Implications of Labor Market Frictions for Risk Aversion and Risk Premia

Eric T. Swanson

University of California, Irvine

Macroeconomics Seminar Bilkent University December 14, 2018

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t,I_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t$$

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t,I_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t$$

What is the household's coefficient of relative risk aversion?

0000

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t,I_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t$$

What is the household's coefficient of relative risk aversion?

Answer: 0

Introduction

0000

Coefficient of Relative Risk Aversion

Suppose a household has preferences:

$$E_0\sum_{t=0}^{\infty}\beta^t u(c_t,I_t),$$

$$u(c_t, I_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{I_t^{1+\chi}}{1+\chi}$$

What is the household's coefficient of relative risk aversion?

Answer:
$$\frac{1}{\frac{1}{\gamma} + \frac{1}{\chi}}$$

Imbens, Rubin, and Sacerdote (2001):

• Lottery winners reduce labor supply by \$.11 per \$1 of prize

Imbens, Rubin, and Sacerdote (2001):

Lottery winners reduce labor supply by \$.11 per \$1 of prize

Cesarini, Lindqvist, Notowidigdo, and Östling (2017):

- Swedish lottery winners reduce labor supply by SEK.11/SEK won
- Spouses also reduce labor supply (but by less)
- Labor response is primarily due to reduction in hours

Imbens, Rubin, and Sacerdote (2001):

Lottery winners reduce labor supply by \$.11 per \$1 of prize

Cesarini, Lindqvist, Notowidigdo, and Östling (2017):

- Swedish lottery winners reduce labor supply by SEK .11/SEK won
- Spouses also reduce labor supply (but by less)
- Labor response is primarily due to reduction in hours

Coile and Levine (2009):

 Older individuals are 7% less likely to retire in a given year after a 30% fall in stock market

Imbens, Rubin, and Sacerdote (2001):

Lottery winners reduce labor supply by \$.11 per \$1 of prize

Cesarini, Lindqvist, Notowidigdo, and Östling (2017):

- Swedish lottery winners reduce labor supply by SEK.11/SEK won
- Spouses also reduce labor supply (but by less)
- Labor response is primarily due to reduction in hours

Coile and Levine (2009):

 Older individuals are 7% less likely to retire in a given year after a 30% fall in stock market

Coronado and Perozek (2003):

 Individuals who held more stocks in late 1990s retired 7 months earlier

Imbens, Rubin, and Sacerdote (2001):

• Lottery winners reduce labor supply by \$.11 per \$1 of prize

Cesarini, Lindqvist, Notowidigdo, and Östling (2017):

- Swedish lottery winners reduce labor supply by SEK .11/SEK won
- Spouses also reduce labor supply (but by less)
- Labor response is primarily due to reduction in hours

Coile and Levine (2009):

 Older individuals are 7% less likely to retire in a given year after a 30% fall in stock market

Coronado and Perozek (2003):

 Individuals who held more stocks in late 1990s retired 7 months earlier

Large literature finds significantly negative wealth effect on labor supply (e.g., Pencavel 1986)

Frictional Labor Markets

No labor/perfectly rigid labor market:

- Arrow (1964), Pratt (1965)
- Epstein-Zin (1989), Weil (1990)

Frictional Labor Markets

No labor/perfectly rigid labor market:

- Arrow (1964), Pratt (1965)
- Epstein-Zin (1989), Weil (1990)

Perfectly flexible labor market:

Swanson (2012, 2018)

Frictional Labor Markets

No labor/perfectly rigid labor market:

- Arrow (1964), Pratt (1965)
- Epstein-Zin (1989), Weil (1990)

Perfectly flexible labor market:

Swanson (2012, 2018)

Frictional labor market:

this paper

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \big[U(c_{\tau}) - V(l_{\tau} + u_{\tau}) \big],$$

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \big[U(c_{\tau}) - V(l_{\tau} + u_{\tau}) \big],$$

Flow budget constraint:

$$a_{\tau+1} = (1 + r_{\tau})a_{\tau} + w_{\tau}I_{\tau} + d_{\tau} - c_{\tau},$$

Introduction

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \big[U(c_{\tau}) - V(l_{\tau} + u_{\tau}) \big],$$

Flow budget constraint:

$$a_{\tau+1} = (1 + r_{\tau})a_{\tau} + w_{\tau}I_{\tau} + d_{\tau} - c_{\tau},$$

No-Ponzi condition:

$$\lim_{T\to\infty}\prod_{\tau=t}^{I}(1+r_{\tau+1})^{-1}a_{T+1}\geq 0,$$

Introduction

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \big[U(c_{\tau}) - V(l_{\tau} + u_{\tau}) \big],$$

Flow budget constraint:

$$a_{\tau+1} = (1 + r_{\tau})a_{\tau} + w_{\tau}I_{\tau} + d_{\tau} - c_{\tau},$$

No-Ponzi condition:

$$\lim_{T\to\infty}\prod_{\tau=t}^{l}(1+r_{\tau+1})^{-1}a_{T+1}\geq 0,$$

 $\{w_{\tau}, r_{\tau}, d_{\tau}\}$ are exogenous processes, governed by Θ_{τ}

Introduction

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \big[U(c_{\tau}) - V(l_{\tau} + u_{\tau}) \big],$$

Flow budget constraint:

$$a_{\tau+1} = (1 + r_{\tau})a_{\tau} + w_{\tau}I_{\tau} + d_{\tau} - c_{\tau},$$

No-Ponzi condition:

$$\lim_{T\to\infty} \prod_{\tau=t}^{T} (1+r_{\tau+1})^{-1} a_{T+1} \geq 0,$$

 $\{\textit{w}_{\tau}, \textit{r}_{\tau}, \textit{d}_{\tau}\}$ are exogenous processes, governed by Θ_{τ}

Labor market search: $I_{\tau+1} = (1-s)I_{\tau} + f(\Theta_{\tau})u_{\tau}$

The Value Function

State variables of the household's problem are $(a_t, l_t; \Theta_t)$.

Let:

$$c_t^* \equiv c^*(a_t, l_t; \Theta_t),$$

$$u_t^* \equiv u^*(a_t, I_t; \Theta_t).$$

The Value Function

State variables of the household's problem are $(a_t, l_t; \Theta_t)$.

Let:

Introduction

$$c_t^* \equiv c^*(a_t, l_t; \Theta_t),$$

 $u_t^* \equiv u^*(a_t, l_t; \Theta_t).$

Value function, Bellman equation:

$$\mathbb{V}(a_t, I_t; \Theta_t) = U(c_t^*) - V(I_t + u_t^*) + \beta E_t \mathbb{V}(a_{t+1}^*, I_{t+1}^*; \Theta_{t+1}),$$

where:

$$a_{t+1}^* \equiv (1 + r_t)a_t + w_t I_t + d_t - c_t^*,$$

$$I_{t+1}^* \equiv (1 - s)I_t + f(\Theta_t)u_t^*.$$

Technical Conditions

Assumption 1. The function $U(c_t)$ is increasing, twice-differentiable, and strictly concave, and $V(I_t)$ is increasing, twice-differentiable, and strictly convex.

Assumption 2. A solution $\mathbb{V}: X \to \mathbb{R}$ to the household's generalized Bellman equation exists and is unique, continuous, and concave.

Assumption 3. For any $(a_t, l_t; \Theta_t) \in X$, the household's optimal choice (c_t^*, u_t^*) exists, is unique, and lies in the interior of $\Gamma(a_t, l_t; \Theta_t)$.

Assumption 4. For any $(a_t, l_t; \Theta_t)$ in the interior of X, the second derivatives of \mathbb{V} with respect to its first two arguments, $\mathbb{V}_{11}(a_t, l_t; \Theta_t)$, $\mathbb{V}_{12}(a_t, l_t; \Theta_t)$, and $\mathbb{V}_{22}(a_t, l_t; \Theta_t)$, exist.

Assumptions about the Economic Environment

Assumption 5. *The household is* infinitesimal.

Assumption 6. *The household is* representative.

Assumption 7. The model has a nonstochastic steady state, $x_t = x_{t+k}$ for k = 1, 2, ..., and $x \in \{c, u, l, a, w, r, d, \Theta\}$.

Assumptions about the Economic Environment

Assumption 5. *The household is* infinitesimal.

Assumption 6. *The household is* representative.

Assumption 7. The model has a nonstochastic steady state, $x_t = x_{t+k}$ for k = 1, 2, ..., and $x \in \{c, u, l, a, w, r, d, \Theta\}$.

Assumption 7'. The model has a balanced growth path that can be renormalized to a nonstochastic steady state after a suitable change of variables.

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c-\mu) \approx u(c) - \mu u'(c)$$

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

Conclusions

$$u(c-\mu) \approx u(c) - \mu u'(c)$$

$$E u(c + \sigma \varepsilon) \approx u(c) + u'(c)\sigma E[\varepsilon] + \frac{1}{2}u''(c)\sigma^2 E[\varepsilon^2],$$

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c-\mu) \approx u(c) - \mu u'(c),$$

$$E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2}u''(c)\sigma^2.$$

Compare:

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

$$u(c - \mu) \approx u(c) - \mu u'(c),$$

 $E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^2.$

$$\mu = \frac{-u''(c)}{u'(c)} \frac{\sigma^2}{2}.$$

Compare:

Introduction

$$E u(c + \sigma \varepsilon)$$
 vs. $u(c - \mu)$

Compute:

$$u(c - \mu) \approx u(c) - \mu u'(c),$$

 $E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^2.$

$$\mu=\frac{-u''(c)}{u'(c)}\frac{\sigma^2}{2}.$$

Coefficient of absolute risk aversion is defined to be:

$$\lim_{\sigma\to 0} 2\mu(\sigma)/\sigma^2 = \frac{-u''(c)}{u'(c)}.$$

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$
 (*)

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$
 (*)

Note we cannot easily consider gambles over:

- a_t (state variable, already known at t)
- c_t (choice variable)

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$
 (*)

Note we cannot easily consider gambles over:

- *a_t* (state variable, already known at *t*)
- c_t (choice variable)

Note (*) is equivalent to gamble over asset returns:

$$a_{t+1} = (1 + r_t + \sigma \tilde{\varepsilon}_{t+1}) a_t + w_t l_t + d_t - c_t.$$

or income:

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + (d_t + \sigma \varepsilon_{t+1}) - c_t,$$

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$
 vs.

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t - \mu.$$

Introduction

Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$
 vs.

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t - \mu.$$

Welfare loss from μ :

$$\mathbb{V}_1(a_t, l_t; \Theta_t) \frac{\mu}{(1+r_t)}$$

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$
 vs.

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t - \mu.$$

Welfare loss from μ :

$$\beta E_t \mathbb{V}_1(a_{t+1}^*, I_{t+1}^*; \Theta_{t+1}) \mu.$$

Introduction

Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period *t*:

$$a_{t+1} = (1+r_t)a_t + w_t I_t + d_t - c_t + \sigma \varepsilon_{t+1},$$
 vs.

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t - \mu.$$

Welfare loss from μ :

$$\beta E_t \mathbb{V}_1(a_{t+1}^*, I_{t+1}^*; \Theta_{t+1}) \mu.$$

Loss from σ :

$$\beta E_t \mathbb{V}_{11}(a_{t+1}^*, I_{t+1}^*; \Theta_{t+1}) \frac{\sigma^2}{2}.$$

Coefficient of Absolute Risk Aversion

Definition 1. The household's coefficient of absolute risk aversion at $(a_t, l_t; \Theta_t)$ is given by $R^a(a_t, l_t; \Theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2$.

Coefficient of Absolute Risk Aversion

Definition 1. The household's coefficient of absolute risk aversion at $(a_t, l_t; \Theta_t)$ is given by $R^a(a_t, l_t; \Theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2$.

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t, l_t; \Theta_t)$ is well-defined and satisfies

$$R^{a}(a_{t}, l_{t}; \Theta_{t}) = \frac{-E_{t} \mathbb{V}_{11}(a_{t+1}^{*}, l_{t+1}^{*}; \Theta_{t+1})}{E_{t} \mathbb{V}_{1}(a_{t+1}^{*}, l_{t+1}^{*}; \Theta_{t+1})}.$$

Introduction

Coefficient of Absolute Risk Aversion

Definition 1. The household's coefficient of absolute risk aversion at $(a_t, l_t; \Theta_t)$ is given by $R^a(a_t, l_t; \Theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2$.

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t, l_t; \Theta_t)$ is well-defined and satisfies

$$R^{a}(a_{t}, I_{t}; \Theta_{t}) = \frac{-E_{t} \mathbb{V}_{11}(a_{t+1}^{*}, I_{t+1}^{*}; \Theta_{t+1})}{E_{t} \mathbb{V}_{1}(a_{t+1}^{*}, I_{t+1}^{*}; \Theta_{t+1})}.$$

Folk wisdom: Constantinides (1990), Farmer (1990), Campbell-Cochrane (1999), Boldrin-Christiano-Fisher (1997, 2001), Flavin-Nakagawa (2008)

Introduction

Coefficient of Absolute Risk Aversion

Definition 1. The household's coefficient of absolute risk aversion at $(a_t, l_t; \Theta_t)$ is given by $R^a(a_t, l_t; \Theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2$.

Proposition 1. The household's coefficient of absolute risk aversion at $(a_t, l_t; \Theta_t)$ is well-defined and satisfies

$$R^{a}(a_{t}, I_{t}; \Theta_{t}) = \frac{-E_{t} \mathbb{V}_{11}(a_{t+1}^{*}, I_{t+1}^{*}; \Theta_{t+1})}{E_{t} \mathbb{V}_{1}(a_{t+1}^{*}, I_{t+1}^{*}; \Theta_{t+1})}.$$

Evaluated at the nonstochastic steady state, this simplifies to:

$$R^{a}(a, l; \Theta) = \frac{-\mathbb{V}_{11}(a, l; \Theta)}{\mathbb{V}_{1}(a, l; \Theta)}$$

Folk wisdom: Constantinides (1990), Farmer (1990), Campbell-Cochrane (1999), Boldrin-Christiano-Fisher (1997, 2001), Flavin-Nakagawa (2008)

Solve for V_1 and V_{11}

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[U(c_{\tau}) - V(I_{\tau} + u_{\tau}) \right]$$

Solve for V₁ and V₁₁

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[U(c_{\tau}) - V(I_{\tau} + u_{\tau}) \right]$$

Benveniste-Scheinkman:

$$V_1(a_t, I_t; \Theta_t) = (1 + r_t) U'(c_t^*).$$
 (*)

Solve for V_1 and V_{11}

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[U(c_{\tau}) - V(I_{\tau} + u_{\tau}) \right]$$

Benveniste-Scheinkman:

$$V_{1}(a_{t}, I_{t}; \Theta_{t}) = (1 + r_{t}) U'(c_{t}^{*}).$$
 (*)

Differentiate (*) to get:

$$\mathbb{V}_{11}(a_t, l_t; \Theta_t) = (1 + r_t)U''(c_t^*) \frac{\partial c_t^*}{\partial a_t}.$$

Consumption Euler equation:

$$U'(c_t^*) = \beta E_t(1 + r_{t+1}) U'(c_{t+1}^*),$$

Consumption Euler equation:

$$U'(c_t^*) = \beta E_t(1 + r_{t+1}) U'(c_{t+1}^*),$$

implies, at steady state:

$$\frac{\partial c_t^*}{\partial a_t} = E_t \frac{\partial c_{t+1}^*}{\partial a_t} = E_t \frac{\partial c_{t+k}^*}{\partial a_t}, \quad k = 1, 2, \dots$$

Introduction

Consumption Euler equation:

$$U'(c_t^*) = \beta E_t(1 + r_{t+1}) U'(c_{t+1}^*),$$

implies, at steady state:

$$\frac{\partial c_t^*}{\partial a_t} = E_t \frac{\partial c_{t+1}^*}{\partial a_t} = E_t \frac{\partial c_{t+k}^*}{\partial a_t}, \quad k = 1, 2, \dots$$

Household's budget constraint, no-Ponzi condition imply:

$$\sum_{t=0}^{\infty} \frac{1}{(1+r)^k} E_t \left[\frac{\partial c_{t+k}^*}{\partial a_t} - w \frac{\partial l_{t+k}^*}{\partial a_t} \right] = 1 + r.$$

Labor search (unemployment) Euler equation:

$$\frac{V'(I_{t} + u_{t}^{*})}{f(\Theta_{t})} = \beta E_{t} \Big[w_{t+1} U'(c_{t+1}^{*}) - V'(I_{t+1}^{*} + u_{t+1}^{*}) \\
+ (1 - s) \frac{V'(I_{t+1}^{*} + u_{t+1}^{*})}{f(\Theta_{t+1})} \Big]$$

Labor search (unemployment) Euler equation:

$$\frac{V'(I_t + u_t^*)}{f(\Theta_t)} = \beta E_t \Big[w_{t+1} U'(c_{t+1}^*) - V'(I_{t+1}^* + u_{t+1}^*) \\
+ (1 - s) \frac{V'(I_{t+1}^* + u_{t+1}^*)}{f(\Theta_{t+1})} \Big]$$

and transition equation

$$I_{t+1} = (1-s)I_t + f(\Theta_t)u_t$$

Labor search (unemployment) Euler equation:

$$\frac{V'(l_{t}+u_{t}^{*})}{f(\Theta_{t})} = \beta E_{t} \Big[w_{t+1}U'(c_{t+1}^{*}) - V'(l_{t+1}^{*}+u_{t+1}^{*}) \\ + (1-s)\frac{V'(l_{t+1}^{*}+u_{t+1}^{*})}{f(\Theta_{t+1})} \Big]$$

and transition equation

$$I_{t+1} = (1-s)I_t + f(\Theta_t)u_t$$

imply, at steady state:

$$E_{t} \frac{\partial I_{t+k}^{*}}{\partial a_{t}} = -\frac{\gamma}{\chi} \frac{I+u}{c} \frac{f(\Theta)}{s+f(\Theta)} \left[1-\left(1-s-f(\Theta)\right)^{k}\right] \frac{\partial c_{t}^{*}}{\partial a_{t}}.$$

where
$$\gamma \equiv -cU''(c)/U'(c)$$
, $\chi \equiv (I+u)V''(I+u)/V'(I+u)$

Household's budget constraint, no-Ponzi condition:

$$\sum_{k=0}^{\infty} \frac{1}{(1+r)^k} E_t \left[\frac{\partial c_{t+k}^*}{\partial a_t} - w \frac{\partial l_{t+k}^*}{\partial a_t} \right] = 1 + r,$$

Household's budget constraint, no-Ponzi condition:

$$\sum_{k=0}^{\infty} \frac{1}{(1+r)^k} E_t \left[\frac{\partial c_{t+k}^*}{\partial a_t} - w \frac{\partial l_{t+k}^*}{\partial a_t} \right] = 1 + r,$$

Consumption Euler equation:

$$\frac{\partial c_t^*}{\partial a_t} = E_t \frac{\partial c_{t+1}^*}{\partial a_t} = E_t \frac{\partial c_{t+k}^*}{\partial a_t}, \quad k = 1, 2, \dots,$$

Household's budget constraint, no-Ponzi condition:

$$\sum_{k=0}^{\infty} \frac{1}{(1+r)^k} E_t \left[\frac{\partial c_{t+k}^*}{\partial a_t} - w \frac{\partial l_{t+k}^*}{\partial a_t} \right] = 1 + r,$$

Consumption Euler equation:

$$\frac{\partial c_t^*}{\partial a_t} = E_t \frac{\partial c_{t+1}^*}{\partial a_t} = E_t \frac{\partial c_{t+k}^*}{\partial a_t}, \quad k = 1, 2, \dots,$$

Labor Euler equation:

$$E_{t} \frac{\partial I_{t+k}^{*}}{\partial a_{t}} = -\frac{\gamma}{\chi} \frac{I+u}{c} \frac{f(\Theta)}{s+f(\Theta)} \left[1-\left(1-s-f(\Theta)\right)^{k}\right] \frac{\partial c_{t}^{*}}{\partial a_{t}},$$

Household's budget constraint, no-Ponzi condition:

$$\sum_{k=0}^{\infty} \frac{1}{(1+r)^k} E_t \left[\frac{\partial c_{t+k}^*}{\partial a_t} - w \frac{\partial l_{t+k}^*}{\partial a_t} \right] = 1 + r,$$

Consumption Euler equation:

$$\frac{\partial c_t^*}{\partial a_t} = E_t \frac{\partial c_{t+1}^*}{\partial a_t} = E_t \frac{\partial c_{t+k}^*}{\partial a_t}, \quad k = 1, 2, \dots,$$

Labor Euler equation:

$$E_{t} \frac{\partial I_{t+k}^{*}}{\partial a_{t}} \, = \, - \, \frac{\gamma}{\chi} \, \frac{I+u}{c} \, \frac{f(\Theta)}{s+f(\Theta)} \, \big[1 - \big(1-s-f(\Theta)\big)^{k} \, \big] \, \frac{\partial c_{t}^{*}}{\partial a_{t}} \, ,$$

Solution is a "modified permanent income hypothesis":

$$\frac{\partial c_t^*}{\partial a_t} = \frac{r}{1 + \frac{\gamma}{\gamma} \frac{w(l+u)}{c} \frac{f(\Theta)}{r+s+f(\Theta)}}.$$

Solve for Coefficient of Absolute Risk Aversion

$$\mathbb{V}_1(a,l;\theta)=(1+r)\,U'(c),$$

Solve for Coefficient of Absolute Risk Aversion

$$\mathbb{V}_1(a,l;\theta)=(1+r)\,U'(c),$$

$$\mathbb{V}_{11}(a,l;\theta) = (1+r)U''(c)\frac{\partial c_t^*}{\partial a_t},$$

Introduction

Solve for Coefficient of Absolute Risk Aversion

$$\mathbb{V}_{1}(a, l; \theta) = (1 + r) U'(c),$$

$$\mathbb{V}_{11}(a, l; \theta) = (1 + r) U''(c) \frac{\partial c_{t}^{*}}{\partial a_{t}},$$

$$\frac{\partial c_{t}^{*}}{\partial a_{t}} = \frac{r}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r + s + f(\Theta)}},$$

Introduction

Solve for Coefficient of Absolute Risk Aversion

$$\mathbb{V}_{1}(a, l; \theta) = (1 + r) U'(c),$$

$$\mathbb{V}_{11}(a, l; \theta) = (1 + r) U''(c) \frac{\partial c_{t}^{*}}{\partial a_{t}},$$

$$\frac{\partial c_{t}^{*}}{\partial a_{t}} = \frac{r}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r + s + f(\Theta)}},$$

Proposition 2. Given Assumptions 1–7, the household's coefficient of absolute risk aversion, $R^a(a_t, l_t; \Theta_t)$, evaluated at steady state, satisfies

$$R^{a}(a,l;\Theta) = \frac{-U''(c)}{U'(c)} \frac{r}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r+s+f(\Theta)}}.$$

Relative Risk Aversion

Compare:
$$a_{t+1} = (1 + r_t)a_t + w_tI_t + d_t - c_t + \sigma A_t \varepsilon_{t+1}$$
vs.

$$a_{t+1} = (1 + r_t)a_t + w_t I_t + d_t - c_t - \mu A_t.$$

Introduction

Relative Risk Aversion

Compare:
$$a_{t+1} = (1 + r_t)a_t + w_tI_t + d_t - c_t + \sigma A_t \epsilon_{t+1}$$
vs.

$$a_{t+1} = (1 + r_t)a_t + w_tI_t + d_t - c_t - \mu A_t.$$

Definition 2. The households' coefficient of relative risk aversion, $R^{c}(a_{t}, l_{t}; \Theta_{t}) \equiv A_{t}R^{a}(a_{t}, l_{t}; \Theta_{t})$, where A_{t} denotes the household's financial assets plus present discounted value of labor income.

At steady state, A = c/r, and

$$R^{c}(a;\Theta) = \frac{-U''(c)}{U'(c)} \frac{c}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r+s+f(\Theta)}}.$$

Household period utility function:

$$\frac{c_t^{1-\gamma}}{1-\gamma}-\chi_0\frac{(I_t+u_t)^{1+\chi}}{1+\chi}$$

Household period utility function:

$$\frac{c_t^{1-\gamma}}{1-\gamma}-\chi_0\frac{(l_t+u_t)^{1+\chi}}{1+\chi}$$

Economy is a simple RBC model with labor market frictions:

- Competitive firms,
- Cobb-Douglas production functions, $y_t = Z_t k_t^{1-\phi} l_t^{\phi}$
- AR(1) technology, $\log Z_{t+1} = \rho_z \log Z_t + \varepsilon_t$
- Capital accumulation, $k_{t+1} = (1 \delta)k_t + y_t c_t$
- Labor market frictions, $I_{t+1} = (1-s)I_t + h_t$

Labor market search:

- Cobb-Douglas matching function, $h_t = \mu u_t^{1-\eta} v_t^{\eta}$
- Wage set by Nash bargaining with equal weights

Labor market search:

- Cobb-Douglas matching function, $h_t = \mu u_t^{1-\eta} v_t^{\eta}$
- Wage set by Nash bargaining with equal weights

Equity security:

- Equity is a consumption claim
- Equity premium is expected excess return,

$$\psi_t \equiv \frac{E_t(C_{t+1} + p_{t+1})}{p_t} - (1 + r_t^f)$$

Labor market search:

- Cobb-Douglas matching function, $h_t = \mu u_t^{1-\eta} v_t^{\eta}$
- Wage set by Nash bargaining with equal weights

Equity security:

- Equity is a consumption claim
- Equity premium is expected excess return,

$$\psi_t \equiv \frac{E_t(C_{t+1} + p_{t+1})}{p_t} - (1 + r_t^f)$$

Baseline calibration:

- Production: $\phi = 0.7, \delta = .0083, \rho_z = 0.99, \sigma_{\varepsilon} = .005$
- Matching: s = .02, $\eta = 0.5$, v/u = 0.6, $f(\Theta) = 0.28$
- Preferences: $\beta = .996$, $\gamma = 100$, $\chi = 100$, I + u = 0.3

Figure 1: Risk Aversion and Equity Premium vs. χ

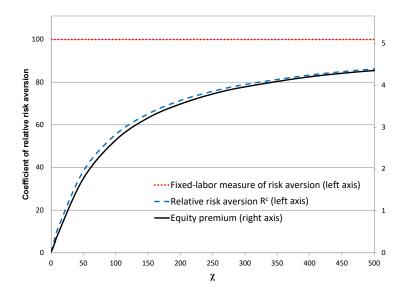


Figure 2: Risk Aversion and Equity Premium vs. γ

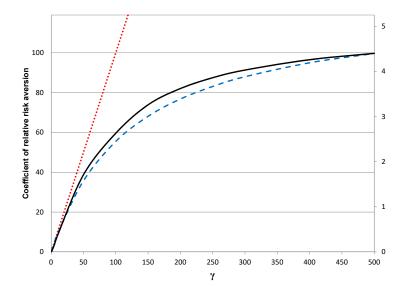
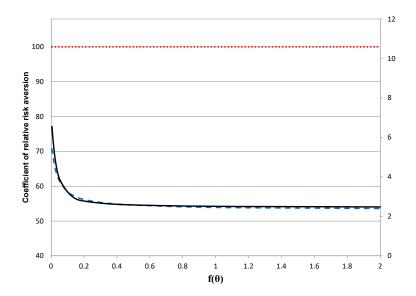


Figure 3: Risk Aversion and Equity Premium vs. $f(\Theta)$



Risk Aversion Higher in More Frictional Labor Markets

Proposition 3. Let $f_1, f_2 : \Omega_{\Theta} \to [0, 1]$. Given Assumptions 1–8 and fixed values for the parameters s, β , γ , and χ , let $(a_1, l_1; \Theta_1)$ and $(a_2, l_2; \Theta_2)$ denote corresponding steady-state values of $(a_t, l_t; \Theta_t)$. If $f_1(\Theta_1) < f_2(\Theta_2)$, then $R_1^c(a_1, l_1; \Theta_1) > R_2^c(a_2, l_2; \Theta_2)$.

Risk Aversion Higher in More Frictional Labor Markets

Proposition 3. Let $f_1, f_2 : \Omega_{\Theta} \to [0, 1]$. Given Assumptions 1–8 and fixed values for the parameters s, β , γ , and χ , let $(a_1, l_1; \Theta_1)$ and $(a_2, l_2; \Theta_2)$ denote corresponding steady-state values of $(a_t, l_t; \Theta_t)$. If $f_1(\Theta_1) < f_2(\Theta_2)$, then $R_1^c(a_1, l_1; \Theta_1) > R_2^c(a_2, l_2; \Theta_2)$.

Proof:

$$R^{c}(a, l; \Theta) = \frac{-U''(c)}{U'(c)} \frac{c}{1 + \frac{\gamma}{\chi} \frac{wl}{c} \frac{s + f(\Theta)}{r + s + f(\Theta)}}$$

is decreasing in $f(\Theta)$.

Risk Aversion Is Higher in Recessions

Proposition 4. Given Assumptions 1–8 and fixed values for the parameters s, β , γ , and χ , $R^c(a, l; \Theta)$ is decreasing in l/u.

Risk Aversion Is Higher in Recessions

Proposition 4. Given Assumptions 1–8 and fixed values for the parameters s, β , γ , and χ , $R^c(a, l; \Theta)$ is decreasing in l/u.

Proof:

Introduction

$$R^{c}(a,l;\Theta) = \frac{-U''(c)}{U'(c)} \frac{c}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r+s+f(\Theta)}}.$$

Using $sI = f(\Theta)u$,

$$R^{c}(a,l;\Theta) = \frac{-U''(c)}{U'(c)} \frac{c}{1 + \frac{\gamma}{\chi} \frac{wl}{c} \frac{s(1+l/u)}{r+s(1+l/u)}}.$$

Risk Aversion Higher for Less Employable Households

Two types of households:

- Measure 1 of type 1 households
- Measure 0 ot type 2 households
- Type 1 households are more employable: $f_1(\Theta) > f_2(\Theta)$

Risk Aversion Higher for Less Employable Households

Two types of households:

- Measure 1 of type 1 households
- Measure 0 ot type 2 households
- Type 1 households are more employable: $f_1(\Theta) > f_2(\Theta)$

Then Proposition 4 implies $R_2^c(a_2, l_2; \Theta) > R_1^c(a_1, l_1; \Theta)$.

Table 1: International Comparison

	s	$f(\Theta)$	percentage of households owning equities	percentage of households owning risky financial assets	share of house- hold portfolios in currency and deposits
United States	.019	.282	48.9	49.2	12.4
United Kingdom	.009	.056	31.5	32.4	26.0
Germany	.006	.035	18.9	25.1	33.9
France	.007	.033	_	_	29.1
Spain	.012	.020	_	_	38.1
Italy	.004	.013	18.9	22.1	27.9

Table 2: International Comparison

	Relative Risk Aversion R^c
	$\gamma=2$ $\gamma=5$ $\gamma=10$ $\gamma=20$
s	$f(\Theta) \frac{s+f(\Theta)}{r+s+f(\Theta)} \chi = 1.5 \chi = 0.5 \chi = 2.5 \chi = 10$

Theoretical labor market perfect rigidity near-perfect flexibility	benchm 0 1	narks: 0 1	0 .997	2 0.86	5 0.46	10 2.01	20 6.68
International comparison, $r = .004$:							
United States	.019	.282	.977	0.87	0.46	2.04	6.77
United Kingdom	.009	.056	.903	0.91	0.50	2.17	7.13
Germany	.006	.035	.854	0.94	0.52	2.26	7.38
France	.007	.033	.851	0.94	0.53	2.27	7.40
Spain	.012	.020	.821	0.96	0.54	2.34	7.57
Italy	.004	.013	.708	1.03	0.62	2.61	8.28

Table 3: Cyclical Variation in Risk Aversion

				Relative Risk Aversion R^c $\gamma = 2$ $\gamma = 5$ $\gamma = 10$ $\gamma = 20$				
	s	$f(\Theta)$	r	$\frac{s+f(\Theta)}{r+s+f(\Theta)}$			$\chi=2.5$	
U.S., expansion	.017	.35	.003	.995	0.86	0.46	2.01	6.70
U.S., recession	.022	.20	.011	.953	0.88	0.47	2.08	6.88
rigid lab mkt, expan	.0036	.016	.003	.868	0.93	0.52	2.24	7.31
rigid lab mkt, recess	.0046	.009	.011	.557	1.15	0.76	3.10	9.45

Other International Evidence: Campbell (1999)

	consumption growth std. dev. 1970–96	equity premium 1970-96
United States	0.9%	4.5%
United Kingdom	2.6%	6.2%
Germany	2.5%	4.8%
France	2.1%	4.5%
Netherlands	2.8%	9.0%
Switzerland	2.2%	10.1%
Sweden	1.9%	6.4%
Italy	1.7%	-1.5%

Conclusions

General conclusions:

- A flexible labor margin affects risk aversion
- Risk premia are closely related to risk aversion

Implications of labor market frictions:

- Risk aversion is higher in more frictional labor markets
- Risk aversion is higher in recessions
- Risk aversion is higher for households that are less employable

Quantitative findings:

- Frictions can play a contributing role to higher risk aversion in Europe
- Risk aversion formulas in Swanson (2012) still a good approximation