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Summary

@ There are two definitions of “discretion” in the literature
@ These definitions differ in terms of within-period timing of play
@ Within-period timing has major equilibrium implications

@ In the New Keynesian model with repeated Stackelberg play,
there are multiple equilibria (King-Wolman, 2004)

@ In the New Keynesian model with repeated simultaneous play,
there is a unique equilibrium (this paper)

@ Empirical relevance: Will the 1970s repeat itself?
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Background and Motivation

Time-consistent (discretionary) policy: Kydland and Prescott (1977)

There are multiple equilibria under discretion:
@ Barro and Gordon (1983)
@ Chari, Christiano, Eichenbaum (1998)

Critiques of the Barro-Gordon/CEE result:
@ enormous number, range of equilibria make theory impossible
to test or reject
@ equilibria require fantastic sophistication, coordination across
continuum of atomistic agents
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Background and Motivation

Literature has thus changed focus to Markov perfect equilibria:
@ Albanesi, Chari, Christiano (2003)
@ King and Wolman (2004)

King and Wolman (2004):
@ standard New Keynesian model
@ assume repeated Stackelberg within-period play
@ there are two Markov perfect equilibria

But recall LQ literature:
@ Svensson-Woodford (2003, 2004), Woodford (2003)
@ Pearlman (1994)
@ assume repeated simultaneous within-period play
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Repeated Stackelberg Play

Period t
/\

Policymaker precommits
to policy (money supply or
interest rate)

Private agents take
actions, markets clear

@ Repeated Stackelberg like “within-period commitment”?
@ But policymakers’ actions are much more restricted

@ Our results suggest policymaker actually has greater control
with repeated simultaneous timing assumption
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Comparison: Fiscal Policy

Cohen and Michel (1988), Ortigueira (2005):
@ two definitions of discretion in the tax literature
@ Brock-Turnovsky (1980), Judd (1998): repeated simultaneous
@ Klein, Krusell, Rios-Rull (2004): repeated Stackelberg
@ different timing assumption lead to different equilibria, welfare

In this paper:
@ defining repeated simultaneous play is more subtle: Walras

@ timing assumption changes not just payoffs, welfare, but
multiplicity of equilibria
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The Game Iy

Discretion is a game between private sector and central bank

For clarity, begin definition of game without central bank:
@ assume interest rate process {r:} is i.i.d.
@ call this game Iy

Game ly:
@ time is discrete, continues forever

@ [, begins at ty, but inherits history h®
@ define:

players

payoffs

information sets

action spaces
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Game [y: Players and Payoffs

1. Firms indexed by i € [0, 1]:

produce differentiated products; face Dixit-Stiglitz demand curves;
have production function y;(i) = I(i); hire labor at wage rate w;
payoff each period is profit:

N4(7) = pe(N)ye(i) — wiele(V)

2. Households indexed by j € [0, 1]:

supply labor L(j); consume final good C;(j); borrow or lend a
one-period nominal bond B;(j); payoff each period is utility flow:

. -
Gl (i) = T U

Note: there is a final good aggregator that is not a player of I'y
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Game [g: Information Sets

Individual households and firms are anonymous:

@ only aggregate variables and aggregate outcomes are publicly
observed

Information set of each firm j at time t is thus:
@ history of aggregate outcomes: {Cs, Ls, Ps, rs, ws, MNs}, s < t
@ history of firm i’s own actions

Information set of each household j at time t is thus:
@ history of aggregate outcomes: {Cs, Ls, Ps, rs, ws, Mg}, s < t
@ history of household j’s own actions
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Aggregate Resource Constraints

In games of industry competition:

@ Bertrand

@ Cournot

@ Stackelberg
Action spaces are just real numbers: e.g., price, quantity
In a macroeconomic game, there are aggregate resource
constraints that must be respected, e.g.:

@ total labor supplied by households must equal total labor
demanded by firms

@ total output supplied by firms must equal total consumption
demanded by households

@ money supplied by central bank must equal total money
demanded by households (in game I'4)
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Walrasian Auctioneer

To ensure that aggregate resource constraints are respected, we
introduce a Walrasian auctioneer

@ Instead of playing a price p;, firms now play a price schedule
p:(Xt), where X; denotes aggregate variables realized at ¢

@ this is just the usual NK assumption that firms take wages,
interest rate, aggregates at time t as given
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Walrasian Auctioneer

To ensure that aggregate resource constraints are respected, we
introduce a Walrasian auctioneer
@ Instead of playing a price p;, firms now play a price schedule
p:(Xt), where X; denotes aggregate variables realized at ¢
@ this is just the usual NK assumption that firms take wages,
interest rate, aggregates at time t as given
@ Instead of playing a consumption-labor pair (Ct, Lt), households
play a joint schedule (Ct(Xt), Li(Xt))
@ this is just the usual NK assumption that households take
wages, prices, interest rate, aggregates at time f as given

Walrasian auctioneer then determines the equilibrium X; that
satisfies aggregate resource constraints
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Game Iy: Action Spaces

1. Firms

@ set prices for two periods in Taylor contracts; must supply
whatever output is demanded at posted price

@ firmsin [0,1/2):
for t odd, action space is set of measurable functions p;(X;)
for t even, action space is trivial

@ firmsin [1/2,1):
for t even, action space is set of measurable functions p:(X;)
for t odd, action space is trivial

2. Households

@ in each period, action space is set of measurable functions
(Ci(Xt), Le(Xt))
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Game Iy: Action Spaces

Note:
@ all firms j and households j play simultaneously in each period t

@ Walrasian auctioneer clears markets, aggregate resource
constraints

Also, do not confuse action spaces here with strategies:
@ a strategy is a mapping from history h! to the action space

@ here, action spaces are functions of aggregate variables
realized at t

@ but strategies are unrestricted, may depend on arbitrary history
of aggregate variables (until we impose Markovian restriction)



Private Sector
[ le]

Game Tp: Firm Optimality Conditions

Each firm that resets price faces a standard NK optimal pricing
condition:

Eith 0wy + Ey Qt t41 Pt(r{e)/e Y1 Wigq

pi(i) = (1+0)
ExPY Vs 4 ExQuei PG Y

)

Pt(1 Yy + Et Q141 Pt(r{g)/e Y1 Wi

=(1+0)
Pt“ Y+ By Pt(ﬁe)/g Y

E; — E; because firm can play functions of variables dated ¢
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Game Iy: Household Optimality Conditions

Each household j faces a standard dynamic programming problem
with initial bond holdings B;_1(j).

Optimality conditions are standard:
Cl)* = EuB(1+m)—t Cri()*
t(j) - jtﬂ( +rt)P t+1(j) )
t+1
s Wt o/ n—
voli()* = Eip Cil) ™,

EtY R.rPrCi(i) = Bi1())+ Ep Y Rirlwrly(j) + Ny,
T—t T—t



Private Sector
o] ]

Game Iy: Household Optimality Conditions

Each household j faces a standard dynamic programming problem
with initial bond holdings B;_1(j).

Optimality conditions are standard:
Cii)™” = EB(1 +ft) Cz+1 )
Wi

xoLi(f)* = EftFCt(j)_a
t

EtY R.rPrCi(i) = Bi1())+ Ep Y Rirlwrly(j) + Ny,
T—t T—t

Note: E; — E; once we establish symmetry across households
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Private Sector Equilibrium and Markov Equilibrium

e Private Sector Equilibrium and Markov Perfect Equilibrium
@ Private Sector Equilibrium
@ State Variables of the Game Iy
@ Markov Perfect Equilibrium in the Game T
@ Markov Perfect Equilibrium Conditions
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Game [y: Private Sector Equilibrium

Definition 1: Given the i.i.d. stochastic process for {r:} and initial
conditions py,—1(i) and By, (j) for all firms i and households j, we
define a Private Sector Equilibrium (PSE) to be a subgame perfect
equilibrium of the game Iy.

In particular, a PSE implies a collection of stochastic processes for
{Lt, re, P, w, Y, T, Qp e, (1), Yie(0), (D), Ci(7), Le()), Bi(f) } for

t > ty and for all i, j that satisfy: (i) the price optimality condition (14)
of the firm’s maximization problem; (ii) the consumption and labor
optimality conditions (15)—(17) of the household’s maximization
problem:; (iii) the Dixit-Stiglitz aggregation and demand conditions
(7)—(9) of the competitive goods aggregator; and (iv) the aggregate
resource constraints (10)—(12) imposed by the Walrasian auctioneer.
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Game [o: State Variables

There are two sets of state variables for the game 'y (and also I'¢):
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Game [o: State Variables

There are two sets of state variables for the game 'y (and also I'¢):

@ distribution of household bond holdings, B;_1(j), j € [0, 1]

@ two measures of the distribution of inherited prices:

[Pty a

and
/ pe (i)~ (1+9/9 g
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Game [o: State Variables

Proposition 1: Suppose that B;_1(j) is the same for all households
j € [0, 1] except possibly a set S of measure zero. Then the optimal
action (C; (j), L;(j)) € L(,R2) is the same for every household

j & S. We denote this optimal action by (Cy, L}).
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Game [o: State Variables

Proposition 1: Suppose that B;_1(j) is the same for all households
j € [0, 1] except possibly a set S of measure zero. Then the optimal
action (C; (j), L;(j)) € L(,R2) is the same for every household

j & S. We denote this optimal action by (Cy, L}).

Proof: The household optimality conditions:
Ci() " = EB(1 +ft) Cz+1(/)
LiG) = Erp Gil)*,
t

EjtZRt,TPTC?(j) = Bi1()) +E/tZRtT[WTL () +Ngl,
T=t T=t

for households j; and j> are identical if B;_1(j1) = Bt_1(j2)-
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Game [o: State Variables

Proposition 2: The optimal choice of price schedule pi(i) € L(Q2,R4)
is the same for all firms i that reset price in period t. We denote this
optimal price schedule, given by (14), by p;.
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Game [o: State Variables

Proposition 2: The optimal choice of price schedule pi(i) € L(Q2,R4)
is the same for all firms i that reset price in period t. We denote this
optimal price schedule, given by (14), by p;.

Proof: The right-hand side of firm optimality condition:

Pt(1+9)/9 Yiw; + EtQt 41 Pt+1 0)/0 Yt+1 Wisq
pt( ) (1 + 9) (1+6)/0 +0)/60
Py Yi + E:Qu1 P Y

)

t+1

is identical for all firms i.
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Game [o: State Variables

Starting from symmetric initial conditions in period fy:

@ Propositions 1 and 2 show that the distributions B;_1(-) and
pi—1(-) are degenerate for all times t > {, along the equilibrium
path in any subgame perfect equilibrium of 'y

@ We henceforth restrict definition of game 'y to case of
symmetric initial conditions in period £,

Note: we will not write out how play evolves off of the equilibrium
path (if a positive measure of firms or households were to deviate),
but simply assert that agents will continue to play according to their
optimality conditions (Phelan-Stachetti, 2001)
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Game Iy: Markov Perfect Equilibrium

Definition 2: A Markov Perfect Equilibrium (MPE) of the game T'q is a
set of strategies for households and firms that, at each date t,
depend only on the state variables of [y at time t, and yield a Nash
equilibrium in every proper subgame of I'y.
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Game Iy: Markov Perfect Equilibrium

Definition 2: A Markov Perfect Equilibrium (MPE) of the game T'q is a
set of strategies for households and firms that, at each date t,
depend only on the state variables of [y at time t, and yield a Nash
equilibrium in every proper subgame of I'y.

Note:

@ state variables of general game correspond to coarsest
partition of original game tree into equivalence classes that
preserve payoffs and action spaces (Fudenberg-Tirole, 1993)

@ for Iy, can define action spaces, payoffs in real terms
@ normalize 'y by p;_4
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Game Iy: Markov Perfect Equilibrium Conditions

Now consolidate and simplify necessary conditions for an MPE.
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Define:
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Game Iy: Markov Perfect Equilibrium Conditions

Now consolidate and simplify necessary conditions for an MPE.

Define:

First:

—0
1
P = /pt(i)‘”(’di] = 2014 X%
0

P
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Game Iy: Markov Perfect Equilibrium Conditions

Then, consolidating necessary conditions yields:

Lt B 20 1+Xt(1+9)/0

1
Ndi= L +— — _
/0 [() t Yt (1 +)(1:1/9)1+9
1/670 xo| YiLY + B(1 +X:/9)1+9h1t}
+Xt ) :(1+ ) 1—p 1/6
Y, P+ 814+ X% )hoyt

)

firm optimality <= 27(1

Euler <« Y7 °(1+x"%) =50+ n)hs,
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Game Iy: Markov Perfect Equilibrium Conditions

Then, consolidating necessary conditions yields:
1 (1+6')/0
. . Lt 0 1 +

K(hdi= L <~ =20 "t _
/0 yt (1 +X1/9)1+9
o[ Yil¥ + 801 + %) iy

Y9 4+ 801+ XY hy
Euler <« Y7°(1+x/%) =801 + n)ha,

firm optimality <= 27(1 +x1/0) =(1+90)

)

h _ E Yf+1Lt+1
T T AT
\ A
hoy = Ef;u
/6’
‘I—s—x,

hy = EY (1 +Xt111/0)a
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Game Iy: Markov Perfect Equilibrium Conditions

Proposition 4: Given the i.i.d. stochastic process for {r;} and
symmetric initial conditions py,—1(f) = py,—1 € Ry and By, _1(j) =0
for all firms i and households j, necessary conditions for an
equilibrium path of a Markov Perfect Equilibrium (MPE) of the game
o are that, for all t > ty: (i) (Lt, X, Yi) satisfy households’ and firms’
optimality conditions (19)-(21), taking r: and (hy¢, hot, hst) as given;
(i) (hy¢, hot, hst) satisfy conditions (22)-(24) for rational expectations;
and (iii) households’ and firms’ strategies along the equilibrium path
are independent of history and independent of time.
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Proposition 4: Given the i.i.d. stochastic process for {r;} and
symmetric initial conditions py,—1(f) = py,—1 € Ry and By, _1(j) =0
for all firms i and households j, necessary conditions for an
equilibrium path of a Markov Perfect Equilibrium (MPE) of the game
o are that, for all t > ty: (i) (Lt, X, Yi) satisfy households’ and firms’
optimality conditions (19)-(21), taking r: and (hy¢, hot, hst) as given;
(ii) (hqt, hot, hay) satisfy conditions (22)-(24) for rational expectations;
and (iii) households’ and firms’ strategies along the equilibrium path
are independent of history and independent of time.
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Game Iy: Markov Perfect Equilibrium Conditions

Proposition 4: Given the i.i.d. stochastic process for {r;} and
symmetric initial conditions py,—1(f) = py,—1 € Ry and By, _1(j) =0
for all firms i and households j, necessary conditions for an
equilibrium path of a Markov Perfect Equilibrium (MPE) of the game
o are that, for all t > ty: (i) (Lt, X, Yi) satisfy households’ and firms’
optimality conditions (19)-(21), taking r: and (hy¢, hot, hst) as given;
(i) (hy¢, hot, hst) satisfy conditions (22)-(24) for rational expectations;
and (i) households’ and firms’ strategies along the equilibrium path
are independent of history and independent of time.
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Game Iy: Markov Perfect Equilibrium Conditions

Proposition 5: Along the equilibrium path of a Markov Perfect
Equilibrium of the game T, there exist positive real numbers hy, ho,
and hsz such that (h”, hot, hSt) = (h1 , ho, h3) for all times t.
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Game Iy: Markov Perfect Equilibrium Conditions

Proposition 5: Along the equilibrium path of a Markov Perfect
Equilibrium of the game T, there exist positive real numbers hy, ho,
and hz such that (hy¢, hot, hst) = (hy, ho, hs) for all times t.
Proof:
@ hyy, hot, hyy are conditional expectations of variables in t + 1
@ variables in t + 1 depend only on variables dated t + 1 or later
@ r;isi.i.d. overtime
@ no sunspots or time-dependence (Markov)
@ = hyy, hot, hy; are the same in every period t
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Game Iy: Markov Perfect Equilibrium Conditions

Proposition 5: Along the equilibrium path of a Markov Perfect
Equilibrium of the game T, there exist positive real numbers hy, ho,
and hz such that (hy¢, hot, hst) = (hy, ho, hs) for all times t.
Proof:
@ hyy, hot, hyy are conditional expectations of variables in t + 1
@ variables in t + 1 depend only on variables dated t + 1 or later
@ r;isi.i.d. overtime
@ no sunspots or time-dependence (Markov)
@ = hyy, hot, hy; are the same in every period t

Note that this does not rule out the possibility of multiple MPE:

@ there may be multiple sets of (hy, ho, h3) each of which can
support an MPE

@ any given (hy, ho, hs) may be able to support multiple MPE
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Game Iy: Markov Perfect Equilibrium Conditions

Proposition 6: Let (Ly,, Xt,, Yt,, b1y, ot hay,, 1t,) and

(Lty, Xt,, Ytp, B1s,, Doty , has,, 11,) lie on the equilibrium path of an MPE
of M. Then (Lt1 y Xty s Yt1 s h1 t h2t1 s /'73f1 , I’t1) =

(Lty, Xty, Yoo, Pty Doty B3y 1)

That is, along the equilibrium path, any MPE of Ty must be constant
over time.
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Game Iy: Markov Perfect Equilibrium Conditions

Proposition 6: Let (Ly,, Xt,, Yt,, b1y, ot hay,, 1t,) and

(Lty, Xt,, Ytp, B1s,, Doty , has,, 11,) lie on the equilibrium path of an MPE
of M. Then (Lt1 y Xty s Yt1 s h1 t h2t1 s /'73f1 , I’t1) =

(Lty, Xty, Yoo, Pty Doty B3y 1)

That is, along the equilibrium path, any MPE of Ty must be constant
over time.

Proof:
@ household, firm strategies are independent of history, time
@ hy, ho, and hs are independent of time (Prop. 5)
@ — any MPE is independent of time.
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The Game T4

Now, extend the game Iy to include an optimizing central bank:
@ interest rate r; is set by central bank each period
@ call this game I'4

First two sets of players (firms and households) are defined exactly
asinrly



Central Bank
[ ]

Game I4: Central Bank

3. Central bank:

sets one-period nominal interest rate r;; payoff each period is given
by average household welfare:

Cs(j)' % — 1 Ls()™x
- o/
/ 1-o X0 T+ Ul

Central bank’s information set is the history of aggregate outcomes:
{037 LSJ PS) rS7 WS; I—Is}, S < t
Note:

@ central bank has no ability to commit to future actions
(discretion)

@ central bank is monolithic, while private sector is atomistic
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Within-Period Timing of Play

Repeated Stackelberg play:
@ each period divided into two halves
@ first, central bank precommits to a value for r; (or m;)
@ second, firms and households play simultaneously
@ Walrasian auctioneer determines equilibrium

Repeated simultaneous play:
@ firms, households, and central bank all play simultaneously
@ Walrasian auctioneer determines equilibrium
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Simultaneous Play: Example

Linearized New Keynesian model:

vt = Etyip1—an
it = BEmi + Y

Under repeated simultaneous play, a Taylor rule is valid:

= am+byt
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Simultaneous Play: Example

Linearized New Keynesian model:

vt = Etyip1—an
it = BEmi + Y

Under repeated simultaneous play, a Taylor rule is valid:
ry = art + by;
Under repeated Stackelberg play, corresponding rule would be:
rnn=aki_1mi+bEi_1y

although note that this rule is not Markov
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Simultaneous Play: Example

Linearized New Keynesian model:

vt = Etyip1—an
it = BEmi + Y

Under repeated simultaneous play, a Taylor rule is valid:

= am+byt

Under repeated Stackelberg play, corresponding rule would be:
ry = aEt,17Tt + bEt,1yt

although note that this rule is not Markov (model has no state
variables).
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Why Assume Simultaneous Play?

Practical considerations/realism:
@ Makes no difference whether monetary instrument is r; or m;

@ Central banks monitor economic conditions continuously, adjust
policy as needed

Theoretical considerations:
@ Why treat central bank, private sector so asymmetrically?

@ LQ literature (Svensson-Woodford 2003, 2004, Woodford 2003,
Pearlman 1994, etc.) assumes simultaneous play

@ Investigate sensitivity of multiple equilibria to within-period
timing
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Game I'1: Action Spaces

In defining the game I'1, we assume repeated simultaneous play:

@ firms i, households j, and central bank all play simultaneously
in each period t

@ action spaces of firms, households are same as in 'y

@ for central bank, action space each period is set of measurable
functions r;(X;)  (simultaneous play)

@ Walrasian auctioneer clears markets, aggregate resource
constraints

Again, do not confuse action spaces with strategies:

@ strategies are unrestricted, may depend on arbitrary history of
aggregate variables (until we impose Markovian restriction)
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Policymaker Bellman Equation

yl-¢ ;JrX
Vi = max{ —+t— — + BEV,
= ma {1_([) Xo Ty BEt Vi
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Policymaker Bellman Equation

yl-¢ ;JrX
Vi = max{ -‘1t— — + BE:V,
= ma {1_([) Xo Ty BEt Vi

subject to:
(1+6)/6

Lt _ 1+ X
Y, (1 +Xr1/9)1+9
Y71+ x7%) = B(1 + )by,

270 (14 1Y} 7% + 801 + x"Yhar] = (140)xo [YeLr+8(14x7%) ™ hay].
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Policymaker Bellman Equation

Y17§0 1+X
Vi = max{ : —Xo1t + 5EtVt+1}

{ry |1—9 + X
subject to:
5729 1+Xt(1+0)/9
Ve ()T

Y71+ x7%) = B(1 + )by,

270 (14 1Y} 7% + 801 + x"Yhar] = (140)xo [YeLr+8(14x7%) ™ hay].

where expectations of next period variables are given functions of
this period’s economic state: hy;, hot, hs;  (discretion)
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Markov Perfect Equilibria of the Game T’

Along the equilibrium path of any Markov Perfect Equilibrium of 'y,
state variables are degenerate (only operative off equilibrium path)

As a result, along the equilibrium path:

he = EY 500+ x,4") = hy

y!-#
l72i = EE}AAAAAI:t;jT7Q5 = /72
T4 X4
Yirrli
o = B,
(1 +Xt+1/ )
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Markov Perfect Equilibria of the Game T’

Along the equilibrium path of any Markov Perfect Equilibrium of 'y,
state variables are degenerate (only operative off equilibrium path)

As a result, along the equilibrium path:

he = EY 500+ x,4") = hy

A
hoy = Ett;lw = ho
T4 X4
Yirrli
hyy = E——— 55 =M
—1/o\110
(T+x{")

Note: we will not write out how play evolves off of the equilibrium
path, but simply assert that it agents will continue to play optimally
(Phelan-Stachetti, 2001)
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Solving for Markov Perfect Equilibria

Yt1—<ﬂ L2+X
Solve: Vi = max — + BEV,
= maxy T Xy BEt Vit
subject to:
Lo g 14100
Vt* (1+Xt1/9)1+07

Y71+ %% = 8(1 + r)hy,
20 (14x") [V} 72 + 51+ X" Yhe] = (1+0)xo[YeLF +6(1+x7%) " h].

where hy, ho, hy are exogenous constants.
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Solving for Markov Perfect Equilibria

Yt1—<ﬂ L2+X
Solve: V; = max — X0 + BE:Viiq
N R "
subject to:
Ly o 1 +x(1+9)/
Vt* (1 JrXt1/f))1+o

Yor( ) = 61+ )y,
270 (14" [V + 8(1 + %)) = (1+0)x0 [ YiLX +8(1+%"7)

where hy, ho, hy are exogenous constants.

1+0h3] )

Finally, impose equilibrium conditions:
—1/6 Yin? YerrLeiq
h1—EtYH_1(1—|-XH_1 ) hg—Et _1/9, hy = E;

Xp i1 (1+X;11/9)1+9'
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Solving for Markov Perfect Equilibria

Yt1—<ﬂ L2+X
Solve: V; = max — X0 + BE:Viiq
N R "
subject to:
Ly o 1 +x(1+9)/
Vt* (1 JrXt1/f))1+o

Yoo+ X% = B(1 + r)hy,
20 (14X 1Y% + B(1 + x"")ha] = (14+0)x0 [ VeLE+8(1+x7) " hs].
where hy, ho, hy are exogenous constants.

Finally, impose equilibrium conditions

1— X

-1/6 Vi _ Vi1 L

P = BV 4 x ), he = B g, hy = B,
et (1+Xr+1 )

Note: there can still be multiplicity here, e.qg. if hy, ho, hy are “bad”
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Solving for Markov Perfect Equilibria

Solve policymaker’s problem via Lagrangean, yielding:

A!Euler
X0L3+X

L
Py gt
Yi

AV291+9 xt —1
t 0 (1+Xt1/9)2(1+9)

L
A,VV’ — X¥(1 + 0)x0 VixLY
t

- -0 1/0\6 11—
Y TP AN =270 (14790 ¥ 7P — (1 + 6)xo VLX)

1—
_ Y, ~® 1+06 (1+6)2
’\f{z ¢ [71 ! 78 T g | — x0B— ’71}
+ X
t

Combine these first-order conditions with private sector optimality

constraints
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Results

Proposition 7: The inflation rate = in any Markov Perfect Equilibrium
of the game 'y must satisfy the condition:

1+ Br(1+0/0 {4 71/0
14 pr1/0 1+ 700

(“—1)[1—(1 ]

148=(1+6)/6 11V /0 T 125a070)/8
_LP)W +(1+7-r(+ )/ ) 1_WW
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Results

Proposition 7: The inflation rate = in any Markov Perfect Equilibrium
of the game 'y must satisfy the condition:

14 Br(1+0)/0 1 4 71/0
14 8r1/0 1 4 7(1+0)/0 %

(x—1) [1 +x—(1 )7‘*1‘1"5(1%/9] 1
1 — il = (*)
Tion(110)/0 Ti5n(110)/0 110
(=0 [ (= ) BT [ e [1 - g g |

Proposition 8: Let ¢ =1, x = 0, and 5 > max{1/2,1/(1 + 20)}.
Then there is precisely one value of t that satisfies equation (x).
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Results

Proposition 7: The inflation rate = in any Markov Perfect Equilibrium
of the game 'y must satisfy the condition:

14 Br(1+0)/0 1 4 71/0
14 8r1/0 1 4 7(1+0)/0 %

B o 1+ﬁﬂ(we)/s]
. (x = 1) [1 tx = (-7 1 "
(= 1) [1 —(1- w)1*ﬁ"(1+g)/9] 4 (1 4 x(140)/0) [1 . 1+ﬁ"“*9)/9] T+0

0 111/0

14+8m1/0

Proposition 8: Let ¢ =1, x = 0, and 5 > max{1/2,1/(1 + 20)}.
Then there is precisely one value of © that satisfies equation (x).
Note:
@ o =1, x = 0 are not special, but simplify algebra in proofs
@ there is a unique equilibrium for wide range of parameters
@ confirmed by extensive numerical simulation in Matlab



Repeated Stackelberg Play, with Money

Given money supply m;, expectations hy, ho, hs, and private sector
optimality conditions:

Vi (14 %%
— 1/6
Yy P +x77) =61+ n)h,
2—9(1 +X,1/9)9[Yt17</’ + B(1 +Xt1/0)h2] = (140)xo0[ YL +8(1 +Xt1/0)1+9h3]7

29X[

m=Y— 2t
(1+x/%0

Solve for:

Yt = Y(mt), Xt = X(mt), Lt = L(mt), ry = r(mt).



Repeated Stackelberg Play, with Money

Y1—g0 L1+X
Then solve: Vi = r{nn% 1 L PECT t+x + BE;V;,1 ; subject
t

to:
Ye=Y(m), x¢=x(my), Li=L(my), re=r(m).



Repeated Stackelberg Play, with Money

y1—%0 L1+X

Then solve: Vi = ma t t E:V, subject
v t {m3<{1_¢ X01+X+/3tt+1} i

to:
Ye=Y(m), x¢=x(my), Li=L(my), re=r(m).

King and Wolman (2004): There are “good” and “bad” expectations
hy, ho, hs, which result in “good” and “bad” private sector equilibria
Yi = Y(mt), Xt = X(mt), Ly = L(mt), ry = r(mt).



Repeated Simultaneous Play, with Money

Yt1—<ﬂ L2+X
Solve: Vi = max — + BE;V, subiject to:
= maxy T X BEtVii1 ]
Ly o 1 +x(1+9)/

Yt_ (1+ 1/0)1+9

Y71+ %% = 8(1 + r)hy,
270 (14X Y] % + B(1 + x%)ha] = (1+0)x0 [ VeLX+B8(1+x7%) " hg],
20X[

m; = Yti
(1+x"%0



Repeated Simultaneous Play, with Money

Yt1—<ﬂ L2+X
Solve: Vi = max — + BE;V, subiject to:
= maxy T X BEtVii1 ]
Ly o 1 +x(1+9)/

Yt_ (1+ 1/0)1+9

Y71+ %% = 8(1 + r)hy,
270 (14X Y] % + B(1 + x%)ha] = (1+0)x0 [ VeLX+B8(1+x7%) " hg],
20X[

m; = Yti
(1+x"%0

But first-order condition with respect to m:

r=o
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Conclusions

@ There are two definitions of “discretion” in the literature
@ These definitions differ in terms of within-period timing of play
@ Within-period timing has major equilibrium implications

@ In the New Keynesian model with repeated Stackelberg play,
there are multiple equilibria (King-Wolman, 2004)

@ In the New Keyneisan model with repeated simultaneous play,
there is a unique equilibrium (this paper)

@ Open questions: other NK models, models with a
(nondegenerate) state variable
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