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Motivation

Goal: Show that a simple macroeconomic model (with Epstein-Zin
preferences) is consistent with a wide variety of asset pricing facts

equity premium puzzle
long-term bond premium puzzle (nominal and real)
credit spread puzzle

Implications for Finance:
unified framework for asset pricing puzzles
structural model of asset prices (provides intuition, robustness
to breaks and policy interventions)

Implications for Macro:
show how to match risk premia in DSGE framework
start to endogenize asset price–macroeconomy feedback
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Motivation

Model has two key ingredients:

Epstein-Zin preferences
nominal rigidities

Reduces separate puzzles in finance to a single, unifying puzzle:
Why does risk aversion in model need to be so high?

uncertainty: Weitzman (2007), Barillas-Hansen-Sargent
(2010), et al.
rare disasters: Rietz (1988), Barro (2006), et al.
long-run risks: Bansal-Yaron (2004) et al.
heterogeneous agents: Mankiw-Zeldes (1991), Guvenen
(2009), Constantinides-Duffie (1996), Schmidt (2015), et al.
financial intermediaries: Adrian-Etula-Muir (2013)
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Households

Period utility function:

u(ct , lt ) ≡ log ct − η
l1+χ
t

1 + χ

additive separability between c and l
SDF comparable to finance literature
log preferences for balanced growth, simplicity

Nominal flow budget constraint:

at+1 = eit at + wt lt + dt − Ptct

Calibration: (IES = 1), χ = 3, l = 1 (η = .54)
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Generalized Recursive Preferences

Household chooses state-contingent {(ct , lt )} to maximize

V (at ; θt ) = max
(ct ,lt )

u(ct , lt )− βα−1 log [Et exp(−αV (at+1; θt+1))]

Calibration: β = .992, RRA (Rc) = 60 (α = 59.15)
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Firms

Firms are very standard:
continuum of monopolistic firms (gross markup λ)
Calvo price setting (probability 1− ξ)
Cobb-Douglas production functions, yt (f ) = Atk1−θ lt (f )θ

fixed firm-specific capital stocks k

Random walk technology: log At = log At−1 + εt

simplicity
comparability to finance literature
helps match equity premium

Calibration: λ = 1.1, ξ = 0.8, θ = 0.6, σA = .007, (ρA = 1), k
4Y = 2.5
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Fiscal and Monetary Policy

No government purchases or investment:

Yt = Ct

Taylor-type monetary policy rule:

it = r + πt + φπ(πt − π) + φy (yt − y t )

“Output gap” (yt − y t ) defined relative to moving average:

y t ≡ ρȳy t−1 + (1− ρȳ )yt

Rule has no inertia:
simplicity
Rudebusch (2002, 2006)

Calibration: φπ = 0.5, φy = 0.75, π = .008, ρȳ = 0.9
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Introduction Model Asset Prices Discussion Conclusions

Fiscal and Monetary Policy

No government purchases or investment:

Yt = Ct

Taylor-type monetary policy rule:

it = r + πt + φπ(πt − π) + φy (yt − y t )

“Output gap” (yt − y t ) defined relative to moving average:
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Introduction Model Asset Prices Discussion Conclusions

Solution Method

Write equations of the model in recursive form

Divide nonstationary variables (Yt , Ct , wt , etc.) by At

Solve using perturbation methods around nonstoch. steady state
first-order: no risk premia
second-order: risk premia are constant
third-order: time-varying risk premia
higher-order: more accurate over larger region

Model has 2 endogenous state variables (ȳt , ∆t ), one shock (εt )
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Equity: Levered Consumption Claim

Equity price
pe

t = Etmt+1(Cν
t+1 + pe

t+1)

where ν is degree of leverage

Realized gross return:

Re
t+1 ≡

Cν
t+1 + pe

t+1

pe
t

Equity premium
ψe

t ≡ EtRe
t+1 − ert

Calibration: ν = 3
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Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999,
Fama-French, 2002)

Risk aversion Rc Shock persistence ρA Equity premium ψe

10 1 0.62
30 1 1.96
60 1 4.19
90 1 6.70

60 .995 1.86
60 .99 1.08
60 .98 0.53
60 .95 0.17
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Real Government Debt

Real n-period zero-coupon bond price:

p(n)
t = Et mt+1p(n−1)

t+1 ,

p(0)
t = 1, p(1)

t = e−rt

Real yield:

r (n)
t = −1

n
log p(n)

t

Real term premium:
ψ

(n)
t = r (n)

t − r̂ (n)
t

where
r̂ (n)
t = −1

n
log p̂(n)

t

p̂(n)
t = e−rt Et p̂

(n−1)
t+1
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Nominal Government Debt

Nominal n-period zero-coupon bond price:
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Real Yield Curve

Table 3: Real Zero-Coupon Bond Yields

2-yr. 3-yr. 5-yr. 7-yr. 10-yr. (10y)−(3y)

US TIPS, 1999–2018a 1.15 1.39 1.65
US TIPS, 2004–2018a 0.12 0.25 0.54 0.80 1.10 0.85
US TIPS, 2004–2007a 1.42 1.53 1.75 1.92 2.10 0.57
UK indexed gilts, 1983–1995b 6.12 5.29 4.34 4.12 −1.17
UK indexed gilts, 1985–2018c 1.53 1.69 1.80 1.90 0.37
UK indexed gilts, 1990–2007c 2.79 2.78 2.79 2.80 0.01

macroeconomic model 1.94 1.93 1.93 1.93 1.93 0.00

aGürkaynak, Sack, and Wright (2010) online dataset
bEvans (1999)
cBank of England web site
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Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. (10y)−(1y)

US Treasuries, 1961–2018a 5.07 5.29 5.48 5.76 5.97
US Treasuries, 1971–2018a 5.16 5.40 5.60 5.92 6.17 6.44 1.28
US Treasuries, 1990–2007a 4.56 4.84 5.06 5.41 5.68 5.98 1.42
UK gilts, 1970–2018b 6.52 6.69 6.85 7.10 7.29 7.49 0.97
UK gilts, 1990–2007b 6.20 6.29 6.38 6.47 6.50 6.48 0.28

macroeconomic model 5.35 5.59 5.80 6.09 6.27 6.44 1.09

aGürkaynak, Sack, and Wright (2007) online dataset
bBank of England web site

Supply shocks make nominal long-term bonds risky: inflation risk



Introduction Model Asset Prices Discussion Conclusions

Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. (10y)−(1y)

US Treasuries, 1961–2018a 5.07 5.29 5.48 5.76 5.97
US Treasuries, 1971–2018a 5.16 5.40 5.60 5.92 6.17 6.44 1.28
US Treasuries, 1990–2007a 4.56 4.84 5.06 5.41 5.68 5.98 1.42
UK gilts, 1970–2018b 6.52 6.69 6.85 7.10 7.29 7.49 0.97
UK gilts, 1990–2007b 6.20 6.29 6.38 6.47 6.50 6.48 0.28

macroeconomic model 5.35 5.59 5.80 6.09 6.27 6.44 1.09

aGürkaynak, Sack, and Wright (2007) online dataset
bBank of England web site

Supply shocks make nominal long-term bonds risky: inflation risk
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Default Rate is Countercyclical

Macroeconomic Conditions and the Puzzles 

A. Default rates and credit spreads 

O Moody's Recovery Rates 
- • - Altman Recovery Rates ( 

Long-Term Mean 

1985 2005 

B. Recovery rates 

1990 1995 2000 

Figure 1. Default rates, credit spreads, and recovery rates over the business cy 
cle. Panel A plots the Moody's annual corporate default rates during 1920 to 2008 and the monthly 
Baa-Aaa credit spreads during 1920/01 to 2009/02. Panel B plots the average recovery rates during 
1982 to 2008. The "Long-Term Mean" recovery rate is 41.4%, based on Moody's data. Shaded areas 

are NBER-dated recessions. For annual data, any calendar year with at least 5 months being in a 

recession as defined by NBER is treated as a recession year. 

default component of the average 10-year Baa-Treasury spread in this model 
rises from 57 to 105 bps, whereas the average optimal market leverage of a 
Baa-rated firm drops from 50% to 37%, both consistent with the U.S. data. 

Figure 1 provides some empirical evidence on the business cycle movements 
in default rates, credit spreads, and recovery rates. The dashed line in Panel 
A plots the annual default rates over 1920 to 2008. There are several spikes in 
the default rates, each coinciding with an NBER recession. The solid line plots 
the monthly Baa-Aaa credit spreads from January 1920 to February 2009. The 

spreads shoot up in most recessions, most visibly during the Great Depression, 
the savings and loan crisis in the early 1980s, and the recent financial crisis 
in 2008. However, they do not always move in lock-step with default rates 

(the correlation at an annual frequency is 0.65), which suggests that other 

factors, such as recovery rates and risk premia, also affect the movements 

in spreads. Next, business cycle variation in the recovery rates is evident in 

This content downloaded from 67.98.229.10 on Fri, 11 Apr 2014 19:22:23 PM
All use subject to JSTOR Terms and Conditions

source: Chen (2010)
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Recovery Rate is Procyclical

Macroeconomic Conditions and the Puzzles 

A. Default rates and credit spreads 
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1990 1995 2000 

Figure 1. Default rates, credit spreads, and recovery rates over the business cy 
cle. Panel A plots the Moody's annual corporate default rates during 1920 to 2008 and the monthly 
Baa-Aaa credit spreads during 1920/01 to 2009/02. Panel B plots the average recovery rates during 
1982 to 2008. The "Long-Term Mean" recovery rate is 41.4%, based on Moody's data. Shaded areas 

are NBER-dated recessions. For annual data, any calendar year with at least 5 months being in a 

recession as defined by NBER is treated as a recession year. 

default component of the average 10-year Baa-Treasury spread in this model 
rises from 57 to 105 bps, whereas the average optimal market leverage of a 
Baa-rated firm drops from 50% to 37%, both consistent with the U.S. data. 

Figure 1 provides some empirical evidence on the business cycle movements 
in default rates, credit spreads, and recovery rates. The dashed line in Panel 
A plots the annual default rates over 1920 to 2008. There are several spikes in 
the default rates, each coinciding with an NBER recession. The solid line plots 
the monthly Baa-Aaa credit spreads from January 1920 to February 2009. The 

spreads shoot up in most recessions, most visibly during the Great Depression, 
the savings and loan crisis in the early 1980s, and the recent financial crisis 
in 2008. However, they do not always move in lock-step with default rates 

(the correlation at an annual frequency is 0.65), which suggests that other 

factors, such as recovery rates and risk premia, also affect the movements 

in spreads. Next, business cycle variation in the recovery rates is evident in 

This content downloaded from 67.98.229.10 on Fri, 11 Apr 2014 19:22:23 PM
All use subject to JSTOR Terms and Conditions

source: Chen (2010)
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default prob. default prob. recovery rate recovery rate spread (bp)
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.006 −0.3 .42 0 130.9

.006 −0.3 .42 2.5 143.1

.006 −0.15 .42 2.5 78.9

.006 −0.6 .42 2.5 367.4
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.006 −0.3 .42 5 155.2
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Discussion

1 IES ≤ 1 vs. IES > 1

2 Volatility shocks

3 Endogenous conditional heteroskedasticity

4 Monetary and fiscal policy shocks

5 Financial accelerator
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Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two
reasons:

ensures equity prices rise (by more than consumption) in
response to an increase in technology
ensures equity prices fall in response to an increase in
volatility

However, IES > 1 is not necessary for these criteria to be satisfied,
particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).
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Endogenous Conditional Heteroskedasticity
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t = −Covt

( mt+1

Etmt+1
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Risk premium can only vary over time if SDF or asset return is
conditionally heteroskedastic

Traditional finance approach: assume shocks are heteroskedastic

Here, conditional heteroskedasticity is endogenous

Nonlinear solution contains terms of form

xtεt+1

so covariance Covt depends on state xt
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Impulse Responses to Pos. and Neg. Tech. Shocks
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Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with
technology shock
government purchases shock
monetary policy shock

All three shocks help the model fit macroeconomic variables

But technology shock is most important (by far) for fitting asset
prices:

technology shock is more persistent
technology shock makes nominal assets risky
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No Financial Accelerator

With model-implied stochastic discount factor mt+1, we can price
any asset

Economy affects mt+1 ⇒ economy affects asset prices

However, asset prices have no effect on economy

Clearly at odds with financial crisis

To generate feedback, want financial intermediaries whose net
worth depends on assets

...but not in this paper
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Conclusions

1 The standard textbook New Keynesian model (with Epstein-Zin
preferences) is consistent with a wide variety of asset pricing
facts/puzzles

2 Unifies asset pricing puzzles into a single puzzle—Why does risk
aversion and/or risk in macro models need to be so high?
(Literature provides good answers to this question)

3 Provides a structural framework for intuition about risk premia

4 Suggests a way to model feedback from risk premia to
macroeconomy
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