Introduction	Model	Asset Prices	Discussion	Conclusions

A Macroeconomic Model of Equities and Real, Nominal, and Defaultable Debt

Eric T. Swanson

University of California, Irvine

Workshop on Asset Pricing Theory and Computation Stanford Institute for Theoretical Economics August 19, 2019

Introduction	Model	Asset Prices	Discussion	Conclusions
●○	000000		0000000	o
Motivation				

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Introduction	Model	Asset Prices	Discussion	Conclusions
●○	000000		0000000	o
Motivation				

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Implications for Finance:

- unified framework for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Introduction	Model	Asset Prices	Discussion	Conclusions
●○	000000		0000000	o
Motivation				

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Implications for Finance:

- unified framework for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:

- show how to match risk premia in DSGE framework
- start to endogenize asset price-macroeconomy feedback

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		0000000	o
Motivation				

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		0000000	o
Motivation				

• Epstein-Zin preferences

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		0000000	o
Motivation				

- Epstein-Zin preferences
- nominal rigidities

Introduction	Model 000000	Asset Prices	Discussion 0000000	Conclusions o
Motivation				

- Epstein-Zin preferences
- nominal rigidities

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in model need to be so high?

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		0000000	o
Motivation				

- Epstein-Zin preferences
- nominal rigidities

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in model need to be so high?

- uncertainty: Weitzman (2007), Barillas-Hansen-Sargent (2010), et al.
- rare disasters: Rietz (1988), Barro (2006), et al.
- long-run risks: Bansal-Yaron (2004) et al.

Introduction	Model	Asset Prices	Discussion	Conclusions
○●	000000		0000000	o
Motivation				

- Epstein-Zin preferences
- nominal rigidities

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in model need to be so high?

- uncertainty: Weitzman (2007), Barillas-Hansen-Sargent (2010), et al.
- rare disasters: Rietz (1988), Barro (2006), et al.
- long-run risks: Bansal-Yaron (2004) et al.
- heterogeneous agents: Mankiw-Zeldes (1991), Guvenen (2009), Constantinides-Duffie (1996), Schmidt (2015), et al.
- financial intermediaries: Adrian-Etula-Muir (2013)

Introduction	Model ●○○○○○	Asset Prices	Discussion 0000000	Conclusions o
Househo	olde			

Period utility function:

$$u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

- additive separability between c and l
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Introduction	Model ●○○○○○	Asset Prices	Discussion 0000000	Conclusions o
Househo	olde			

Period utility function:

$$u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

- additive separability between c and l
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Nominal flow budget constraint:

$$a_{t+1} = e^{i_t}a_t + w_t I_t + d_t - P_t c_t$$

Introduction	Model ●○○○○○	Asset Prices	Discussion 0000000	Conclusions o
Househo	lde			

Period utility function:

$$u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

- additive separability between c and l
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Nominal flow budget constraint:

$$a_{t+1} = e^{i_t}a_t + w_t I_t + d_t - P_t c_t$$

Calibration: (IES = 1), χ = 3, I = 1 (η = .54)

Introduction	Model o●oooo	Asset Prices	Discussion 0000000	Conclusions o

Generalized Recursive Preferences

Household chooses state-contingent $\{(c_t, I_t)\}$ to maximize

$$V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) - \beta \alpha^{-1} \log \left[E_t \exp(-\alpha V(a_{t+1}; \theta_{t+1})) \right]$$

Introduction	Model	Asset Prices	Discussion	Conclusions
	00000			

Generalized Recursive Preferences

Household chooses state-contingent $\{(c_t, l_t)\}$ to maximize

$$V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) - \beta \alpha^{-1} \log \left[E_t \exp(-\alpha V(a_{t+1}; \theta_{t+1})) \right]$$

Calibration: $\beta = .992$, RRA (R^c) = 60 ($\alpha = 59.15$)

Introduction	Model oo●ooo	Asset Prices	Discussion 0000000	Conclusions o
Firms				

Firms are very standard:

- continuum of monopolistic firms (gross markup λ)
- Calvo price setting (probability 1ξ)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} I_t(f)^{\theta}$
- fixed firm-specific capital stocks k

Introduction	Model oo●ooo	Asset Prices	Discussion 0000000	Conclusions o
Firms				

Firms are very standard:

- continuum of monopolistic firms (gross markup λ)
- Calvo price setting (probability 1ξ)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} I_t(f)^{\theta}$
- fixed firm-specific capital stocks k

Random walk technology: $\log A_t = \log A_{t-1} + \varepsilon_t$

- simplicity
- comparability to finance literature
- helps match equity premium

Introduction	Model oo●ooo	Asset Prices	Discussion 0000000	Conclusions o
Firms				

Firms are very standard:

- continuum of monopolistic firms (gross markup λ)
- Calvo price setting (probability 1ξ)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} I_t(f)^{\theta}$
- fixed firm-specific capital stocks k

Random walk technology: $\log A_t = \log A_{t-1} + \varepsilon_t$

- simplicity
- comparability to finance literature
- helps match equity premium

Calibration: $\lambda = 1.1, \xi = 0.8, \theta = 0.6, \sigma_A = .007, (\rho_A = 1), \frac{k}{4Y} = 2.5$

Introduction	Model ooo●oo	Asset Prices	Discussion 0000000	Conclusions o		
Fiscal and	Fiscal and Monetary Policy					

 $Y_t = C_t$

Introduction	Model ooo∙oo	Asset Prices	Discussion 0000000	Conclusions o
Fiscal and	Monetar	y Policy		

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_{y}(y_t - \overline{y}_t)$$

Introduction	Model ooo∙oo	Asset Prices	Discussion 0000000	Conclusions o
Fiscal an	d Monetar	v Policy		

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_{y}(y_t - \overline{y}_t)$$

"Output gap" $(y_t - \overline{y}_t)$ defined relative to moving average:

$$\overline{\mathbf{y}}_t \equiv \rho_{\overline{\mathbf{y}}} \overline{\mathbf{y}}_{t-1} + (1 - \rho_{\overline{\mathbf{y}}}) \mathbf{y}_t$$

Introduction	Model ○○○●○○	Asset Prices	Discussion 0000000	Conclusions o
Fiscal ar	nd Monetar	v Policy		

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_y(y_t - \overline{y}_t)$$

"Output gap" $(y_t - \overline{y}_t)$ defined relative to moving average:

$$\overline{\mathbf{y}}_t \equiv \rho_{\overline{\mathbf{y}}} \overline{\mathbf{y}}_{t-1} + (\mathbf{1} - \rho_{\overline{\mathbf{y}}}) \mathbf{y}_t$$

Rule has no inertia:

- simplicity
- Rudebusch (2002, 2006)

Introduction	Model ooo●oo	Asset Prices	Discussion 0000000	Conclusions o
Fiscal and	d Monetar	y Policy		

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_y(y_t - \overline{y}_t)$$

"Output gap" $(y_t - \overline{y}_t)$ defined relative to moving average:

$$\overline{\mathbf{y}}_t \equiv \rho_{\overline{\mathbf{y}}} \overline{\mathbf{y}}_{t-1} + (\mathbf{1} - \rho_{\overline{\mathbf{y}}}) \mathbf{y}_t$$

Rule has no inertia:

- simplicity
- Rudebusch (2002, 2006)

Calibration: $\phi_{\pi} = 0.5, \ \phi_{y} = 0.75, \ \overline{\pi} = .008, \ \rho_{\overline{y}} = 0.9$

Introduction	Model	Asset Prices	Discussion	Conclusions
00	○○○○●○		0000000	o
Solution	Method			

```
Divide nonstationary variables (Y_t, C_t, w_t, etc.) by A_t
```

Introduction	Model	Asset Prices	Discussion	Conclusions
00	○○○○●○		0000000	o
Solution	Method			

```
Divide nonstationary variables (Y_t, C_t, w_t, etc.) by A_t
```

Introduction	Model ○○○○●○	Asset Prices	Discussion 0000000	Conclusions o
Solution I	Vlethod			

```
Divide nonstationary variables (Y_t, C_t, w_t, etc.) by A_t
```

Solve using perturbation methods around nonstoch. steady state

• first-order: no risk premia

Introduction	Model oooo●o	Asset Prices	Discussion 0000000	Conclusions o
Solution Me	ethod			

```
Divide nonstationary variables (Y_t, C_t, w_t, etc.) by A_t
```

- first-order: no risk premia
- second-order: risk premia are constant

Introduction	Model oooo●o	Asset Prices	Discussion 0000000	Conclusions o
Solution Me	ethod			

Divide nonstationary variables (Y_t , C_t , w_t , etc.) by A_t

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia

Introduction	Model oooo∙o	Asset Prices	Discussion 0000000	Conclusions o
Solution Me	ethod			

Divide nonstationary variables (Y_t , C_t , w_t , etc.) by A_t

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region

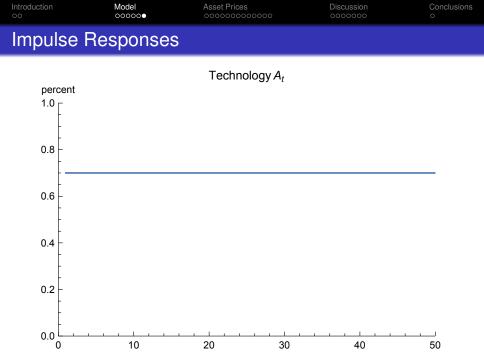
Introduction	Model oooo●o	Asset Prices	Discussion 0000000	Conclusions o
Solution Me	ethod			

Divide nonstationary variables (Y_t , C_t , w_t , etc.) by A_t

Solve using perturbation methods around nonstoch. steady state

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region

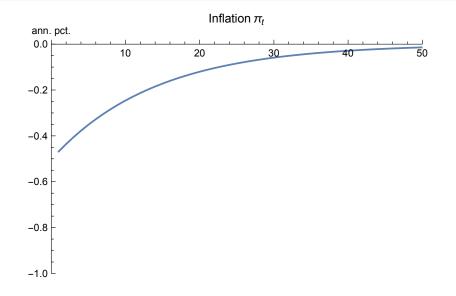
Model has 2 endogenous state variables (\bar{y}_t , Δ_t), one shock (ε_t)



Introduction	Model ○○○○○●	Asset Prices	Discussion	Conclusions o
Impulse	Response	S		
percent 1.0 0.8 - 0.6 - 0.4 - 0.2		Consumption C _t		
0.0	10	20 20		J

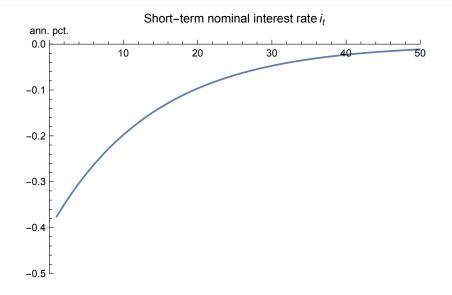
Introduction	Model	Asset Prices	Discussion	Conclusions
	000000			

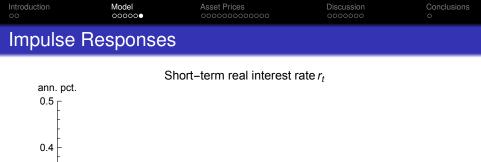
Impulse Responses

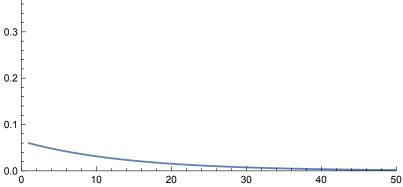


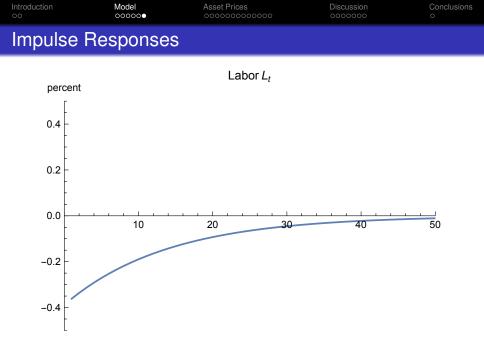
Introduction	Model	Asset Prices	Discussion	Conclusions
	000000			

Impulse Responses









Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000	●oo	0000000	o
Equity: Lev	vered Co	nsumption Clair	m	

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where ν is degree of leverage

Introduction	Model	Asset Prices	Discussion	Conclusions
	000000	●oo	0000000	o
Equity: Lev	vered Co	nsumption Clair	m	

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where $\boldsymbol{\nu}$ is degree of leverage

Realized gross return:

$$R^{e}_{t+1} \equiv rac{C^{
u}_{t+1} + p^{e}_{t+1}}{p^{e}_{t}}$$

Introduction	Model 000000	Asset Prices ●OOOOOOOOOOO	Discussion	Conclusions o
Equity: L	evered Co	nsumption Clai	m	

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where ν is degree of leverage

Realized gross return:

$${\sf R}^{e}_{t+1}\equiv rac{C^{
u}_{t+1}+
ho^{e}_{t+1}}{
ho^{e}_{t}}$$

Equity premium

$$\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t}$$

Introduction	Model	Asset Prices	Discussion	Conclusions
	000000	●oo	0000000	o
Equity: Lev	vered Co	nsumption Clair	m	

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where ν is degree of leverage

Realized gross return:

$${\sf R}^{e}_{t+1}\equiv rac{C^{
u}_{t+1}+{
ho}^{e}_{t+1}}{{
ho}^{e}_{t}}$$

Equity premium

$$\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t}$$

Calibration: $\nu = 3$

Introduction	Model	Asset Prices	Discussion 0000000	Conclusions o
Table 2:	Equity Pre	mium		

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

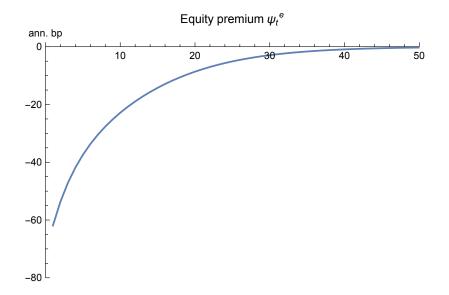
Introduction	Model	Asset Prices o●oooooooooo	Discussion	Conclusions o		
Table 2: Equity Premium						
In the data: 3 Fama-Frer	•	rcent per year (e.g., Cam 2)	pbell, 1999,			
Risk avers	sion R ^c	Shock persistence ρ_A	Equity premiur	m ψ^{e}		
10		1	0.62			
30		1	1.96			
60		1	4.19			

6.70

	Model 000000	Asset Prices oooooooooooo	Discussion	Conclusions o			
Table 2: Equity Premium							
In the data: 3–6 Fama-French	• •	ber year (e.g., Cam	pbell, 1999,				
Risk aversion	n <i>R^c</i> Shoo	ck persistence $ ho_A$	Equity premiu	m ψ ^e			
10		1	0.62				
30		1	1.96				
60		1	4.19				
90		1	6.70				

Introduction 00	Model 000000	Asset Prices o●oooooooooo	Discussion	Conclusions o
Table 2: E	Equity Prei	mium		
	3–6.5 percei ench, 2002)	nt per year (e.g., Ca	ampbell, 1999,	

Risk aversion R ^c	Shock persistence ρ_A	Equity premium ψ^{e}
10	1	0.62
30	1	1.96
60	1	4.19
90	1	6.70
60	.995	1.86
60	.99	1.08
60	.98	0.53
60	.95	0.17



Introduction	Model 000000	Asset Prices	Discussion 0000000	Conclusions o
Real Gove	rnment De	bt		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000		0000000	o
Real Gov	vernment D	Debt		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

 $p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$

Introduction	Model	Asset Prices	Discussion 0000000	Conclusions o
Real Go	vernment D	Debt		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

 $p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Introduction	Model	Asset Prices	Discussion 0000000	Conclusions o
Real Go	vernment [)eht		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

 $p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$

Introduction	Model	Asset Prices	Discussion 0000000	Conclusions o
Real Go	vernment [Debt		

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

 $p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$

where

$$\hat{r}_t^{(n)} = -\frac{1}{n} \log \hat{p}_t^{(n)}$$
$$\hat{p}_t^{(n)} = e^{-r_t} E_t \hat{p}_{t+1}^{(n-1)}$$

Introduction	Model 000000	Asset Prices	Discussion 0000000	Conclusions o
Nominal G	overnment	Debt		

$$p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$

Introduction	Model oooooo	Asset Prices	Discussion 0000000	Conclusions o

Nominal Government Debt

Nominal *n*-period zero-coupon bond price:

$$p_t^{\$(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{\$(n-1)},$$
$$p_t^{\$(0)} = 1, \quad p_t^{\$(1)} = e^{-i_t}$$

Nominal yield:

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Nominal term premium:

$$\psi_t^{(n)} = i_t^{(n)} - \hat{i}_t^{(n)}$$

where

$$\hat{i}_t^{(n)} = -\frac{1}{n} \log \hat{p}_t^{\$(n)}$$
$$\hat{p}_t^{\$(n)} = e^{-i_t} E_t \hat{p}_{t+1}^{\$(n-1)}$$

Introduction	Model	Asset Prices	Discussion 0000000	Conclusions o
Real Yie	ld Curve			

Table 3: Real Zero-Coupon Bond Yields

	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)–(3y)
US TIPS, 1999–2018 ^a			1.15	1.39	1.65	
US TIPS, 2004–2018 ^a	0.12	0.25	0.54	0.80	1.10	0.85
US TIPS, 2004–2007 ^a	1.42	1.53	1.75	1.92	2.10	0.57
UK indexed gilts, 1983–1995 ^b	6.12	5.29	4.34		4.12	-1.17
UK indexed gilts, 1985–2018 ^c		1.53	1.69	1.80	1.90	0.37
UK indexed gilts, 1990–2007 ^c		2.79	2.78	2.79	2.80	0.01

Introduction	Model	Asset Prices	Discussion 0000000	Conclusions o
Real Yie	ld Curve			

Table 3: Real Zero-Coupon Bond Yields

	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(3y)
US TIPS, 1999–2018 ^a US TIPS, 2004–2018 ^a	0.12	0.25	1.15 0.54	1.39 0.80	1.65 1.10	0.85
US TIPS, 2004–2007 ^a	1.42	1.53	1.75	1.92	2.10	0.57
UK indexed gilts, 1983–1995 ^b	6.12	5.29	4.34		4.12	-1.17
UK indexed gilts, 1985–2018 ^c		1.53	1.69	1.80	1.90	0.37
UK indexed gilts, 1990–2007 ^c		2.79	2.78	2.79	2.80	0.01
macroeconomic model	1.94	1.93	1.93	1.93	1.93	0.00

^aGürkaynak, Sack, and Wright (2010) online dataset ^bEvans (1999) ^cBank of England web site

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000		0000000	o
Nominal	Yield Curv	е		

Table 4: Nominal Zero-Coupon Bond Yields

	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(1y)
US Treasuries, 1961–2018 ^a	5.07	5.29	5.48	5.76	5.97		
US Treasuries, 1971–2018 ^a	5.16	5.40	5.60	5.92	6.17	6.44	1.28
US Treasuries, 1990–2007 ^a	4.56	4.84	5.06	5.41	5.68	5.98	1.42
UK gilts, 1970–2018 ^b	6.52	6.69	6.85	7.10	7.29	7.49	0.97
UK gilts, 1990–2007 ^b	6.20	6.29	6.38	6.47	6.50	6.48	0.28

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000	○○○○○●○○○○○○	0000000	o
Nominal	Yield Curv	е		

Table 4: Nominal Zero-Coupon Bond Yields

	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(1y)
US Treasuries, 1961–2018 ^a	5.07	5.29	5.48	5.76	5.97		
US Treasuries, 1971–2018 ^a	5.16	5.40	5.60	5.92	6.17	6.44	1.28
US Treasuries, 1990–2007 ^a	4.56	4.84	5.06	5.41	5.68	5.98	1.42
UK gilts, 1970–2018 ^b	6.52	6.69	6.85	7.10	7.29	7.49	0.97
UK gilts, 1990–2007 ^b	6.20	6.29	6.38	6.47	6.50	6.48	0.28
						- · ·	
macroeconomic model	5.35	5.59	5.80	6.09	6.27	6.44	1.09

^aGürkaynak, Sack, and Wright (2007) online dataset ^bBank of England web site

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000		0000000	o
Nominal	Yield Curv	е		

Table 4: Nominal Zero-Coupon Bond Yields

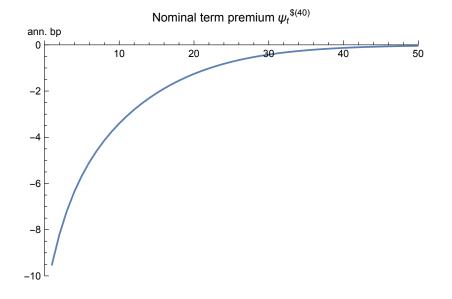
	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(1y)
US Treasuries, 1961–2018 ^a	5.07	5.29	5.48	5.76	5.97	0.44	1.00
US Treasuries, 1971–2018 ^a US Treasuries, 1990–2007 ^a	5.16 4.56	5.40 4.84	5.60 5.06	5.92 5.41	6.17 5.68	6.44 5.98	1.28 1.42
UK gilts, 1970–2018 ^b	6.52	6.69	6.85	7.10	7.29	7.49	0.97
UK gilts, 1990–2007 ^b	6.20	6.29	6.38	6.47	6.50	6.48	0.28
macroeconomic model	5.35	5.59	5.80	6.09	6.27	6.44	1.09

^aGürkaynak, Sack, and Wright (2007) online dataset ^bBank of England web site

Supply shocks make nominal long-term bonds risky: inflation risk

N le rectione l	Torm Dron	- !		
		000000000000		
Introduction	Model	Asset Prices	Discussion	Conclusions

Nominal Term Premium



Introduction	Model	Asset Prices	Discussion	Conclusions
	000000	○○○○○○○●○○○○	0000000	o
Defaultable	Debt			

1

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Introduction	Model 000000	Asset Prices	Discussion 0000000	Conclusions o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(rac{1}{p_t^c} + \delta
ight)$$

Introduction	Model oooooo	Asset Prices	Discussion 0000000	Conclusions o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - \mathbf{1}_{t+1}^d) (1 + \delta p_{t+1}^d) + \mathbf{1}_{t+1}^d \omega_{t+1} p_t^d \right]$$

Introduction	Model 000000	Asset Prices	Discussion 0000000	Conclusions o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - \mathbf{1}_{t+1}^d) (1 + \delta p_{t+1}^d) + \mathbf{1}_{t+1}^d \omega_{t+1} p_t^d \right]$$

Yield to maturity:

$$i_t^d = \log\left(\frac{1}{p_t^d} + \delta\right)$$

Introduction	Model 000000	Asset Prices	Discussion 0000000	Conclusions o
Defaultable	Debt			

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \Big[(1 - \mathbf{1}_{t+1}^d) (1 + \delta p_{t+1}^d) + \mathbf{1}_{t+1}^d \omega_{t+1} p_t^d \Big]$$

Yield to maturity:

$$i_t^d = \log\left(\frac{1}{p_t^d} + \delta\right)$$

The credit spread is $i_t^d - i_t^c$

Introduction	Model	Asset Prices	Discussion	Conclusions
	000000	○○○○○○○●○○○	0000000	o
Table 5: Cr	edit Spre			

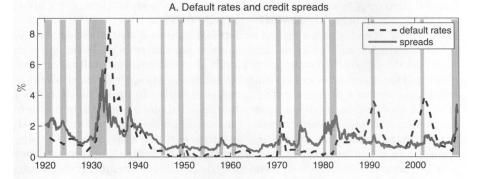
average ann.cyclicality of
default prob.average
recovery ratecyclicality of
recovery ratecredit
spread (bp).0060.42034.0

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000		0000000	o
Table 5: Cr	edit Spre	ead		

average ann.	cyclicality of	average	cyclicality of	credit
default prob.	default prob.	recovery rate	recovery rate	spread (bp)
.006	0	.42	0	34.0

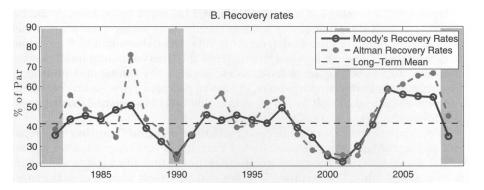
If default isn't cyclical, then it's not risky

Default Rate is Countercyclical



Introduction	Model	Asset Prices	Discussion	Conclusions
	000000	○○○○○○○○○○●○	0000000	o

Recovery Rate is Procyclical



Introduction	Model	Asset Prices ○○○○○○○○○○○●	Discussion 0000000	Conclusions o
Table 5:	Credit Spre	ead		

average ann.	, ,	average	cyclicality of	credit
default prob.		recovery rate	recovery rate	spread (bp)
.006	0	.42	0	34.0
.006	0.3	.42	0	130.9

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000		0000000	o
Table 5:	Credit Spre	ead		

average ann. default prob.	cyclicality of default prob.	average recovery rate	cyclicality of recovery rate	credit spread (bp)
.006	0	.42	0	34.0
.006	-0.3	.42	0	130.9
.006	-0.3	.42	2.5	143.1

Introduction	Model	Asset Prices	Discussion	Conclusions
	000000	○○○○○○○○○○○●	0000000	o
Table 5: Cr	edit Spre	ead		

average ann. default prob.	cyclicality of default prob.	average recovery rate	cyclicality of recovery rate	credit spread (bp)
.006	0	.42	0	34.0
.006	-0.3	.42	0	130.9
.006	-0.3	.42	2.5	143.1
.006	-0.15	.42	2.5	78.9
.006	-0.6	.42	2.5	367.4
.006	-0.3	.42	1.25	137.0
.006	-0.3	.42	5	155.2

Introduction	Model 000000	Asset Prices	Discussion ●oooooo	Conclusions o
Discussi	on			

- IES ≤ 1 vs. IES > 1
- Volatility shocks
- Endogenous conditional heteroskedasticity
- Monetary and fiscal policy shocks
- Financial accelerator

Introduction	Model 000000	Asset Prices	Discussion o●ooooo	Conclusions o		
Intertemporal Electicity of Cubatitution						

Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes $\mbox{IES}>1,$ for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

Introduction	Model	Asset Prices	Discussion	Conclusions
00	000000		o●ooooo	o
Intertemp	oral Elasti	icity of Substitu	tion	

Long-run risks literature typically assumes $\ensuremath{\mathsf{IES}}\xspace > 1,$ for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Introduction	Model oooooo	Asset Prices	Discussion o●ooooo	Conclusions o
1				

Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes $\mbox{IES}>1,$ for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).

Introduction	Model 000000	Asset Prices	Discussion oo●oooo	Conclusions o		
Endogod	Endegeneue Canditional Hateroakedaatieity					

Endogenous Conditional Heteroskedasticity

$$\psi_t^e = -\operatorname{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

Introduction	Model 000000	Asset Prices	Discussion oo●oooo	Conclusions O
Endoger	nous Condi	tional Heterosk	edasticity	

$$\psi_t^e = -\operatorname{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

		tional Heterosk		
Introduction	Model	Asset Prices	Discussion	Conclusions

$$\psi_t^e = -\operatorname{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

Traditional finance approach: assume shocks are heteroskedastic

		tional Heterosk		
Introduction	Model	Asset Prices	Discussion	Conclusions

$$\psi_t^e = -\operatorname{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

Traditional finance approach: assume shocks are heteroskedastic

Here, conditional heteroskedasticity is endogenous

Introduction	Model 000000	Asset Prices	Discussion oo●oooo	Conclusions o
Endogeno	us Condi	tional Heterosk	edasticity	

$$\psi_t^e = -\operatorname{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

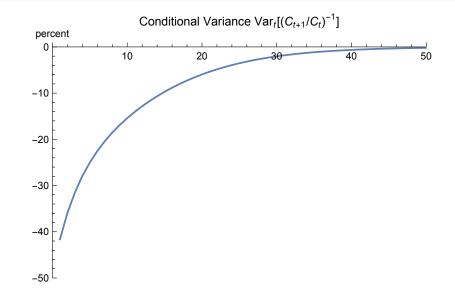
Traditional finance approach: assume shocks are heteroskedastic

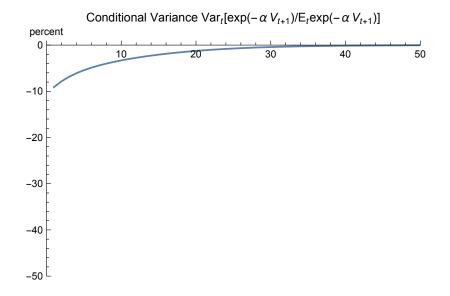
Here, conditional heteroskedasticity is endogenous

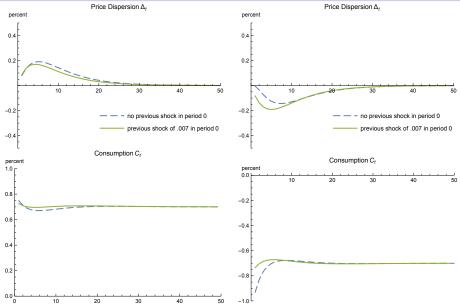
Nonlinear solution contains terms of form

 $x_t \varepsilon_{t+1}$

so covariance Cov_t depends on state x_t







Introduction	Model	Asset Prices	Discussion	Conclusions
			0000000	

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

Introduction	Model	Asset Prices	Discussion	Conclusions
			0000000	

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables

Introduction	Model	Asset Prices	Discussion	Conclusions
			0000000	

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables

But technology shock is most important (by far) for fitting asset prices:

- technology shock is more persistent
- technology shock makes nominal assets risky

Introduction 00	Model	Asset Prices	Discussion 000000●	Conclusions o		
No Finar	No Financial Accelerator					

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

Introduction	Model 000000	Asset Prices	Discussion ○○○○○○●	Conclusions o
No Financia	al Accelera	ator		

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

Clearly at odds with financial crisis

To generate feedback, want financial intermediaries whose net worth depends on assets

Introduction	Model 000000	Asset Prices	Discussion ○○○○○●	Conclusions o			
No Financial Accelerator							

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

Clearly at odds with financial crisis

To generate feedback, want financial intermediaries whose net worth depends on assets

...but not in this paper

Introduction	Model 000000	Asset Prices	Discussion 0000000	Conclusions •
Conclusion	S			

- The standard textbook New Keynesian model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts/puzzles
- Unifies asset pricing puzzles into a single puzzle—Why does risk aversion and/or risk in macro models need to be so high? (Literature provides good answers to this question)
- Provides a structural framework for intuition about risk premia
- Suggests a way to model feedback from risk premia to macroeconomy