Motivation

Glenn D. Rudebusch Eric T. Swanson

Economic Research Federal Reserve Bank of San Francisco

> Banca D'Italia April 16, 2010

Outline

- Motivation and Background
- Epstein-Zin Preferences in a Standard NK Model
- 3 Long-Run Risks
- Model Implications
- Conclusions

Motivation

•00000

The equity premium puzzle: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The Bond Premium Puzzle

Motivation

•00000

The equity premium puzzle: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The bond premium puzzle: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

The Bond Premium Puzzle

The equity premium puzzle: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The bond premium puzzle: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

Note:

Motivation

 Since Backus, Gregory, and Zin (1989), DSGE models with nominal rigidities have advanced considerably

The Bond Premium Puzzle

The equity premium puzzle: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The bond premium puzzle: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

Note:

Motivation

 Since Backus, Gregory, and Zin (1989), DSGE models with nominal rigidities have advanced considerably

The UIP premium puzzle: excess returns on high-interest-rate foreign currencies are much larger (and more variable) than can be explained by standard preferences in a DSGE model.

Kim-Wright Term Premium

Motivation 00000

Why Study the Term Premium?

Why Study the Term Premium in a DSGE Model?

Why Study the Term Premium in a DSGE Model?

Relative to equity premium, the term premium:

- applies to a larger volume of securities
- is used by central banks to measure expectations of monetary policy, inflation
- only requires modeling short-term interest rate, not dividends or leverage
- provides an additional perspective on the model
- tests nominal rigidities

Why Study the Term Premium in a DSGE Model?

Relative to equity premium, the term premium:

- applies to a larger volume of securities
- is used by central banks to measure expectations of monetary policy, inflation
- only requires modeling short-term interest rate, not dividends or leverage
- provides an additional perspective on the model
- tests nominal rigidities

More generally:

- many empirical questions about risk premia require a structural DSGE model to provide reliable answers
- DSGE models widely used in macroeconomics; total failure to explain risk premia may signal flaws in the model

Wachter (2005)

Motivation

000000

• can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy

Some Recent Studies of the Bond Premium Puzzle

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy
- Rudebusch and Swanson (2008)
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model

Some Recent Studies of the Bond Premium Puzzle

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy
- Rudebusch and Swanson (2008)
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model
- Piazzesi-Schneider (2006)
 - can resolve bond premium puzzle using Epstein-Zin preferences in endowment economy

Some Recent Studies of the Bond Premium Puzzle

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy
- Rudebusch and Swanson (2008)
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model
- Piazzesi-Schneider (2006)
 - can resolve bond premium puzzle using Epstein-Zin preferences in endowment economy

We examine to what extent the Piazzesi-Schneider results generalize to the DSGE case

Conclusions

Related Strands of the Literature

Motivation

00000

The Bond Premium in a DSGE Model:

 Backus-Gregory-Zin (1989), Donaldson-Johnson-Mehra (1990), Den Haan (1995), Doh (2006), Rudebusch-Swanson (2008)

Epstein-Zin Preferences and the Bond Premium in an Endowment Economy:

 Piazzesi-Schneider (2006), Colacito-Croce (2007), Backus-Routledge-Zin (2007), Gallmeyer-Hollifield-Palomino-Zin (2007), Bansal-Shaliastovich (2008), Doh (2008)

Epstein-Zin Preferences in a DSGE Model:

 Tallarini (2000), Croce (2007), Levin-Lopez-Salido-Nelson-Yun (2008)

Epstein-Zin Preferences and the Bond Premium in a DSGE Model:

• van Binsbergen-Fernandez-Villaverde-Koijen-Rubio-Ramirez (2008)

Epstein-Zin Preferences in a Standard <u>DSGE Model</u>

- Epstein-Zin Preferences in a Standard NK Model
 - Epstein-Zin Preferences
 - Standard New Keynesian Model
 - Price Assets in the Model
 - Solve the Model
 - Results

 $V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$

Standard preferences:

Motivation

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, I_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, I_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

Note:

Motivation

• need to impose $u \ge 0$

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, I_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

Note:

- need to impose u > 0
- or $u \leq 0$ and $V_t \equiv u(c_t, I_t) \beta \left(E_t(-V_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}$

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, I_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

Note:

Motivation

- need to impose $u \ge 0$
- or $u \le 0$ and $V_t \equiv u(c_t, I_t) \beta \left(E_t(-V_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}$

We'll use standard NK utility kernel:

$$u(c_t, I_t) \equiv \frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{I_t^{1+\chi}}{1+\chi},$$

Motivation

Household optimality conditions with EZ preferences:

$$\begin{aligned}
\mu_t \, u_1 \big|_{(c_t, h)} &= P_t \lambda_t \\
-\mu_t \, u_2 \big|_{(c_t, h)} &= w_t \lambda_t \\
\lambda_t &= \beta E_t \lambda_{t+1} (1 + r_{t+1}) \\
\mu_t &= \mu_{t-1} (E_{t-1} \, V_t^{1-\alpha})^{\alpha/(1-\alpha)} V_t^{-\alpha}, \quad \mu_0 = 1
\end{aligned}$$

Household optimality conditions with EZ preferences:

$$\begin{aligned}
\mu_t \, u_1 \big|_{(c_t, h)} &= P_t \lambda_t \\
-\mu_t \, u_2 \big|_{(c_t, h)} &= w_t \lambda_t \\
\lambda_t &= \beta E_t \lambda_{t+1} (1 + r_{t+1}) \\
\mu_t &= \mu_{t-1} (E_{t-1} V_t^{1-\alpha})^{\alpha/(1-\alpha)} V_t^{-\alpha}, \quad \mu_0 = 1
\end{aligned}$$

Recall:
$$V_t = u(c_t, I_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}$$

Epstein-Zin Preferences

Household optimality conditions with EZ preferences:

$$\mu_{t} u_{1}|_{(c_{t}, l_{t})} = P_{t} \lambda_{t}$$

$$-\mu_{t} u_{2}|_{(c_{t}, l_{t})} = w_{t} \lambda_{t}$$

$$\lambda_{t} = \beta E_{t} \lambda_{t+1} (1 + r_{t+1})$$

$$\mu_{t} = \mu_{t-1} (E_{t-1} V_{t}^{1-\alpha})^{\alpha/(1-\alpha)} V_{t}^{-\alpha}, \quad \mu_{0} = 1$$

Recall:
$$V_t = u(c_t, I_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}$$

Stochastic discount factor:

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{\left(E_t V_{t+1}^{1-\alpha}\right)^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}}$$

New Keynesian Model (Very Standard)

Continuum of differentiated firms:

- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
- set prices in Calvo contracts with avg. duration 4 quarters
- identical production functions $y_t = A_t \bar{k}^{1-\eta} I_t^{\eta}$
- have firm-specific capital stocks
- face aggregate technology $\log A_t = \rho_A \log A_{t-1} + \varepsilon_t^A$

Parameters
$$\theta = .2$$
, $\rho_A = .9$, $\sigma_A^2 = .01^2$

Perfectly competitive goods aggregation sector

Model Implications

New Keynesian Model (Very Standard)

Government:

- imposes lump-sum taxes G_t on households
- destroys the resources it collects
- $\log G_t = \rho_G \log G_{t-1} + (1 \rho_a) \log \bar{G} + \varepsilon_t^G$

Parameters $\bar{G} = .17 \bar{Y}, \, \rho_G = .9, \, \sigma_G^2 = .004^2$

Government:

Motivation

- imposes lump-sum taxes G_t on households
- destroys the resources it collects
- $\log G_t = \rho_G \log G_{t-1} + (1 \rho_g) \log \bar{G} + \varepsilon_t^G$

Parameters
$$\bar{G} = .17 \bar{Y}$$
, $\rho_G = .9$, $\sigma_G^2 = .004^2$

Monetary Authority:

$$i_t = \rho_i i_{t-1} + (1 - \rho_i) [1/\beta + \pi_t + g_y(y_t - \bar{y}) + g_\pi(\bar{\pi}_t - \pi^*)] + \varepsilon_t'$$

Parameters $\rho_i = .73$, $g_y = .53$, $g_{\pi} = .93$, $\pi^* = 0$, $\sigma_i^2 = .004^2$

Asset Pricing

Asset pricing:

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Motivation

Asset pricing:

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Zero-coupon bond pricing:

$$p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}]$$

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Notation: let $i_t \equiv i_t^{(1)}$

Conclusions

The Term Premium in the Standard NK Model

Motivation

In DSGE framework, convenient to work with a default-free consol,

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1, δ_c , δ_c^2 , δ_c^3 , ... (nominal)

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1, δ_c , δ_c^2 , δ_c^3 , ... (nominal)

Price of the consol:

$$\widetilde{p}_t^{(n)} = 1 + \delta_c \, E_t m_{t+1} \widetilde{p}_{t+1}^{(n)}$$

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1, δ_c , δ_c^2 , δ_c^3 , ... (nominal)

Price of the consol:

Motivation

$$\widetilde{p}_t^{(n)} = 1 + \delta_c \, E_t m_{t+1} \widetilde{p}_{t+1}^{(n)}$$

Risk-neutral consol price:

$$\widehat{p}_t^{(n)} = 1 + \delta_c e^{-i_t} E_t \widehat{p}_{t+1}^{(n)}$$

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1, δ_c , δ_c^2 , δ_c^3 , ... (nominal)

Price of the consol:

$$\widetilde{p}_t^{(n)} = 1 + \delta_c \, E_t m_{t+1} \widetilde{p}_{t+1}^{(n)}$$

Risk-neutral consol price:

$$\widehat{p}_t^{(n)} = 1 + \delta_c \, e^{-i_t} E_t \widehat{p}_{t+1}^{(n)}$$

Term premium:

$$\psi_t^{(n)} \equiv \log \left(\frac{\delta_c \widetilde{\rho}_t^{(n)}}{\widetilde{\rho}_t^{(n)} - 1} \right) - \log \left(\frac{\delta_c \widehat{\rho}_t^{(n)}}{\widehat{\rho}_t^{(n)} - 1} \right)$$

Solving the Model

Motivation

The standard NK model above has a relatively large numer of state variables: A_{t-1} , G_{t-1} , i_{t-1} , Δ_{t-1} , $\bar{\pi}_{t-1}$, ε_t^A , ε_t^G , ε_t^i

Solving the Model

Motivation

The standard NK model above has a relatively large numer of state variables: A_{t-1} , G_{t-1} , i_{t-1} , Δ_{t-1} , $\bar{\pi}_{t-1}$, ε_t^A , ε_t^G , ε_t^i

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

Solving the Model

Motivation

The standard NK model above has a relatively large numer of state variables: A_{t-1} , G_{t-1} , i_{t-1} , Δ_{t-1} , $\bar{\pi}_{t-1}$, ε_t^A , ε_t^G , ε_t^G

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
- So we compute a third-order approximation of the solution around nonstochastic steady state
- Perturbation AIM algorithm in Swanson, Anderson, Levin (2006) quickly computes *n*th order approximations

"L - - + 1:4" [7

Empirical and Model-Based Unconditional Moments

		EU	ΕZ	"best fit" EZ
Variable	U.S. Data	Preferences	Preferences	Preferences
sd[<i>C</i>]	1.19	1.40	1.46	2.12
sd[<i>L</i>]	1.71	2.48	2.50	1.89
$sd[w^r]$	0.82	2.02	2.02	2.02
$sd[\pi]$	2.52	2.22	2.30	2.96
sd[<i>i</i>]	2.71	1.86	1.93	2.65
$sd[i^{(40)}]$	2.41	0.52	0.57	1.17
mean[$\psi^{(40)}$]	1.06	.010	.438	1.06
$sd[\psi^{(40)}]$	0.54	.000	.053	.162
mean[$i^{(40)} - i$]	1.43	038	.390	0.95
$sd[i^{(40)} - i]$	1.33	1.41	1.43	1.59
mean[$x^{(40)}$]	1.76	.010	.431	1.04
$sd[x^{(40)}]$	23.43	6.52	6.87	10.77
memo: IES		.5	.5	.5
quasi-CRRA		2	75	90

"L - - + 1:4" [7

Empirical and Model-Based Unconditional Moments

		EU	ΕZ	"best fit" EZ
Variable	U.S. Data	Preferences	Preferences	Preferences
sd[<i>C</i>]	1.19	1.40	1.46	2.12
sd[<i>L</i>]	1.71	2.48	2.50	1.89
$sd[w^r]$	0.82	2.02	2.02	2.02
$sd[\pi]$	2.52	2.22	2.30	2.96
sd[<i>i</i>]	2.71	1.86	1.93	2.65
$sd[i^{(40)}]$	2.41	0.52	0.57	1.17
mean[$\psi^{(40)}$]	1.06	.010	.438	1.06
$sd[\psi^{(40)}]$	0.54	.000	.053	.162
mean[$i^{(40)} - i$]	1.43	038	.390	0.95
$sd[i^{(40)} - i]$	1.33	1.41	1.43	1.59
mean[$x^{(40)}$]	1.76	.010	.431	1.04
$sd[x^{(40)}]$	23.43	6.52	6.87	10.77
memo: IES		.5	.5	.5
quasi-CRRA		2	75	90

Arrow-Pratt:

$$\frac{-C\,u''(C)}{u'(C)}$$

Arrow-Pratt:

$$\frac{-C\,u''(C)}{u'(C)}$$

Here:

$$V_{t} = \frac{c_{t}^{1-\gamma}}{1-\gamma} - \chi_{0} \frac{I_{t}^{1+\chi}}{1+\chi} + \beta \left(E_{t} V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

Arrow-Pratt:

$$\frac{-C\,u''(C)}{u'(C)}$$

Here:

$$V_{t} = \frac{c_{t}^{1-\gamma}}{1-\gamma} - \chi_{0} \frac{I_{t}^{1+\chi}}{1+\chi} + \beta \left(E_{t} V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

CRRA =
$$\frac{-W V''(W)}{V'(W)} + \alpha \frac{W V'(W)}{V(W)}$$

Arrow-Pratt:

$$\frac{-C\,u''(C)}{u'(C)}$$

Here:

$$V_{t} = \frac{c_{t}^{1-\gamma}}{1-\gamma} - \chi_{0} \frac{I_{t}^{1+\chi}}{1+\chi} + \beta \left(E_{t} V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

CRRA =
$$\frac{-W V''(W)}{V'(W)} + \alpha \frac{W V'(W)}{V(W)}$$
$$= \frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda} + \alpha \frac{c u_1}{u}$$

Arrow-Pratt:

$$\frac{-C\,u''(C)}{u'(C)}$$

Here:

$$V_{t} = \frac{c_{t}^{1-\gamma}}{1-\gamma} - \chi_{0} \frac{I_{t}^{1+\chi}}{1+\chi} + \beta \left(E_{t} V_{t+1}^{1-\alpha}\right)^{1/(1-\alpha)}$$

CRRA =
$$\frac{-W V''(W)}{V'(W)} + \alpha \frac{W V'(W)}{V(W)}$$
$$= \frac{-u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w\lambda} + \alpha \frac{c u_1}{u}$$

see "Risk Aversion, the Labor Margin, and Asset Pricing in a DSGE Model"

Epstein-Zin preferences:

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}}$$

Epstein-Zin preferences:

$$m_{t,t+1} \equiv \frac{\beta u_1\big|_{(c_{t+1},l_{t+1})}}{u_1\big|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{\left(E_t V_{t+1}^{1-\alpha}\right)^{1/(1-\alpha)}}\right)^{-\alpha} \frac{P_t}{P_{t+1}}$$

Barillas-Hansen-Sargent (2008):

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \frac{\psi_{t+1}}{\psi_t} \frac{P_t}{P_{t+1}}$$

Model Implications

Epstein-Zin preferences:

Motivation

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{\left(E_t V_{t+1}^{1-\alpha}\right)^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}}$$

Barillas-Hansen-Sargent (2008):

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1},l_{t+1})}}{u_1 \big|_{(c_t,l_t)}} \frac{\psi_{t+1}}{\psi_t} \frac{P_t}{P_{t+1}}$$

 Guvenen (2006), Moskowitz-Vissing-Jorgensen (2009): heterogeneous agents

Risk Aversion and the Term Premium

Risk Aversion and the Term Premium

Risk Aversion and the Term Premium

Long-Run Risks

- 3 Long-Run Risks
 - Long-Run Inflation Risk
 - Long-Run Real Risk

Motivation

Long-run inflation risk makes long-term bonds more risky:

- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth

Conclusions

Long-Run Inflation Risk

Motivation

Long-run inflation risk makes long-term bonds more risky:

- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth

Motivation

Long-run inflation risk makes long-term bonds more risky:

 same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk

Model Implications

Conclusions

- long-term inflation expectations more observable than long-term consumption growth
- other evidence (Kozicki-Tinsley, 2003, Gürkaynak, Sack, Swanson, 2005) that long-term inflation expectations in the U.S. vary

Suppose:

$$\pi_t^* = \rho_\pi^* \pi_{t-1}^* + \varepsilon_t^{\pi^*}$$

Suppose:

$$\pi_t^* = \rho_\pi^* \pi_{t-1}^* + \varepsilon_t^{\pi^*}$$

Then:

- inflation is volatile, but not risky
- in fact, long-term bonds act like insurance: when $\pi^* \uparrow$, then $C \uparrow$ and $p^{(40)} \downarrow$
- result: term premium is negative

Consider instead:

$$\pi_t^* = \rho_{\pi}^* \pi_{t-1}^* + (1 - \rho_{\pi}^*) \theta_{\pi^*} (\overline{\pi}_t - \pi_t^*) + \varepsilon_t^{\pi^*}$$

Consider instead:

Motivation

$$\pi_t^* = \rho_{\pi}^* \pi_{t-1}^* + (1 - \rho_{\pi}^*) \theta_{\pi^*} (\overline{\pi}_t - \pi_t^*) + \varepsilon_t^{\pi^*}$$

Long-Run Risks

- θ_{π^*} describes pass-through from current π to long-term π^*
- Gürkaynak, Sack, and Swanson (2005) found evidence for $\theta_{\pi^*} > 0$ in U.S. bond response to macro data releases
- makes long-term bonds act less like insurance: when technology/supply shock, then $\pi \uparrow$, $C \downarrow$, and $p^{(40)} \downarrow$ supply shocks become very costly
- The term premium is *positive*, closely associated with θ_{π^*}

Model-Based Moments with Long-Run Inflation Risk

		EU Preferences	EZ Preferences
Variable	U.S. Data	& LR π^* Risk	& LR π^* Risk
sd[<i>C</i>]	1.19	1.70	2.01
sd[<i>L</i>]	1.71	3.02	1.37
$sd[w^r]$	0.82	2.40	1.52
$sd[\pi]$	2.52	3.65	3.25
sd[<i>i</i>]	2.71	3.32	2.94
$sd[i^{(40)}]$	2.41	1.71	1.89
mean[$\psi^{(40)}$]	1.06	.003	1.05
$sd[\psi^{(40)}]$	0.54	.001	.51
mean[$i^{(40)} - i$]	1.43	10	.96
$sd[i^{(40)} - i]$	1.33	1.73	1.10
mean[$x^{(40)}$]	1.76	.003	1.04
$sd[x^{(40)}]$	23.43	13.07	11.64
memo: IES		.5	1.1
quasi-CRRA		2	90

Following Bansal and Yaron (2004), introduce long-run real risk to make the economy more risky:

Assume productivity follows:

$$\log A_t = \log A_t^* + \varepsilon_t^A$$
$$\log A_t^* = \rho_{A^*} \log A_{t-1}^* + \varepsilon_t^{A^*}$$

- makes the economy much riskier to agents
- increases volatility of stochastic discount factor

Model-Based Moments w/Long-Run Productivity Risk

		EZ Preferences	EZ Preferences
Variable	U.S. Data	& LR π^* Risk	& LR A* risk
sd[<i>C</i>]	1.19	2.01	2.37
sd[L]	1.71	1.37	2.13
$sd[w^r]$	0.82	1.52	1.81
$sd[\pi]$	2.52	3.25	2.95
sd[<i>i</i>]	2.71	2.94	2.86
$sd[i^{(40)}]$	2.41	1.89	1.66
mean[$\psi^{(40)}$]	1.06	1.05	0.98
$sd[\psi^{(40)}]$	0.54	0.51	0.28
mean[$i^{(40)} - i$]	1.43	0.96	0.89
$sd[i^{(40)} - i]$	1.33	1.10	1.36
mean[$x^{(40)}$]	1.76	1.04	0.96
$sd[x^{(40)}]$	23.43	11.64	12.20
memo: IES		1.1	.5
quasi-CRRA		90	90

Model Implications

- Model Implications
 - Nominal Yield Curve is Upward-Sloping
 - Term Premium is Countercylical
 - Model Is Nonhomothetic, Heteroskedastic

Backus-Gregory-Zin (1989), Den Haan (1995)

- if interest rates are low in recessions.
- then bond prices rise in recessions
- ⇒ the term premium should be negative
- the yield curve slopes downward

Nominal Yield Curve is Upward-Sloping

Backus-Gregory-Zin (1989), Den Haan (1995)

- if interest rates are low in recessions
- then bond prices rise in recessions
- ⇒ the term premium should be negative
- the yield curve slopes downward

This paper:

- technology shocks imply that inflation is high in recessions
- then nominal bond prices fall in recessions
- \implies the nominal yield curve slopes upward

Conclusions

Nominal Yield Curve is Upward-Sloping

Backus-Gregory-Zin (1989), Den Haan (1995)

- if interest rates are low in recessions
- then bond prices rise in recessions
- ⇒ the term premium should be negative
- the yield curve slopes downward

This paper:

Motivation

- technology shocks imply that inflation is high in recessions
- then nominal bond prices fall in recessions
- the nominal yield curve slopes upward

Note: Backus et. al intuition still applies to real yield curve

Nominal Yield Curve is Upward-Sloping

US Yield Curve, 1994–2007

US Yield Curve, 1994-2007

UK Yield Curve, 1994–2007

Model Term Premium is Countercylical

Motivation

Model Implications

000000

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

Motivation

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Model Implications

0000000

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

$$x_{t} = \mu_{x} + \sum \alpha_{x} dx_{t-1} + \sum \alpha_{\varepsilon} \varepsilon_{t} + \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_{t} + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_{t} \varepsilon_{t} + \dots$$

Model Is Nonhomothetic, Heteroskedastic

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

$$x_{t} = \mu_{x} + \sum \alpha_{x} dx_{t-1} + \sum \alpha_{\varepsilon} \varepsilon_{t} + \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_{t} + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_{t} \varepsilon_{t} + \dots$$

Motivation

Model Is Nonhomothetic, Heteroskedastic

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

$$x_{t} = \mu_{x} + \sum \alpha_{x} dx_{t-1} + \sum \alpha_{\varepsilon} \varepsilon_{t} + \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_{t} + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_{t} \varepsilon_{t} + \dots$$

Model baseline model term premium mean (bp) 86.5

term premium std dev (bp) 11.0

Model Is Nonhomothetic, Heteroskedastic

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

$$x_{t} = \mu_{x} + \sum \alpha_{x} dx_{t-1} + \sum \alpha_{\varepsilon} \varepsilon_{t} + \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_{t} + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_{t} \varepsilon_{t} + \dots$$

	term premium	term premium
Model	mean (bp)	std dev (bp)
baseline model	86.5	11.0
log-linear log-normal	86.5	0.0

Conclusions

Motivation

The term premium in standard NK DSGE models is very small, even more stable

- The term premium in standard NK DSGE models is very small, even more stable
- Abit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk

- The term premium in standard NK DSGE models is very small, even more stable
- Abit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk
- Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or nominal risks

Conclusions

- The term premium in standard NK DSGE models is very small, even more stable
- Abit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk
- Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or nominal risks
- Long-run risks reduce the required quasi-CRRA, increase volatility of risk premia, help fit financial moments