A Reassessment of Monetary Policy Surprises and High-Frequency Identification

Michael D. Bauer
Universität Hamburg

Eric T. Swanson
University of California, Irvine

AEA Meetings
New Orleans
January 6, 2023
High-frequency monetary policy surprises are an important tool for estimating effects of monetary policy on asset prices and macroeconomic variables:

- **asset prices:** high-frequency OLS regressions
- **macro variables:** monetary policy surprises used as external instrument in structural VAR or LP
High-Frequency Monetary Policy Surprises

However, there are two growing concerns:

- **Exogeneity**: monetary policy surprises are *correlated* with macroeconomic and financial data that *pre-dates* the FOMC announcement:
However, there are two growing concerns:

- **exogeneity**: monetary policy surprises are *correlated* with macroeconomic and financial data that *pre-dates* the FOMC announcement:

- **relevance**: monetary policy surprises are a small fraction of interest rate changes each month
 - Ramey (2016), Bauer-Swanson (2021)
Monetary Policy Surprises Are Predictable

Predictive Regressions \(mps_t = \alpha + \beta' X_{t-} + \varepsilon_t \)

- Nonfarm payrolls surp. \(0.094^{**} \) (2.442)
- Empl. growth (12m) \(0.005^{**} \) (2.108)
- \(\Delta \log \) S&P 500 (3m) \(0.084 \) (1.433)
- \(\Delta \) Slope (3m) \(-0.010 \) (-1.406)
- \(\Delta \log \) Comm. price (3m) \(0.120^{**} \) (2.392)
- Treasury skewness \(0.032^{***} \) (3.006)

\(R^2 \) \(0.161 \)
Sample 1988:1–2019:12
\(N \) 322
What We Do

- Present a simple model that explains this correlation in terms of imperfect information: the “Fed response to news” channel of Bauer-Swanson (2021)

- Address the **exogeneity** concern by projecting out the correlation with the publicly observed data X_t

- Address the **relevance** concern by including speeches by the Fed Chair in the set of monetary policy announcements
What We Do

- Present a simple model that explains this correlation in terms of imperfect information: the “Fed response to news” channel of Bauer-Swanson (2021)

- Address the **exogeneity** concern by projecting out the correlation with the publicly observed data X_t.

- Address the **relevance** concern by including speeches by the Fed Chair in the set of monetary policy announcements.

- Revisit high-frequency asset price regressions and monetary policy SVARs, LPs to assess effects of these changes.
A Simple Model with Imperfect Information

Short-term interest rate i_t:

\[i_t = \alpha_t x_t + \varepsilon_t \]
A Simple Model with Imperfect Information

Short-term interest rate i_t:

$$i_t = \alpha_t x_t + \varepsilon_t$$

Fed’s response coefficient α_t is not known by private sector

Private sector has optimal estimate $a_t \equiv E[\alpha_t | H_{t-1}]$
A Simple Model with Imperfect Information

Short-term interest rate i_t:

$$i_t = \alpha_t x_t + \varepsilon_t$$

Fed’s response coefficient α_t is not known by private sector

Private sector has optimal estimate $a_t \equiv E[\alpha_t | \mathcal{H}_{t-1}]$

Then:

$$mps_t \equiv i_t - E[i_t | x_t, \mathcal{H}_{t-1}]$$

$$= (\alpha_t - a_t) x_t + \varepsilon_t$$
Implications of the Simple Model

\[mps_t = (\alpha_t - a_t)x_t + \varepsilon_t \]
Implications of the Simple Model

\[mps_t = (\alpha_t - a_t)x_t + \varepsilon_t \]

- Recall: \(a_t \) is the optimal estimate of \(\alpha_t \), \(a_t = E[\alpha_t | x_t, H_{t-1}] \)
- So \(E[mps_t | x_t, H_{t-1}] = 0 \)
- i.e., \(mps_t \) is unpredictable \textit{ex ante}
Implications of the Simple Model

\[mps_t = (\alpha_t - a_t)x_t + \varepsilon_t \]

- Recall: \(a_t \) is the optimal estimate of \(\alpha_t \), \(a_t = E[\alpha_t \mid x_t, \mathcal{H}_{t-1}] \)
- So \(E[mps_t \mid x_t, \mathcal{H}_{t-1}] = 0 \)
- i.e., \(mps_t \) is unpredictable \textit{ex ante}
- Nevertheless, \(mps_t \) can be correlated with \(x_t \) \textit{ex post}
- For a procyclical variable \(x_t \), this correlation is positive when \(a_t < \alpha_t \)
Implications of the Simple Model

\[mps_t = (\alpha_t - a_t)x_t + \varepsilon_t \]

- Recall: \(a_t \) is the optimal estimate of \(\alpha_t \), \(a_t = E[\alpha_t | x_t, \mathcal{H}_{t-1}] \)
- So \(E[mps_t | x_t, \mathcal{H}_{t-1}] = 0 \)
- i.e., \(mps_t \) is unpredictable \textit{ex ante}

Nevertheless, \(mps_t \) can be correlated with \(x_t \) \textit{ex post}

For a procyclical variable \(x_t \), this correlation is positive when \(a_t < \alpha_t \)

Note that \(a_t \) can be \(< \alpha_t \) for several periods if there is an increase in \(\alpha_t \) and it takes time for the private sector to learn about the increase
Evidence that $a_t < \alpha_t$

Rolling-window Taylor Rule regressions:

- Greenspan: “The Federal Reserve has seen the need to respond more aggressively than had been our wont in earlier decades” (March 2001)
- Bernanke: “By way of historical comparison, this policy response stands out as exceptionally rapid and proactive” (December 2008)
Additional Implications of the Simple Model

- Changes in interest rates affect asset prices entirely through mps_t (no separate role for ε_t)
- High-frequency OLS regressions of asset price changes on mps_t remain valid
Additional Implications of the Simple Model

- Changes in interest rates affect asset prices entirely through mps_t (no separate role for ε_t)

- High-frequency OLS regressions of asset price changes on mps_t remain valid

- But *ex post* correlation of mps_t with x_t violates exogeneity assumption of high-frequency IV regressions in macro SVARs and LPs

- To eliminate this correlation, we recommend using orthogonalized $mpst\perp \equiv mps_t - \hat{\alpha} - \hat{\beta}X_t$
High-Frequency Asset Price Regressions

\[\Delta y_t = \gamma + \delta mps_t + \varepsilon_t, \]

<table>
<thead>
<tr>
<th></th>
<th>(mps_t)</th>
<th>(mps_t^\perp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-year yield</td>
<td>0.73</td>
<td>0.74</td>
</tr>
<tr>
<td>(t)-stat.</td>
<td>(18.6)</td>
<td>(16.7)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.784</td>
<td>0.689</td>
</tr>
<tr>
<td>Five-year yield</td>
<td>0.63</td>
<td>0.64</td>
</tr>
<tr>
<td>(t)-stat.</td>
<td>(14.4)</td>
<td>(13.8)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.626</td>
<td>0.550</td>
</tr>
<tr>
<td>Ten-year yield</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>(t)-stat.</td>
<td>(9.5)</td>
<td>(9.9)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.435</td>
<td>0.363</td>
</tr>
<tr>
<td>30-year yield</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>(t)-stat.</td>
<td>(6.3)</td>
<td>(6.7)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.206</td>
<td>0.173</td>
</tr>
<tr>
<td>S&P500</td>
<td>-5.39</td>
<td>-5.50</td>
</tr>
<tr>
<td>(t)-stat.</td>
<td>(-7.7)</td>
<td>(-6.6)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.304</td>
<td>0.266</td>
</tr>
</tbody>
</table>

Observations 322 322
High-Frequency Identification of SVARs, LPs

Reduced-form VAR:

\[Y_t = \alpha + B(L) Y_{t-1} + u_t, \]

Reduced-form residuals related to structural shocks:

\[u_t = S\varepsilon_t, \]
High-Frequency Identification of SVARs, LPs

Reduced-form VAR:

\[Y_t = \alpha + B(L)Y_{t-1} + u_t, \]

Reduced-form residuals related to structural shocks:

\[u_t = S\varepsilon_t, \]

Identify impact effect of \(\varepsilon_{t}^{mp} \) on \(u_t \) by regressing \(u_t \) on \(u_{t}^{mp} \) by 2SLS using \(mps_t \) as an external instrument.

- **Instrument relevance:** \(E[mps_t \varepsilon_{t}^{mp}] \neq 0, \)
- **Instrument exogeneity:** \(E[mps_t \varepsilon_{t}^{-mp}] = 0, \)
Revisiting Gertler-Karadi (2015)

MPS instrument

orthogonalized MPS instrument

IP
CPI
EBP
2Y Treas

months

months
Revisiting Gertler-Karadi (2015)

- unadjusted mps instrument is correlated with output, inflation
- estimated effects of monetary policy are attenuated or can even have opposite, puzzling sign if mps is unadjusted
- orthogonalized mps reduces this bias—IRFs about 4 times larger
Revisiting Gertler-Karadi (2015)

- unadjusted *mps* instrument is correlated with output, inflation
- estimated effects of monetary policy are attenuated or can even have opposite, puzzling sign if *mps* is unadjusted
- orthogonalized *mps* reduces this bias—IRFs about 4 times larger
- including Fed Chair speeches in *mps* instrument leads to similar IRFs but much larger first-stage *F*-statistics:

<table>
<thead>
<tr>
<th>MPS measure</th>
<th>first-stage F-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOMC announcements only</td>
<td>8.19</td>
</tr>
<tr>
<td>FOMC + Chair Speeches</td>
<td>30.44</td>
</tr>
</tbody>
</table>
Revisiting Gertler-Karadi (2015)

- unadjusted mps instrument is correlated with output, inflation
- estimated effects of monetary policy are attenuated or can even have opposite, puzzling sign if mps is unadjusted
- orthogonalized mps reduces this bias—IRFs about 4 times larger
- including Fed Chair speeches in mps instrument leads to similar IRFs but much larger first-stage F-statistics:

<table>
<thead>
<tr>
<th>MPS measure</th>
<th>first-stage F-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOMC announcements only</td>
<td>8.19</td>
</tr>
<tr>
<td>FOMC + Chair Speeches</td>
<td>30.44</td>
</tr>
<tr>
<td>orthogonalized FOMC annncmts. only</td>
<td>1.83</td>
</tr>
<tr>
<td>orthogonalized FOMC + Chair Speeches</td>
<td>12.37</td>
</tr>
</tbody>
</table>
Revisiting Gertler-Karadi (2015), incl. Chair Speeches
Conclusions

- HF monetary policy surprises are correlated with macro and financial data that pre-date the announcements.
- This correlation is consistent with private sector underestimating Fed’s responsiveness to the economy, with learning.
- High-frequency OLS regressions of asset price changes on mps_t remain valid.
- But *ex post* correlation of mps_t with x_t violates exogeneity assumption of high-frequency IV regressions in SVARs, LPs.
- HF monetary policy surprises need to be orthogonalized wrt macro and financial data to avoid biased SVAR, LP estimates.
- Including additional MP announcements such as Chair speeches improves instrument relevance and IRF precision.