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Coefficient of Relative Risk Aversion

Suppose a household has preferences:

Eo > plu(er ),

t=0

1—v 1+x
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u(ct, ) =

o h
1—7 (e X
What is the household’s coefficient of relative risk aversion?

Answer:

1
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Outline of Presentation

@ Define risk aversion rigorously in dynamic equilibrium models
@ Derive closed-form expressions

@ Show the labor margin can have big effects on risk aversion
@ Compute numerical solutions far away from steady state

@ Relate risk aversion to asset pricing, stochastic discount factor



Intro
ooe

Outline of Presentation

@ Define risk aversion rigorously in dynamic equilibrium models
@ Derive closed-form expressions

@ Show the labor margin can have big effects on risk aversion
@ Compute numerical solutions far away from steady state

@ Relate risk aversion to asset pricing, stochastic discount factor

See the paper for:
@ Epstein-Zin preferences

@ internal, external habits
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A Household

Household preferences:

ZﬁT ‘w(cr, 1),

T=t

Flow budget constraint:

ariq = (1 + rT)aT + WT/T + dT — Cr,

No-Ponzi condition:
-
lim 14+r.1) 'ary >0,
Am l—It( + 1) ars =

{w,, r.,d.} are exogenous processes, governed by 0.
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The Value Function

State variables of the household’s problem are (at; 6;).

Let:
c; = c*(ar; 01),

/;k = /*(at; 91)
Value function, Bellman equation:
V(ar 01) = u(ct, If) + BE: V(a1 1: 041),

where:
ay = +n)a+wlf +d —cf.
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Technical Conditions

Assumption 1. The function u(c;, It) is increasing in its first
argument, decreasing in its second, twice-differentiable, and strictly
concave.

Assumption 2. The value function V : X — R for the household’s
optimization problem exists and satisfies the Bellman equation

V(at; 91) = max U(Ct, It) + BE; V(a,+1 ;011 )
(et lr)er(ar:0r)
Assumption 3. For any (a;; 0;) € X, the household’s optimal

choice (ci, If) lies in the interior of T(at; 6t).

Assumption 4. The value function V(-;-) is twice-differentiable in
its first argument. (It then follows that c*, I* are differentiable.)
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Assumptions about the Economic Environment

Assumption 5. The household is atomistic.

Assumption 6. The household is representative.

Assumption 7. The model has a nonstochastic steady state,
Xt =Xk fork=1,2,... and x € {c,l,a,w,r,d,0}.



Framework
oooe

Assumptions about the Economic Environment

Assumption 5. The household is atomistic.

Assumption 6. The household is representative.

Assumption 7. The model has a nonstochastic steady state,
Xt =Xk fork=1,2,... and x € {c,l,a,w,r,d,0}.

Assumption 7. The model has a balanced growth path that can
be renormalized to a nonstochastic steady state after a suitable
change of variables.
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Compare:
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Compute:
u(c—p) = u(c) — pu'(c),
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Eu(c+ 0g) ~ u(c) + éu”(c)a?
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Arrow-Pratt in a Static One-Good Model (Review)

Compare:
Eu(c+oe) vs. u(c—p)

Compute:
u(c—p) = u(c) — pu'(c),

’
Eu(c+o0¢) ~ u(c) + éu’/(c)oz.

—u"(c) o2
u(c) 2°

,LL =
Coefficient of absolute risk aversion is defined to be:

iyt = 489
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Arrow-Pratt in a Dynamic Model
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Consider a one-shot gamble in period t:

at11 2(1 +f1)at+Wt/t+dt—Ct+U€H_1, (*)
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@ a; (state variable, already known at )
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Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:
at11 2(1 +I’1)at+Wt/t+dt—Ct+U€f+1, (*)

Note we cannot easily consider gambles over:
@ a; (state variable, already known at )
@ ¢; (choice variable)

Note (x) is equivalent to gamble over income:
a1 = (14 rar+ wil + (de + oc111) — €,

or asset returns:

ai1 = (1 + -+ a§,+1)at + Wils + di — ¢t
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Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:
ai1 = (1 + r,)at + wily + dy — ¢ + OEt41,
VS.

ary1 = (1 +r)ar+ wile + di — ¢t — p.
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Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:
ai1 = (1 + r,)at + wily + dy — ¢ + OEt41,
VS.

a1 = (1 +n)ar + w4 de — ¢t — po.

Welfare loss from pu:

Vi(at; 6t) T
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Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:
ai1 = (1 + r,)at + wily + dy — ¢ + OEt41,
VS.

a1 = (1 +n)ar + w4 de — ¢t — po.

Welfare loss from pu:
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Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:
ai1 = (1 + r,)at + wily + dy — ¢ + OEt41,
VS.

a1 = (1 +n)ar + w4 de — ¢t — po.

Welfare loss from pu:
BEVi(a; 1; Or41) -

Loss from o

o2

BE:Vi1(8fy1; Ot )E'
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Coefficient of Absolute Risk Aversion

Definition 1. The household’s coefficient of absolute risk aversion
at (ay; 0y) is given by R3(ay; 0;) = lim,_ 2u(0)/o?.
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Coefficient of Absolute Risk Aversion

Definition 1. The household’s coefficient of absolute risk aversion
at (ay; 0y) is given by R3(ay; 0;) = lim,_ 2u(0)/o?.

Proposition 1. The household’s coefficient of absolute risk
aversion at (as; 0;) satisfies

— EtVi1(8f 4 0t41)

a . —
R (atyat) - E[V1(a);+1;et+1)
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Coefficient of Absolute Risk Aversion

Definition 1. The household’s coefficient of absolute risk aversion
at (ay; 0y) is given by R3(ay; 0;) = lim,_ 2u(0)/o?.

Proposition 1. The household’s coefficient of absolute risk
aversion at (as; 0;) satisfies

— EtVi1(8f 4 0t41)

a . —
R (atyat) - E[V1(a);+1;et+1)

folk wisdom: Constantinides (1990), Farmer (1990), Boldrin-Christiano-
Fisher (1997, 2001), Cochrane (2001), Flavin-Nakagawa (2008)
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Coefficient of Absolute Risk Aversion

Definition 1. The household’s coefficient of absolute risk aversion
at (ay; 0y) is given by R3(ay; 0;) = lim,_ 2u(0)/o?.

Proposition 1. The household’s coefficient of absolute risk
aversion at (as; 0;) satisfies

— EtVi1(8f 4 0t41)

(a0, —
Fi(an ) = EiVi(ag, i 0t41)

Evaluated at the nonstochastic steady state, this simplifies to:
—Vii(a;0)
V1 (a; 9) ’

folk wisdom: Constantinides (1990), Farmer (1990), Boldrin-Christiano-
Fisher (1997, 2001), Cochrane (2001), Flavin-Nakagawa (2008)

R3(a;0) =
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Solve for V4 and V44

Benveniste-Scheinkman:

V1(at;01) = (1 —i—ft) U1(C}k,/t*). (*)

Differentiate (x) to get:

« ey O . e OfF
Vit(ar 6:) = (1 +n) U11(Ct=/t)aiatt + U12(Ct,/t)87;t :
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Solve for 0l /0a; and dc;} /0a;

Household intratemporal optimality: —ux(c}, ) = wrus(cf, If).

Differentiate to get:
olf Y ocy
oay N t@az ’

Wil 1 (C;‘ka /;k) + u12(c;‘k7 /;k)

/\f = .
uxp(ct, IF) + wruo(ct, I)
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Solve for 0l /0a; and dc;} /0a;

Household intratemporal optimality: —ux(c}, ) = wrus(cf, If).

Differentiate to get:
olf Y ocy
oay N t@az ’

weuq (¢t IF) + ura(cf, If)

/\f = .
uxp(ct, IF) + wruo(ct, I)

Household Euler equation:

ui(ct, If) = BE(1 + repq) ur(Ciyq, Iq),
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Solve for 0l /0a; and dc;} /0a;

Household intratemporal optimality: —ux(c}, ) = wrus(cf, If).

Differentiate to get:
olf Y ocy
oay N t@az ’

weuq (¢t IF) + ura(cf, If)

/\f = .
uxp(ct, IF) + wruo(ct, I)

Household Euler equation:
Uy (0?7 Il:k) = 5EI(1 + r2+1) U (C?—H ) /t*+1 )a
Differentiate, substitute out for 0/ /0a;, and use BC, TVC to get:

oG _ _r
0a; N 1+w)’
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Vi(a;0) = (1 +r)u(c, ),
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Solve for Coefficient of Absolute Risk Aversion

Vi(a;0) = (1 +r)u(c, ),

k *

Vi@6) = (141 |un(e. ) 2% 4 up(c, ot

oat
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Solve for Coefficient of Absolute Risk Aversion

Vi(a;0) = (1 +r)u(c, ),

k *

ac
V11(a;0) = (1 +r) UH(C’/)Tatt + U12(C,I)aiatt ,

ol _ _Aac;‘
0a; 0a; ’
decf r

oay N 14+ w)’
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Solve for Coefficient of Absolute Risk Aversion

Vi(a;0) = (1 +r)u(c, ),

k *

oc; ol
V11(a;0) = (1+ ) U11(C /) 88 + U12( 1)67531 s

o _ 0
0a; - 831
decf r

oay 1 +wh’

Proposition 2. The household’s coefficient of absolute risk
aversion in Proposition 1, evaluated at steady state, satisfies:

—Vi(&0)  —ug+Aup T
R%(2;0) = . .
(@0 = V(@ n TTw
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Coefficient of Absolute Risk Aversion

Corollary 3.

—Ui1 + Au r —u
11 12 < 11

Ra . —
(0) U 1+wh —

Ifr <1, then R4(a; 0) is also less than —uy1/uy.
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Coefficient of Absolute Risk Aversion

Corollary 3.

U tAu  r Ui
Uy 14+wA = Uy

R3(a;0) =
Ifr <1, then R4(a; 0) is also less than —uy1/uy.

Corollary 4. The household’s coefficient of absolute risk aversion
is 0 if and only if the discriminant uyqusg — U2, = 0.
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Coefficient of Absolute Risk Aversion

Corollary 3.

U tAu  r Ui
Uy 14+wA = Uy

R3(a;0) =
Ifr <1, then R4(a; 0) is also less than —uy1/uy.

Corollary 4. The household’s coefficient of absolute risk aversion
is 0 if and only if the discriminant uyqusg — U2, = 0.

e.g.:
1—y

t —’I7/t.
-7

u(e, ) = ]
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Coefficient of Absolute Risk Aversion

Corollary 3.

U tAu  r Ui
Uy 14+wA = Uy

R3(a;0) =
Ifr <1, then R4(a; 0) is also less than —uy1/uy.

Corollary 4. The household’s coefficient of absolute risk aversion
is 0 if and only if the discriminant uyqusg — U2, = 0.

e.g.:
1—y

t —’I7/t.
-7

u(e, ) = ]

U(Ct, It) = Ctg(7 — /1)1_0.
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Relative Risk Aversion

Consider Arrow-Pratt gamble of general size A;:
aiy1 = (1 -+ rt)at + wWels + dy — ¢ + AfU€t+1,
VS.

aiy1 = (1 + rt)at + Wils + di — ¢t — Aspa.
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Relative Risk Aversion

Consider Arrow-Pratt gamble of general size A;:
ar1 = (1 +n)ar+ wlt + dy — ¢t + Atoeg i1,
VS.
arr1 = (1+n)ar+ wil + dy — ¢t — Apu.

Risk aversion coefficient for this gamble:

—AtEtVii(af, i Ot41)
E:Vi(ay, 1 0t11)
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Relative Risk Aversion

Consider Arrow-Pratt gamble of general size A;:
ar1 = (1 +n)ar+ wlt + dy — ¢t + Atoeg i1,
VS.
a1 = (14 r)ar + wily + de — ¢t — Aspe.

Risk aversion coefficient for this gamble:

—AtEtVii(af, i Ot41)
E:Vi(ay, 1 0t11)

A natural benchmark for A; is household wealth at time t.
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In DSGE framework, household wealth has more than one
component:

@ financial assets a;

@ present value of labor income, w;l;
@ present value of net transfers, d;

@ present value of leisure, wi(I — )?
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component:
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Leisure, in particular, can be hard to define, e.g.,
C1 -y /1 +X

/) = 1 _ t
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Household Wealth

In DSGE framework, household wealth has more than one
component:

@ financial assets a;

@ present value of labor income, w;l;
@ present value of net transfers, d;

@ present value of leisure, wi(I — )?

Leisure, in particular, can be hard to define, e.g.,
C1 -y /1 +X

I = t o t
u(ce, ) 1~ 771+X

and / is arbitrary.

Different definitions of household wealth lead to different definitions
of relative risk aversion.
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Two Coefficients of Relative Risk Aversion

Definition 2. The coefficient of relative risk aversion, R_’ (a; 6), is
given by (x), with Ay = (1 + 1) T E; 320 my - (¢ + w-(1 — [2)).

In steady state:

—AVii(a0)  —up 4+ Augp ¢+ w(l—1)
Vi(a;0) Uy 14+ wh

R'(a;0) =
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Two Coefficients of Relative Risk Aversion

Definition 2. The coefficient of relative risk aversion, R_’ (a; 6), is
given by (x), with Ay = (1 + 1) T E; 320 my - (¢ + w-(1 — [2)).

In steady state:

—AVi1(a0)  —uii+Aue c+w(l— )
Vi(a;0) Uy 14+ wh

R'(a;0) =

Definition 3. The consumption-only coefficient of relative risk
aversion, R°(at; ), is given by (x), with
A= (1 + I’f)_1 E; Z?—o:t mt,ch.

In steady state:

—AVii(a0)  —un+Aiup  C
R°(a 0) = _ .
(@0) = —V(@0) G 1rwa
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Risk Aversion and the IES

Corollary 5.

i) R°(a; 8) and the intertemporal elasticity of substitution are
reciprocal if and only if A = 0;

ii) R"(a; 0) and the intertemporal elasticity of substitution are
reciprocal if and only if \ = (I —1)/c.
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Risk Aversion and the IES

Corollary 5.

i) R°(a; 8) and the intertemporal elasticity of substitution are
reciprocal if and only if A = 0;

ii) R"(a; 0) and the intertemporal elasticity of substitution are
reciprocal if and only if \ = (I —1)/c.

Proof: ’
IES = I B
Uiy — AUpg €
RC(a; 9) _ —Uq1 + AUq2 C
Uy 1+ wh
— 1—1
R’(a;@) _ Ui + Augz ¢+ w( )

Uy 1+ wA
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Example 1

(cX(1 —h)'=x)'7

1—7
—Ui1 + Auq2 €+ W(1 —/)

Period utility function: u(ct, ) =

Relative risk aversion: R'(a;0) = m T+ wh
}
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(cX(1 —h)'=x)'7

Period utility function: u(er, ) = T
Relative risk aversion: R'(a0) = —" + Atz o+ w(l — )
U 1+ wA

up = x c=x=1 (1 — =70
up = —(1—x) cl=x (1 — ==~
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Example 1

(cX(1 —h)'=x)'7

Period utility function: u(er, ) = T
Relative risk aversion: R'(a0) = —" + Atz o+ w(l — )
U 1+ wA

up = x c=x=1 (1 — =70
U = —(1—x) c(1=7)x (1— /)(177)(1*x)*1
—Us 1-x ¢

TV
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Example 1

(cX(1 —h)'=x)'7

Period utility function: u(er, ) = T
Relative risk aversion: R'(a0) = —" + Atz o+ w(l — )
U 1+ wA

Uy = yc="x=1 (1 — -0

U = —(1—x) c(1=7)x (1— /)(177)(1*x)*1
U 1—X C

T T Ty -

Uy = X[((1 —)x — 1] c=1x=2 (1 — (1=

—x(1=x)(1=7) c1=7)x—1 (1— /)(177)(17x)*1

Uiz



Examples
@00

Example 1

(cX(1 —h)'=x)'7

Period utility function: u(er, ) = T
Relative risk aversion: R'(a0) = —" + Atz o+ w(l — )
U 1+ wA

Uy = yc="x=1 (1 — -0

U = —(1—x) c(1=7)x (1— /)(177)(1*x)*1
U 1-x ¢

ST

Uy = X[((1 —)x — 1] c=1x=2 (1 — (1=

iz = —x(1=x)(1=7) =T (1 — =0

WUy + Uiz 1-—1

Uoo + WU12 c
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Example 1

(cX(1 —h)'—)'

Period utility function: u(er, ) = T
Relative risk aversion: R'(a0) = —" + Atz o+ w(l — )
U 1+ wA

Uy = XC(1—7)><—1 (1— /)(1—7)(1—x)

U = —(1—x) c(1=7)x (1— /)(177)(1*x)*1
U 1-x ¢

ST

Uy = X[((1 —)x — 1] c=1x=2 (1 — (1=

iz = —x(1=x)(1=7) =T (1 — =0

WUy + Uiz 1-—1

Uoo + WU12 - ¢C
—X[(1=)x = 1] = x(1 =) (1=7) ¢(1 + w))
XxC (1+wh)

R'(a;0) =
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Example 1

(cX(1 —h)'=x)'7

Period utility function: u(er, ) = T
Relative risk aversion: R'(a0) = —" + Atz o+ w(l — )
U 1+ wA

Uy = XC(1—7)><—1 (1— /)(1—7)(1—x)

U = —(1—x) c(1=7)x (1— /)(177)(1*x)*1
U 1-x ¢

ST

Uy = X[((1 —)x — 1] c=1x=2 (1 — (1=

iz = —x(1=x)(1=7) =T (1 — =0

WUy + Uiz 1-—1

Uoo + WUq2 a c

—x[(1=)x = 1= x(1=x)(1=7) e(1 + w)) _
XC (1+w))

R'(a;0) =
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Example 2

1—v 1+x
Ct Il

Period utility function: u(ct, ) = -5 M1y
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Example 2

1—7_1714-)(

Period utility function: u(ct, f) =

—Uyq + AUq2 c

Relative risk aversionis: R°(a;0) = J WA
1 w
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Example 2
R o
Period utility function: u(ct, ) = -5 M1y
—CU14 1

Relative risk aversionis: R°(a;0) =

u 1+ wi
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Example 2

1—v 1+x
Ct Il

Period utility function: u(ct, ) = -5 M1y

Y
14+ wi

Relative risk aversionis: R°(a;0) =
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Example 2

C1 —y /; +x

1—7_1714-)(

Period utility function: u(ct, f) =

2

Relative risk aversion is: R°(a;0) =
14+ wA

u =c7
up = —nlx
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Example 2

C1 —y /; +x

1—7_1714-)(

Period utility function: u(ct, f) =

Relative risk aversion is: R°(a;0) = i
14+ wA

u = c 7

up = —nlx

w = —u/uy = nixXc?
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Example 2

1+x
lt

Period utility function: u(ct, ) = -5 M1y

Relative risk aversion is: R°(a;0) = i
1+ w
u = c 7
up = —nlx
w = —u/uy = nixXc?
wu /
L T

Uoo XC
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Example 2

C1f’y /1+X
Period utility function: ~ u(ct, k) = 5 — - 171’+X

Relative risk aversion is: R°(a;0) = i
1+ w
u =c7
U, = —nlx
w = —u/uy = nixXc?
wu /
L T
U22 X¢
R(a,0) = — 1
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Example 2

C1f’y /1+X
Period utility function: ~ u(ct, k) = 5 — - 171’+X

Relative risk aversion is: R°(a;0) = i
1+ w
u =c7
up = —nlx
w = —u/uy = nixXc?
wu /
LI
U22 X¢
~y 1 .
R¢(a;0) = P = T usingc=wl+ra+d =~ wl.
X ¢ v X



Examples

oV

Q@
o
S
S
x

LLI

10

8 nid]| o] N

n N B A L !

= =|xl x| |=| =
a 00 ~ o wn < o o~

(-4) UOISIBAY YSIY BAIIE[3Y JO WUBIDIYS0D

10



RA Away from SS
[ Jelelele}

Risk Aversion Away from the Steady State

C1 —y l1 +x

/:1‘ _ t
u(ce, ) T Ty

y=2,x=15
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Risk Aversion Away from the Steady State

C1 - /1 +x

Iy =— — nt =2, x=15
u(cr, h) T, Ty 172X

Standard RBC model:
Y = AK] oLy

Kip1 =(1-0)Ki + Yi — Gt
C, 7 = BE(1+nr41)CY
nLy¥/Cr7 = w
rr=1-a)Y;/Ki— 96
w: = aYi/Lt
log At = plog A;_1 + &¢
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Auxiliary equations:

— EtVi1(&f, 45 0141)
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F?a(at; 91) =

V1(a,;¢9t) = (1 +f1) U1(C;k,/t*)
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Risk Aversion Away from the Steady State

Auxiliary equations:

— EtVi1(8f 4 0t11)

a . i
Ai(an ) = E:Vi(ag, i 0t41)

V1(a,;¢9t) = (1 +f1) U1(C;k,/t*)

Vit(an 0r) = (1+n) uﬁ(ct’l’)aiat + U12(Ctalt)87at
olf act
0a; N _)\taat
ocy 9C4 1

= BE(1+ riyq)

0ay 0a;
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Risk Aversion Away from the Steady State

Auxiliary equations:

Ré(ar 6,) = — EtVi1(8f 4 0t11)
N AV E

V1(a,;¢9t) = (1 +f1) U1(C;k,/t*)

*

. dc ol
V11(at;0t) = (1 +rt) U11(Ct,/t)87att =+ U2 (Ct,lt)aat
olf act
0a; N _)\taat
acf 914 98,4

2 BE(1 + ri41)
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Risk Aversion Away from the Steady State

Auxiliary equations:

— EtVi1(8f 4 0t11)

a . i
Ai(an ) = E:Vi(ag, i 0t41)

V1(a,;¢9t) = (1 +f1) U1(C;k,/t*)

Vit(ar 0r) = (1+n) [Uﬁ(cta/t)aatt + U12(Ct,lt)(%ﬂ
of oct
day B _)\té?at
oct _ ¢t + olf  act
G = PEX1 + res) i [(1 4 ) g — 5o
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Numerical solution to the model:
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Risk Aversion Away from the Steady State

Numerical solution to the model:

Rk, A)
0941

L L L L logl — I I
—04 -02 0.2 04 og[ k) _04 —02

Dashed black line denotes closed-form value of .9143.
(Compare to v = 2)
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Same exercise with Epstein-Zin Preferences (higher risk aversion):

CRRA CRRA
381f 381l
30f 380F
379L "
78L L
/ - 37k
i o ‘ ‘ ‘ N
_eT5 010 -005 005 010 015 k -010 ~0.05 005 0T~




RA Away from SS
[e]e]e]e] }

Risk Aversion Away from the Steady State

Absolute risk aversion is countercyclical:

CARA CARA
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Price of an asset at time t:

Etmy 1Ppiq

Lucas-Breeden stochastic discount factor:

Bus(Ctyqs liq)

m =
a Uy (‘3?7 AT)

Risk premium on the asset:

Etmy 1 Etpry1 — Etmy 114
Etmy 1 Etpy i
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dmgyq = ) [ur1(Cfi1s lfq) A + ura(Cfiy, Ifq )] -
us(cy, If)
Intuitively:
d;k-H = _>‘dcl>‘k+1?
. r
et = Ty G@e
So: \ )
U11 — Alq2
dmi, 1 = aas, 1.
1 = U T+w)

Risk premium on the asset:

—Cov(dms 1, dpti1)
B

= R%a;0) - Covi(day,1,dpsi1)-
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Numerical results for an equity claim to consumption, v = 200:
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Risk Neutrality

Hansen-Rogerson linear-labor preferences are common:
@ Extensive labor margin: Hansen (1985), Rogerson (1988)
@ Monetary search: Lagos-Wright (2005)

@ Investment: Khan-Thomas (2008), Bachmann-Caballero-
Engel (2010), Bachmann-Bayer (2009)

These papers all effectively assume risk neutrality.
Risk neutrality is a desirable simplifying assumption in some
applications:

@ Labor search: Mortensen-Pissarides (1994)
@ Financial frictions: Bernanke-Gertler-Gilchrist (1996, 1999)

The present paper suggests ways to model risk neutrality that do
not require linear utility of consumption.
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Empirical Estimates of Risk Aversion

Barsky-Juster-Kimball-Shaprio (1997):

“Suppose that you are the only income earner in the family, and
you have a good job guaranteed to give you your current (fam-
ily) income every year for life. You are given the opportunity to
take a new and equally good job, with a 50-50 chance it will
double your (family) income and a 50-50 chance that it will cut
your (family) income by a third. Would you take the new job?”
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Barsky-Juster-Kimball-Shaprio (1997):

“Suppose that you are the only income earner in the family, and
you have a good job guaranteed to give you your current (fam-
ily) income every year for life. You are given the opportunity to
take a new and equally good job, with a 50-50 chance it will
double your (family) income and a 50-50 chance that it will cut
your (family) income by a third. Would you take the new job?”

Empirical estimates of risk aversion using methods like these
remain valid in the framework of the present paper.

What is different is how these estimates are mapped into model
parameters (i.e., risk aversion # —cuq1/uyq)
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Empirical Asset Pricing

cl
Campbell (1996, 1999): u(C;) = . ’_’y, My = log B — YACH 1

Ei(rit — rrt) = vCov(rits1, ACtsq)

Country  Ei(ret—rrt) std(rer—rrt) std(Ac) ol
USA 5.82 17.0 0.91 37.3
JPN 6.83 21.6 2.35 13.4
GER 6.77 20.4 2.50 13.3
FRA 712 22.8 213 14.6

UK 8.31 21.6 2.59 14.9
ITA 217 27.3 1.68 4.7

CAN 3.04 16.7 2.03 9.0
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Empirical Asset Pricing

cl
Campbell (1996, 1999): u(C;) = . ’_’y, My = log B — YACH 1

Ei(rit — rrt) = vCov(rits1, ACtsq)

Country  Ei(ret—rrt) std(rer—rrt) std(Ac) ol
USA 5.82 17.0 0.91 37.3
JPN 6.83 21.6 2.35 13.4
GER 6.77 20.4 2.50 13.3
FRA 7.12 22.8 213 14.6

UK 8.31 21.6 2.59 14.9
ITA 2.17 27.3 1.68 4.7
CAN 3.04 16.7 2.03 9.0
R
If u(Cy) = — , then risk aversion.
(C) = 7= ST M v #
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Conclusions

@ The labor margin has dramatic effects on risk aversion
@ Risk aversion is the right concept for asset pricing
© Arrow-Pratt risk neutrality holds for any u with uqq U — u122 =0

© Risk aversion and the intertemporal elasticity of substitution
are nonreciprocal when there is labor in the model

@ Simple, closed-form expressions for risk aversion in DSGE
models with:
e expected utility preferences
Epstein-Zin preferences
external or internal habits
valid away from steady state
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