 bp. However, U.S. Treasuries carry an additional
premium for their extreme liquidity and beneficial tax treatment, so the Baa-Aaa spread is often used instead,
since Aaa corporate bonds are similar in liquidity and tax treatment to Baa-rated bonds and the probability of
default on Aaa-rated bonds is still extremely low (e.g., Chen et al., 2009).

34To prevent the default rate in the model from becoming negative, I model it in logarithms rather than in
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cyclicality is lower than in Chen (2010), my focus here is on bonds initially rated Baa/BBB,

while the data in Chen (2010) is for all bonds, which includes many that were issued at ratings

below investment grade. The second row of Table 5 reports the model-implied credit spread when

the default rate is countercyclical, holding the recovery rate constant over time. This greatly

increases the model-implied credit spread, to about 131 bp, consistent with the observed spread

in the data.

The third row of Table 5 considers the case where the recovery rate is also cyclical. I

calibrate the cyclicality of the recovery rate in the model to 2.5, so that a fall in output of 5

percent below trend is associated with a roughly 12.5-percentage-point decrease in the recovery

rate on defaulted corporate bonds, in line with the variation reported in Chen (2010). Given this

degree of cyclicality, the credit spread in the model increases a bit further, to 143 bp, still close

to (and even a bit above) the value of 120 bp in the data.

In the last four rows of Table 5, I vary these cyclicality parameters to check how sensitive

the credit spread is to their variation. Changes in the cyclicality of default have a large effect

on the spread, while changes in the cyclicality of the recovery rate have a much smaller effect,

moving the spread by only a few basis points. Intuitively, a marginal increase in the probability of

default is much more costly to households because it implies an increase in the chance of a large

loss; in contrast, a marginal fall in the recovery rate implies only a small chance (0.15 percent

per quarter) of a modest increase in the loss. Thus, the cyclicality of recovery rates is much less

important in the model and can largely be ignored.

Figure 5 reports nonlinear impulse response functions for the defaultable bond price and

credit spread to a positive one-standard-deviation technology shock, computed the same way

as in previous figures. The default probability and recovery rate in the model are assumed to

have the same cyclicality as in the third row of Table 5, consistent with the data. On impact,

the defaultable bond price jumps about 2.3 percent, in between the responses of the default-free

nominal bond and equity prices in Figures 4 and 2. This is intuitive, since defaultable bonds are

riskier than default-free bonds but less risky than equity in the model.

The credit spread, depicted in the right-hand panel, drops about 7 bp on impact. This is

somewhat less than in the data; the standard deviation of the post-war quarterly change in the

Baa-Aaa spread is about 20 bp. However, as discussed above, the model here has only one driving

levels. That is, the cyclicality of the log default rate is set to −50, which, when multiplied by the average default
rate of .006 per year, produces −0.3.
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idt − ict to a one-standard-deviation (0.7 percent) technology shock in the model, with state variables
initialized to their nonstochastic steady state values. See text for details.

shock; extending the model to include additional shocks would increase the overall volatility of

the credit spread and bring it closer to the data.

To some extent, the model’s ability to jointly fit equity returns and corporate bond yields is

not surprising, since Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebu-

laev (2010), and Chen (2010) achieve similar simultaneous fits in an endowment economy. Nev-

ertheless, the present paper is the first to jointly match these data in a structural macroeconomic

model. The distinction is important because results for asset prices in an endowment economy do

not necessarily carry over to the case where households can smooth their consumption endoge-

nously in response to shocks, as discussed in the Introduction. Like the present paper, Bhamra

et al. (2010) and Chen (2010) use Epstein-Zin preferences, albeit with consumption and inflation

taken to be exogenous, reduced-form processes. The advantage of the structural macroeconomic

approach I take here is its greater robustness to structural breaks and novel policy interventions,

as discussed in the Introduction. On the other hand, the much simpler macroeconomic structure

in Bhamra et al. (2010) and Chen (2010) allows them to perform a more structural analysis of

firms’ corporate financing and default decisions. In other words, I have adopted a simple, reduced-

form model of the firm in order to better focus on the structural behavior of the macroeconomy,

while Bhamra et al. (2010) and Chen (2010) have adopted a simple, reduced-form model of the

macroeconomy to better focus on the structural finance behavior of the firm.

4. Discussion and Extensions

The macroeconomic model developed above is essentially a “proof of concept” that a standard
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New Keynesian model with Epstein-Zin preferences is consistent with a wide variety of asset

pricing facts. I now discuss several features of the model in greater detail. First, I examine

how the model produces endogenous conditional heteroskedasticity in response to homoskedastic

exogenous shocks. Second, I discuss the relationship between the conditional heteroskedasticity

in the model and the literature on “uncertainty shocks” (e.g., Bloom, 2009); I also compare the

model’s unitary intertemporal elasticity of substitution to the typical assumption that the IES

> 1 in the long-run risks literature. Third, I extend the model to include additional shocks, such

as a monetary policy shock and a fiscal policy shock, and discuss how this affects the results.

Finally, I discuss the implications of the model’s ability to price assets endogenously for financial

frictions models, such as Bernanke, Gertler, and Gilchrist (1999), Kiyotaki and Moore (1997),

and others.

4.1 Endogenous Conditional Heteroskedasticity

The macroeconomic model developed above displays endogenous conditional heteroskedasticity in

response to shocks, as mentioned in Sections 2.4 and 3.1, above. Indeed, this feature of the model

is crucial for generating time-varying risk premia: If the stochastic discount factor and an asset

return are both homoskedastic, then the risk premium on the asset must be constant over time,

as could be seen in equation (24). The fact that the model produces time-varying risk premia in

Figures 2 through 5 is therefore evidence that the model-implied SDF is heteroskedastic.

In Figure 6, I analyze this heteroskedasticity in more detail. The SDF in the model

is given by mt+1 = β(Ct+1/Ct)
−1

[
exp(−αVt+1)/Et exp(−αVt+1)

]
, so its conditional volatil-

ity, Vart logmt+1, can be decomposed into two parts: the variance of consumption growth,

Vart log(Ct+1/Ct)
−1, and the variance of the Epstein-Zin component, Vart log

[
exp(−αVt+1)/

Et exp(−αVt+1)
]
. I report nonlinear impulse response functions for each of these two components

in the left- and right-hand panels of Figure 6.35

In response to a positive, one-standard-deviation technology shock, the conditional variance

of the SDF falls about 50 percent. The conditional variance of consumption growth, in the left-

hand panel of Figure 6, falls about 40 percent, while the conditional variance of the Epstein-Zin

35The nonlinear impulse response functions are computed in the same way as in previous figures. I compute the
conditional variance of a variable Xt+1 in the model by defining μXt ≡ EtXt+1 and then V X

t ≡ Et(Xt+1 − μXt )2.
I append these recursive equations to the rest of the model and solve them nonlinearly along with the other model
variables as described earlier. Note that the conditional variance V X

t is linearized and not log-linearized around
the nonstochastic steady state because it equals zero at that point (when the variance of the technology shock
σ2
A is set to zero). I report the change in variances V X

t in Figure 6 in percentage terms by dividing the impulse

responses (in levels) by a constant; namely, the variance V X
t solved to fifth order and evaluated with each state

variable at the nonstochastic steady state, but with the variance of the technology shock σ2
A set to .0072.
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Figure 6. Nonlinear impulse response functions for conditional variances Vart(Ct+1/Ct)
−1 and

Vart[ exp(−αVt+1)/Et exp(−αVt+1)] to a one-standard-deviation (0.7 percent) positive technology shock
in the model, with state variables initialized to their nonstochastic steady-state values. Impulse re-
sponses are in percentage deviation from steady state. The model-implied stochastic discount factor is
mt+1 = β(Ct+1/Ct)

−1[ exp(−αVt+1)/Et exp(−αVt+1)], so the two panels decompose the response of the
conditional variance of the SDF to the shock. See text for details.

term (in the right-hand panel) falls about 10 percent, so the decline in SDF volatility is primarily

driven by the fall in next-period consumption volatility.36 Nevertheless, the Epstein-Zin term

is still extremely important because its average level of volatility is so much higher than that

of consumption growth—about 0.472 vs. 0.00652. The high average level of the Epstein-Zin

term’s volatility is what makes the decline in consumption growth volatility have a quantitatively

important effect on risk premia in the model.

In Figure 7, I investigate what drives the decline in consumption volatility in Figure 6.

The left column reports nonlinear impulse response functions for a one-standard-deviation (0.7

percent) positive technology shock, while the right column reports the analogous impulse response

functions for a negative one-standard-deviation shock (−0.7 percent). In each panel, two lines

are plotted: The dashed blue line is the standard nonlinear impulse response function computed

in the same way as in previous figures (see footnote 23); that is, the period-by-period difference

between a “one shock” and a “no shock” (baseline) scenario, with all state variables of the model

initialized to their nonstochastic steady-state values. The solid green line in each panel is the

period-by-period difference starting from a different initial point: instead of the nonstochastic

steady state, the impulse responses are computed starting from the point immediately after a

positive 0.7 percent technology shock in the previous period. Thus, the solid green lines depict

36As with previous figures, the impulse responses in Figure 6 are essentially symmetric for a negative technology
shock. That is, a negative technology shock causes the conditional volatility of the SDF to increase, with a similar
magnitude to (in fact, slightly larger magnitude than) Figure 6.
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Figure 7. Comparison of nonlinear impulse response functions for price dispersion Δt and consumption Ct

to a one-standard-deviation (0.7 percent) (a) positive vs. (b) negative technology shock in period 1. Dashed
blue lines depict impulse response functions relative to a baseline of no previous shocks, with state variables
initialized to their nonstochastic steady-state values, as in previous figures. Solid green lines depict impulse
response functions relative to a different baseline, after a positive 0.7 percent technology shock in period 0.
The figure shows that the conditional volatility of consumption is lower after a positive 0.7 percent technology
shock in period 0, particularly in response to negative shocks in period 1. See text for details.

the difference between a “two shock” and a “one shock” scenario.37

The lower conditional volatility of consumption after a positive technology shock can be seen

clearly in the bottom panels of Figure 7, particularly the bottom-right panel. There, consumption

falls substantially less in response to a negative technology shock (in period 1) if that shock was

37This is computed as follows: in period −1, the state variables of the model are initialized to their nonstochastic
steady-state values. In the “one shock” scenario, εAt is set equal to .007 in period 0, and set equal to 0 from period 1

onward. In the “two shock” scenario, εAt is set equal to .007 in period 0, to .007 in period 1 (for the left-hand
column of Figure 7, or to −.007 in period 1 for the right-hand column of Figure 7), and then set equal to 0
from period 2 onward. The impulse response function is computed as the period-by-period difference between the
“two-shock” scenario and the “one shock” scenario, beginning in period 1.
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preceded by a positive technology shock the period before (in period 0)—that is, the solid green

line does not fall by as much as the dashed blue line. In the bottom-left panel, the response of

consumption to a positive technology shock (in period 1) is fairly similar whether or not there

was a positive technology shock in the previous period (period 0).38

This attenuated behavior of consumption is driven by the response of price dispersion, Δt,

to the technology shock, reported in the top row of Figure 7. Note first how price dispersion

tends to offset the effects of the technology shock: for example, after a negative technology shock

in the right-hand column of Figure 7, price dispersion falls, which tends to increase output, all

else equal (equation 17). Although the net effect of the shock on output and consumption is still

negative (bottom-right panel of Figure 7), the change in price dispersion moderates the effect of

the technology shock. This is true for a positive technology shock in the left-hand column as well.

Importantly, the effect of the technology shock on price dispersion is larger when prices are more

distorted to begin with. For example, in the top-right panel of Figure 7, the solid green line falls

more than the dashed blue line in response to the −0.7 percent shock. In the solid green line

simulation, prices are more distorted to begin with because of the positive technology shock that

hit the economy the period before. Thus, after a positive technology shock, the moderating effects

of price dispersion in the model are greater, causing the volatility of output and consumption to

decrease. In other words, a positive technology shock leads to a lower conditional volatility of

consumption.

Figure 8 provides intuition for why Δt offsets the effect of the technology shock and why

the response of Δt to a shock is larger when Δt itself is larger. First, note that Δt ≥ 1, and

logΔt is a convex function of log(p∗t /Pt) in a neighborhood of the nonstochastic steady state, as

in the figure.39 If the economy is at the nonstochastic steady state and there are no shocks or

uncertainty, then firms find it optimal to set p∗t = Pt in period t. This corresponds to point A in

the figure. Even if there is uncertainty, firms still find point A optimal in the linearized version

of the model, because at this point, firms’ expected profits over the lifetime of the price contract

38As in previous figures, the effects are essentially symmetric: if the economy is hit by a negative technology
shock in period 0, then the conditional volatility in Figure 6 increases rather than decreases, and consumption in
the bottom-right panel of Figure 7 is relatively lower after the negative technology shock—i.e., the solid green line
lies below the dashed blue line. The lower volatility of consumption growth in the bottom panels of Figure 7 is
typical for other sizes of shocks as well.

39Δt ≥ 1 follows from Jensen’s inequality: because λ > 1 and θ ∈ (0, 1), the function xλ/θ is convex; thus

(
∫ 1
0 x(f)

λ/θdf)θ/λ ≥ ∫ 1
0 x(f)df ; letting x(f) ≡ (p∗t (f)/Pt)1/(1−λ) gives the result. Moreover, Δt = 1 if and only if

p∗t (f)/Pt = 1 for almost all f . Starting from Δt−1 = 1, p∗t (f)/Pt = 1 attains the minimum value for Δt, implying
logΔt is convex in log(p∗t (f)/Pt) around 0.
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Figure 8. Illustrative graph of price dispersion Δt as a function of monopolistic firms’ time-t real reset
price, p∗t /Pt. Point A denotes firms’ risk-neutral optimal reset price, which is also the optimal reset
price in the linearized model; point B denotes firms’ risk-averse optimal reset price; which leads to an
economywide equilibrium like point C. See text for details.

are maximized, as in equation (14). In recessions, firms will lose a bit of profit because output is

too low, and in expansions firms will lose a bit of profit because output (and hence marginal cost)

is too high, but in expectation the firms’ price strikes an optimal balance between these two.

Now, when firms’ owners (the households) are risk averse, as in the nonlinear version of the

model, recessions are more painful than expansions, so it is optimal for firms to put more weight

on generating profit in recessions. This causes the firms’ optimal reset price to be lower than in

the risk-neutral case, so as to generate more output and profit in the event of a recession. Thus,

the risk-averse firms’ optimal reset price in Figure 8 lies at a point like B, to the left of A. Of

course, when all firms act this way, the equilibrium in the economy is at a point like C, where

logΔt > 0 due to firms consistently resetting prices a bit below what the nonstochastic trend rate

of inflation π would imply. Note that at point C, the derivative ∂ logΔt/∂ log(p
∗
t /Pt) < 0. Thus,

positive technology shocks—which cause firms’ marginal costs to fall and lower p∗t /Pt—raise Δt.

Firms are already setting prices too low from an aggregate efficiency standpoint, and the positive

technology shock exacerbates this inefficiency. Similarly, negative technology shocks lower Δt.

This explains the impulse response functions for Δt in Figure 7, and why they tend to offset the

effects of the technology shock.

To see why this effect is larger when price dispersion is greater, notice that logΔt in Figure 8

is a convex function of log(p∗t /Pt). If Δt increases from point C, this implies moving further up the

curve to the left. At this point, the slope of the curve is more negative. Thus, technology shocks

lead to larger changes in Δt when Δt is larger to begin with, consistent with the results in Figure 7.
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It is because of this effect that the conditional volatility of consumption growth and the SDF fall

after a positive technology shock, as in Figure 6. In turn, this conditional heteroskedasticity of

the SDF is what causes risk premia in the model to behave countercyclically.

4.2 Uncertainty Shocks and the Intertemporal Elasticity of Substitution

In the long-run risks literature, such as Bansal and Yaron (2004), it is standard to assume that

the intertemporal elasticity of substitution is substantially greater than unity. There are two

reasons for that calibration: an IES > 1 guarantees that a positive shock to consumption causes

stock prices to rise, and an IES > 1 ensures that an exogenous increase in volatility causes stock

prices to fall.

However, the assumption of an IES > 1 is not strictly necessary for these two criteria to

be satisfied, even in Bansal and Yaron (2004, henceforth BY)’s model. For example, when equity

represents a levered rather than unlevered consumption claim, then equity prices in BY rise in

response to a positive consumption shock if and only if the IES > 1/ν, where ν is the degree of

leverage. For a volatility shock, stock prices respond negatively if and only if the IES > 1/γ,

where γ is the household’s relative risk aversion.40 Since ν, γ > 1, the IES can be less than unity

and still satisfy both of these criteria.

Of course, the model in the present paper differs in many respects from BY. Nevertheless,

a positive shock to technology (and consumption) in the model here causes stock prices to rise,

as can be seen clearly in Figure 2, even though the IES = 1.

To investigate the second criterion—that an increase in volatility causes stock prices to

fall—I extend the model to include exogenous stochastic volatility. In particular, let the standard

deviation of the technology shock each period, σA,t, follow the autoregressive process

log σA,t = (1− ρσ) log σ̄A + ρσ log σA,t−1 + εσt , (38)

where σ̄A = .007, as in Table 1. Following Bansal and Yaron (2004), I calibrate ρσ = 0.98 and

Var(εσt ) = (0.1)2.41

40 In Bansal and Yaron (2004), the coefficient A2 for the unlevered consumption claim requires θ < 0, where
θ = (1 − γ)/(1 − 1/ψ) and γ denotes risk aversion and ψ the IES in their paper. For the levered consumption
claim, however, the coefficient A2,m requires θ/(1− θ) < 0 (see their equation A20), which holds if either θ < 0 or
θ > 1. Given γ > 1, then θ > 1 if and only if ψ > 1/γ.

41Bansal and Yaron (2004) assume a more complicated (square-root rather than logarithmic) process for σA,t

than (38), but the magnitudes in (38) are essentially the same as theirs.
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Figure 9. Nonlinear impulse response functions for volatility σA
t , consumption Ct, inflation πt, the equity

premium ψe
t , equity price pet , and nominal term premium ψ

$(40)
t to a positive one-standard-deviation (10

percent, or .0007) volatility shock in the extended model. For clarity, the impulse response for σA
t is

graphed as returning to its baseline value of .007 rather than a baseline of 0. See text for details.
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Figure 9 plots the extended model’s nonlinear impulse response functions (computed the

same way as in previous figures) to a positive one-standard-deviation shock to εσt . Volatility

σA
t increases to about .0077 on impact and slowly declines back toward its initial level of .007.

Consumption drops about 0.2 percent on impact, as households increase precautionary savings,

and inflation falls gradually by about 0.1 percent in response to the decrease in demand. The

increase in the conditional volatility of consumption increases the volatility of the stochastic

discount factor, which causes a large, 60 bp jump in the equity premium (and a large, 25 bp

increase in the nominal term premium). The large and persistent rise in the equity premium

implies that the equity price must fall dramatically on impact, about 4.5 percent.42 Thus, the

model also satisfies the second criterion described above—that an exogenous increase in volatility

causes stock prices to fall—without the need for an IES > 1, consistent with the discussion above

even though the model differs from BY in many respects.

The exogenous shock to volatility in Figure 9 is related to the literature on “uncertainty

shocks”, such as Bloom (2009), who shows that recessions are typically associated with greater

stock market uncertainty. One interpretation of this correlation is that exogenous increases in

uncertainty lead to recessions, as in Figure 9 (where consumption and output about 0.25 percent

in response to the shock), but it is also possible that the causality runs both ways, so that

recessions lead to higher stock market volatility and uncertainty (e.g., Ludvigson, Ma, and Ng,

2021).

In fact, both of these channels can be seen in the model developed above. In addition to

the impulse responses in Figure 9 to an exogenous uncertainty shock, the model here implies

that recessions cause stock market uncertainty to increase endogenously.. The intuition for this is

essentially the same as for endogenous conditional heteroskedasticity, above. When the economy is

weak, consumption is low and the household’s stochastic discount factor becomes more sensitive to

subsequent shocks. This drives up the equity premium, as shown in Figure 2, but it also increases

the uncertainty about stock prices, as shown in Figure 10, which plots the nonlinear impulse

response function of the one-step-ahead standard deviation of the log equity price, sdt p
e
t+1 to a

one-standard-deviation (0.7 percent) technology shock, computed the same way as in previous

figures. In response to a positive technology shock, uncertainty about the equity price in the

42 In order to generate an equity premium of 60 bp in the first period, stock prices must fall by about 0.6 percent
below their second-period value. In order to generate an equity premium in each subsequent period, equity prices
must continue to rise. This requires a large initial fall in the equity price so that in each subsequent period equity
prices can rise in line with the implied equity premium.
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Figure 10. Nonlinear impulse response function for the one-period-ahead standard deviation of the log
equity price, sdt p

e
t+1, to a one-standard-deviation (0.7 percent) technology shock in the baseline model

with state variables initialized to their steady-state values. See text for details.

next period decreases about 0.2 percent—i.e., from about 2.5 percent in Figure 2 to less than 2.3

percent immediately after the shock—a substantial reduction.

4.3 The Financial Accelerator

Traditional models of the financial accelerator (e.g., Bernanke, Gertler, and Gilchrist, 1999; Kiy-

otaki and Moore, 1997; Gertler and Kiyotaki, 2011) allow for the possiblity of default, but ignore

deviations from risk neutrality. The fact that borrowers might default introduces a wedge between

borrowers and lenders that can act as an amplification and propagation mechanism for shocks: for

example, in Kiyotaki and Moore (1997), a negative technology shock reduces the value of capital,

which reduces firms’ collateral; with less collateral, firms must scale back production and output

falls by more than the effect of the technology shock alone. In Bernanke, Gertler, and Gilchrist

(1999, henceforth BGG), a weaker economy implies a higher probability of default, which raises

costly state verification costs for financial intermediaries, which in turn leads to a greater spread

between private borrowing rates and the risk-free rate.

The traditional financial accelerator mechanism captures many important features of a

credit crunch and a financial crisis. At the same time, these models are essentially risk-neutral

and abstract from risk premia—that is, in BGG and Kiyotaki and Moore (1997), the spread

between private borrowing rates and the risk-free rate is just the risk-neutral expected loss from

default. Yet an important part of the transmission mechanism in the 2007–08 financial crisis was

the fall in the value of collateral beyond even the risk-neutral probability of default: for example,
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risk and liquidity premia rose dramatically even on securities that had little or no connection to

subprime real estate lending (Gorton and Metrick, 2012), and the prices of many mortgage-backed

securities and credit default swaps fell by much more than can be explained by any reasonable

assumption for mortgage default and recovery rates (Stanton and Wallace, 2011). The dramatic

increase in risk premia during the financial crisis caused huge drops in the value of collateral and

historic increases in credit spreads. For the same reasons as in traditional financial accelerator

models, we would expect these repercussions from rising risk premia to be an important part of

the transmission mechanism from financial markets to the real economy.

Recently, some authors have begun to incorporate deviations from risk neutrality into fi-

nancial accelerator models—see, e.g., He and Krishnamurthy (2013), Brunnermeier and Sannikov

(2014)—but those models are idiosyncratic. In contrast, the macroeconomic model I’ve developed

here is canonical and would allow researchers to study the effects of risk premia on collateral val-

ues, credit spreads, and the economy within the well-understood and ubiquitous New Keynesian

DSGE framework. Extending the model to include a financial intermediation sector is beyond

the scope of the present paper, but would be a worthy topic for future research.

5. Conclusions

This paper shows that a simple, textbook New Keyneisan model with Epstein-Zin preferences

is consistent with a wide variety of asset pricing facts, such as the equity premium, real and

nominal term premium, and credit spread. The basic New Keynesian model produces the correct

correlations between the macroeconomy, real and nominal interest rates, and dividends, while

Epstein-Zin preferences allow the model to match the overall size and variability of the risk

premia on these assets.

For simplicity, I have kept the model as parsimonious as possible and used Epstein-Zin

preferences with a high degree of risk aversion to match the size of risk premia in the data.

This degree of risk aversion can be lowered dramatically by augmenting the model to include

additional sources of risk. For example, Barillas, Hansen, and Sargent (2009) show there is

a formal mathematical equivalence between Epstein-Zin preferences with a high degree of risk

aversion and those same preferences with a lower degree of risk aversion but a moderate level of

uncertainty about the structure and parameters of the model. Similarly, Schmidt (2015), following

Constantinides and Duffie (1996), shows that Epstein-Zin preferences with a high degree of risk
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aversion in a representative agent model are formally equivalent to those same preferences with a

lower degree of risk aversion and heterogeneous agents who face uninsurable idiosyncratic risks.

One can similarly reduce the required risk aversion in the model by adding long-run risks (e.g.,

Bansal and Yaron, 2004), rare disasters (e.g., Rietz, 1988; Barro, 2006), or parameter uncertainty

(e.g., Weitzman, 2007). All of these approaches address the fact that the quantity of risk faced by

a representative household in a textbook New Keynesian model with i.i.d. normally-distributed

shocks is not very large. The point of the present paper is not to incorporate all of these additional

features, but rather to serve as a “proof of concept” that the asset pricing data can be matched

within a standard New Keynesian framework.

The simple, structural model I develop provides a unified and intuitive framework for think-

ing about asset prices and asset pricing puzzles. Rather than studying each puzzle in isolation,

the model here provides a reasonable description of the behavior of all of the major asset classes.

In addition, structural models have the advantage of being more robust to structural breaks and

novel policy interventions, such as those observed during the recent global financial crisis and Eu-

ropean sovereign debt crisis. The model developed here can potentially provide insight in these

situations, when more traditional, reduced-form models are largely uninformative.

Finally, by showing how a standard macroeconomic model can be made consistent with

the behavior of risk premia in financial markets, the present paper opens the door to studying

the feedback between those risk premia and the economy within the standard macreconomic

modeling framework. As evidenced by the recent financial crises, this feedback from asset prices

to the economy and back again can be very important. In the simple, stylized model of the

present paper, asset prices have no feedback effects on the real economy, for simplicity, but it

would be very interesting to combine the asset-pricing framework of the present paper with a

macroeconomic model that includes a financial accelerator along the lines of Bernanke, Gertler,

and Gilchrist (1999), Kiyotaki and Moore (1997), Gertler and Kiyotaki (2011), and others. In

general, these models abstract from risk aversion and risk premia and focus instead on the effect of

agency problems and collateral constraints on lending and investment. In a combined framework,

shocks that cause the economy to deteriorate would lead to an increase in risk premia and a

concomitant fall in asset prices, further amplifying the collateral constraint on firms and financial

intermediaries. This channel appears to have been an important amplification and propagation

mechanism in the recent crises.
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Appendix A: Model Equations

We can write the equations of the macroeconomic model in Section 2 in recursive form as follows. (Equa-
tions for equity and debt are essentially the same as in Section 3 and are not reproduced here.)

Value function:

Vt = (1− β)

(
logCt − η

L1+χ
t

(1 + χ)

)
− βα−1 log Vexpt, (A1)

Vexpt = Et exp(−αVt+1). (A2)

Risk-free real rate and Euler equations:

e−rt = βEt(Ct+1/Ct)
−1( exp(−αVt+1)/Vexpt), (A3)

C−1
t = βEte

it−πt+1C−1
t+1( exp(−αVt+1)/Vexpt). (A4)

Optimal price setting by firms: (
p∗t
Pt

)1+λ(1−θ)/((λ−1)θ)

= λ
znt
zdt

, (A5)

znt = μtYt + βξEt(Ct+1/Ct)
−1( exp(−αVt+1)/Vexpt)(e

πt+1−π̄)λ/((λ−1)θ)znt+1, (A6)

zdt = Yt + βξEt(Ct+1/Ct)
−1( exp(−αVt+1)/Vexpt)(e

πt+1−π̄)1/(λ−1)zdt+1, (A7)

(eπt−π̄)1/(1−λ) = (1− ξ)

(
p∗t
Pt

)1/(1−λ)

(eπt−π̄)1/(1−λ) + ξ. (A8)

Marginal cost and real wage:

μt =
wt

Pt

Y
(1−θ)/θ
t

θA
1/θ
t K

(1−θ)/θ
, (A9)

ηLχ
t /C

−1
t =

wt

Pt
. (A10)

Production and resource constraint:
Yt = AtK

1−θLθ
t/Δt, (A11)

Δ
1/θ
t = (1− ξ)

(
p∗t
Pt

)−λ/((λ−1)θ)

+ ξ(eπt−π̄)λ/((λ−1)θ)Δ
1/θ
t−1, (A12)

Yt = Ct. (A13)

Monetary policy rule:

it = log(1/β) + πt + φπ(πt − π̄) +
φy

4
log(Yt/Ȳt), (A14)

log Ȳt = ρȳ log Ȳt−1 + (1− ρȳ) log Yt. (A15)

Technology shock:
logAt = logAt−1 + εAt . (A16)

Equations (A1)–(A2) break the generalized value function into two equations to correspond to the
syntax of Perturbation AIM and other rational expectations equation solvers, which typically require the
model to be written as a system of equations in a form similar to EtF (Xt−1, Xt, Xt+1; εt) = 0.

Equations (A5)–(A7) represent monopolistic firms’ optimal price-setting equations. The exponent
on (p∗t /Pt) in (A5) follows from substituting out yt+j(f) in equation (14) in the main text, and is due
to the presence of firm-specific capital stocks. Equations (A6)–(A7) are recursive versions of the infinite
sums in the numerator and denominator of (14).

The other equations above follow in a straightforward manner from the equations in the main text.
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Although capital stocks in the model above are fixed, the model nevertheless has a balanced growth
path along which all variables are either constant or grow at constant rates if technology At itself grows
at a constant rate. Along the balanced growth path, each of the variables Yt, Ct, wt, Ȳt, z

n
t , and z

d
t grow

at the same rate as At. If we divide each of these variables through by At, the ratios have a nonstochastic
steady state. Moreover, after a shock to At, these ratios converge back to their pre-shock levels. Thus,
the nonstochastic steady state of these ratios constitutes a stable point around which we can approximate
the model.

I thus transform the model by dividing each of the above variables by the level of technology At,
and transform the value function Vt by defining Ṽt ≡ Vt − logAt. The transformed model then has a
nonstochastic steady state around which I can compute an nth-order approximate solution as described
in the text. These solutions are highly accurate in a neighborhood of the steady state, and become
increasingly accurate over larger regions of the state space as the order of approximation n becomes large
(see Swanson, Anderson, and Levin, 2006, for details and discussion).

Appendix B: Impulse Responses to a Negative Technology Shock

The nonlinear impulse response functions graphed in Figures 1 through 5 can be asymmetric for positive
and negative shocks, because they are nonlinear. In practice, the New Keynesian model presented in
the main text does not produce impulse response functions that are very asymmetric. This can be seen,
for example, in Figure/ B1, which reproduces Figure 1 from the main text for the case of a negative
one-standard-deviation (−.007) shock to technology At. The nonlinear impulse response functions in
Figure B1 are computed in exactly the same was as in Figures 1 through 6, except that the shock has the
opposite sign. Overall, the responses in Figure B1 are close to being symmetric counterparts to Figure 1.

Figure B2 presents nonlinear impulse response functions for the equity price pet , equity premium
ψe

t , real long-term bond price p
(40)
t , and term premium ψ

(40)
t on the real long-term bond to the negative

one-standard-deviation technology shock. The impulse responses are again close to being the symmetric
counterparts to the nonlinear impulse responses functions in Figures 2 and 3, although the asset price
and risk premium responses are slightly larger in magnitude for the negative shock than they are for the
positive shock. For example, the equity premium increases by about 70 bp after the negative technology
shock here, while it fell by about 62 bp after the positive shock in Figure 2. Similarly, the equity price
falls by about 2.75 percent after the negative technology shock here, but rose by about 2.5 percent after
the positive shock in Figure 2.

Figure B3 repeats the analysis for the nominal long-term bond price p
$(40)
t , the term premium ψ

$(40)
t

on the nominal long-term bond, defaultable bond price pdt , and credit spread idt − ict . As with Figure B2,
the responses here are essentially symmetric to their counterparts in Figures 4 and 5, while also being
somewhat larger in magnitude.
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Figure B1. First-order (dashed red lines) and fifth-order (solid blue lines) impulse response functions for
consumption Ct, inflation πt, short-term nominal interest rate it, short-term real interest rate rt, labor
Lt, and price dispersion Δt to a one-standard-deviation negative (−0.7 percent) technology shock in the
model. See Figure 1 for comparison and text for details.
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Figure B2. Nonlinear impulse response functions for the equity price pet , equity premium ψe
t , real long-

term bond price p
(40)
t and real term premium ψ

(40)
t to a one-standard-deviation negative (−0.7 percent)

technology shock in the model, with state variables initialized to their nonstochastic steady state values.
See Figures 2–3 for comparison and text for details.
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Figure B3. Nonlinear impulse response functions for the nominal long-term bond price p
$(40)
t , nominal

bond term premium ψ
$(40)
t , defaultable long-term bond price pdt , and credit spread idt − ict to a one-

standard-deviation negative (−0.7 percent) technology shock in the model, with state variables initialized
to their nonstochastic steady state values. See Figures 4–5 for comparison and text for details.
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