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Abstract

This paper introduces dynamic predictor selection into a New Keynesian
model with heterogeneous expectations and examines its implications for mon-
etary policy. We extend Branch and McGough (2008) by incorporating endoge-
nous time-varying predictor proportions along the lines of Brock and Hommes
(1997). Periodic orbits and complex dynamics may arise even if the model
under rational expectations has a unique stationary solution. The qualitative
nature of the non-linear dynamics turns on the interaction between hawkish-
ness of the government’s policy and the extrapolative behavior of non-rational
agents.

JEL Classifications: E52; E32; D83; D84
Key Words: Heterogeneous expectations, complex dynamics, determinacy,

monetary policy.

1 Introduction

Among the standard assumptions of the New Keynesian model is the macroeconomic
benchmark of (homogeneous) rational expectations (RE). Recent empirical analysis,
however, casts some doubt on this assumption’s validity. Using survey data, Branch
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(2004, 2005), Carroll (2003), and Mankiw, Reis, and Wolfers (2003) provide evidence
that economic forecasters (both consumers and professional economists) have hetero-
geneous expectations and, importantly, the distribution of heterogeneity evolves over
time in response to economic volatility. Branch (2004), in particular, provides evi-
dence that survey respondents in the Michigan survey of consumers are distributed
across rational and adaptive expectations and these proportions evolve over time as a
reaction to past mean square forecast errors: for instance, in periods of high economic
volatility such as the 1970’s a higher proportion of agents used rational expectations
than during periods of relatively low volatility.

In light of the empirical evidence, Branch and McGough (2008), relaxing the
assumption of rational expectations, incorporate heterogeneous boundedly rational
agents into the micro-foundations of a New Keynesian model. The primary con-
tribution of Branch and McGough (2008) is an aggregation result based on linear
approximations to agents’ optimal decision rules that depend on heterogeneous ex-
pectations operators. Specifically, under fairly general assumptions on how agents
form expectations, it was shown that aggregate outcomes satisfy IS and AS equations
with the same reduced-form as the standard model except homogeneous expectations
are replaced with a convex combination of heterogeneous expectations operators.
This extension of the basic model has important implications for the dynamics of the
economy. As a concrete example, Branch and McGough (2008), assume agents are
(exogenously) split between rational and adaptive expectations and monetary policy
follows a Taylor-type rule. In this special case, the dynamic properties of the het-
erogeneous expectations model depend crucially on the distribution of agents across
forecasting models and, in particular, differ from the standard RE model.

In Branch and McGough (2008), we took the distribution of heterogeneous expec-
tations as fixed and exogenous. The empirical evidence cited above and the results
from our previous paper, suggest that this assumption is overly restrictive. In this
paper, we follow Brock and Hommes (1997) and assume that the degree of hetero-
geneity is allowed to vary over time in response to past forecast errors (net of a fixed
cost) thereby coupling predictor choice with the dynamics of inflation and output.
As in Brock and Hommes (1997), our predictor choice stems from a discrete choice
framework that has a venerable history in economics, e.g. Manski and McFadden
(1981).

The primary interest of this paper is to study the dynamics of a monetary economy
with heterogeneous expectations and dynamic predictor selection. We assume agents
choose between using a rational predictor (for a cost) and using an adaptive fore-
casting model. We find that for sufficiently low costs to using the rational predictor,
the model’s steady state is stable. For higher costs, however, the steady state may
destabilize and the dynamic system may bifurcate. Whether this bifurcation leads to
bounded complex dynamics depends on the coefficients in the monetary policy rule
and the degree to which the adaptive agents extrapolate from past data. We find
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two different cases under which bounded complex dynamics may obtain, depending
on the stance of monetary policy: first, if policy is passive, in the sense of adjusting
nominal interest rates less than one for one with inflation, and the adaptive agents
discount past data, or, second, if monetary policy is active and the adaptive agents
extrapolate from past data

The intuition behind the onset of complicated dynamics in the heterogeneous
New Keynesian model is clear. Suppose that agents have a choice of being rational
or adaptive and they will seek to minimize their mean square forecast error net of a
cost, C, to using a rational predictor. Suppose that monetary policy follows a Taylor-
type rule that adheres to the ‘Taylor principle’ by adjusting nominal interest rates
more than one for one when inflation deviates from a target. This is the standard
advice for setting monetary policy in New Keynesian models. As will be evident
below, the heterogeneous expectations model with dynamic predictor selection can
be represented as a dynamical system of the form

xt = M(nt−1)xt−1

where x is a vector consisting of aggregate output and inflation, and n is the fraction
of rational agents. It turns out that when n = 1, one or more of the eigenvalues of M
will have modulus greater than one, implying the evolution of the economy for large
n will not settle down at a steady-state with rational expectations. However, for n
sufficiently large, it turns out that the eigenvalues of M will lie inside the unit circle.
Now consider what happens to an economy that begins with a fraction of rational
agents close to one. Since the eigenvalues of M will have modulus less than one, the
economy will contract toward the steady-state and the relative advantage of rational
over adaptive expectations will diminish. As a result, a growing proportion of agents
will not want to pay the fixed cost to being rational. The proportion of rational
agents n will decrease until an eigenvalue of M again has modulus greater than one,
causing the economy to repel from the steady-state. This attracting/repelling feature
of dynamic predictor selection is what makes bounded complex dynamics exist even
in the case that monetary policy adheres to the Taylor principle.

The results of this experiment have important implications for monetary policy. A
wide and established literature appears to agree on one essential ingredient of sound
monetary policy: policy should be set to act aggressively against inflation (e.g. Taylor
(1999), Clarida, Gali and Gertler (2000), Bernanke and Woodford (1997), Svensson
and Woodford (2003), and Woodford (2003)). A basis for this finding is that adher-
ence to an active monetary policy rule (a variant on the ‘Taylor principle’) results in
a determinate model and thus a unique rational expectations equilibrium.1 However,
in case of heterogeneous expectations, we find that even an active rule may result

1A determinate model is sometimes called “stable” because, due to its unique equilibrium, the
economy is not subject to excessive volatility that can arise when agents’ beliefs are driven by
self-fulfilling prophecies (e.g. sunspots).
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in complex behavior and thus possibly excess volatility. In fact, not only does the
interaction between monetary policy and expectations formation in part dictate the
ensuing dynamic behavior, we even find that these complicated dynamics may arise
when monetary policy is set to guarantee determinacy under rational expectations.
To most convincingly illustrate this point, we specify a policy rule that yields deter-
minacy under RE, and we assume that there is a fixed cost to deviating from rational
expectations – precisely the setting assumed for, and implied by, standard monetary
policy advice: even in this case the economy may exhibit bounded complex dynam-
ics. Our results suggest that, in the presence of heterogeneous agents, determinacy
under RE may not be a robust criterion for policy advice. The complex dynamics
produced by our model are not outcomes limited to unusual calibrations or a priori
poor policy choices: complex behavior appears to be an almost ubiquitous feature of
a time-varying heterogeneous expectations New Keynesian model.

That determinacy of a steady-state may not be sufficient to guard against in-
stability has been demonstrated elsewhere. Benhabib, Schmitt-Grohe, and Uribe
(2001) show that a determinate steady state may be surrounded by bounded complex
dynamics when nominal interest rates have a zero lower bound, even under the as-
sumption of rationality. Benhabib and Eusepi (2004) conclude that a New Keynesian
model extended to include capital may possess chaotic dynamics. Bullard and Mitra
(2002) show that determinacy is neither necessary or sufficient for a rational expecta-
tions equilibrium to be stable under adaptive learning. Gali, Lopez-Salido, and Valles
(2004) derive a model with a proportion of rule of thumb consumers and demonstrate
that the determinacy properties of the model are sensitive to the presence of these
agents. Levin and Williams (2003) stress the importance of policy being robust across
potential model specifications.

This paper is organized as follows. Section 2 presents an overview of the New
Keynesian model with heterogeneous expectations and introduces dynamic predictor
selection into the model. Section 3 presents the analysis and results while Section 4
concludes.

2 A New Keynesian Model with Heterogeneous

Expectations

In Branch and McGough (2008), we derive a New Keynesian model with heteroge-
neous expectations where aggregate output and inflation are governed by the following
equations

yt = Êtyt+1 − σ−1(it − Êtπt+1) (1)

πt = βÊtπt+1 + λyt. (2)
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Here yt is aggregate output gap, πt is the inflation rate, and Êt is a heterogeneous
expectations operator defined as a convex combination of boundedly rational (and
possibly rational) forecast models. Below we make explicit assumptions on Ê. Note
that under rational expectations, i.e. Ê = E, the unique steady state for the economy
is y = π = 0.

The form of (1)-(2) is a New Keynesian model in which conditional expectations
have been replaced by a heterogeneous expectations operator Êt. Branch and Mc-
Gough (2008) derive these reduced-form equations from linear approximations to the
optimal decision rules in a Yeoman-farmer economy extended to include two types
of agents, differing in their forecasting mechanism. The first equation (1) represents
the demand side of the economy. Under homogeneous expectations, it is derived as a
log-linear approximation to the representative agent’s Euler equation. With hetero-
geneous agents, the IS equation in (1) is found by aggregating the Euler equations
across heterogeneous agents. The parameter σ−1 is the usual real interest elasticity
of output. The second equation (2) is the aggregate supply relation. Similar to the
representative agent model, it is found by averaging the pricing decisions of firms in
the economy. In this formulation, λ is the usual measure of output elasticity of infla-
tion. The form of these IS-AS relations shares exactly the same form as the standard
New Keynesian model. The key distinction is that because of the heterogeneity in
beliefs, the equilibrium processes for aggregate output and inflation depend on the
distribution of agents’ expectations. In Branch and McGough (2008), we provide the
axiomatic foundations that facilitate aggregating heterogeneous expectations into the
tractable reduced form (1)-(2). This paper takes as given that these are the equa-
tions governing the economy and studies the dynamic implications of heterogeneous
expectations. We remark, however, that the form of heterogeneity assumed in this
paper is consistent with the theoretical foundations in Branch and McGough (2008).

We assume that monetary policy follows a nominal interest rate targeting rule of
the form

it = αyÊtyt+1 + απÊtπt+1. (3)

The form of (3) is what Evans and Honkapohja (2003, 2004), Evans and McGough
(2004, 2005), and Preston (2005) call an ‘expectations-based’ rule. It is a simple
implementable rule that takes advantage of a policymaker’s observations of private
sector expectations, and follows Bernanke (2004) in advocating for a policy that reacts
aggressively to private-sector expectations. For appropriate values of αy, απ this rule
can implement the optimal policy under the assumption of rational expectations (see
Evans and Honkapohja (2003)). Implementation of such a rule is straightforward,
even in an economy with heterogeneous agents, so long as the average forecast is
observed by policymakers. In practice, this is a reasonable assumption as there are
many market and survey based measures of the average, or consensus, inflation and
output forecasts. None of the qualitative results in this paper, however, are sensitive
to the form of the nominal interest rate targeting rule. To verify robustness we
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also considered a policy rule in which the government set the instrument against
the optimal forecasts of inflation and output, rather than the average of the agents’
forecasts.2 All qualitative results are robust to the alternate form of the instrument
rule.

Policy rules with forms similar to (3) are often described as Taylor-type instrument
rules. These rules are said to satisfy the Taylor principle if the response of nominal
interest rates to the inflation metric is greater than one, i.e. απ > 1. This ensures that
when the central bank adjusts the nominal interest rate it is also adjusting the real
interest rate in the same direction. Below we will find that the qualitative features of
the model’s dynamics hinge on whether the policy rule satisfies the Taylor principle.

2.1 Expectations and predictor dynamics

To close the model we must specify the operator Êt. For simplicity, we assume there
are precisely two types of predictors available to agents: the type 1 predictor, which
is called “rational,” and the type 2 predictor, which is called “adaptive.” Agents
using type 1 predictors are assumed to be very good forecasters, which we capture by
providing them perfect foresight when forming one-step-ahead forecasts (and this is
why we call them “rational”): if x = y or π then E1

t xt+1 = xt+1.
3 Agents using type

2 predictors are accessing a less sophisticated technology, and are assumed to look
backwards when forming forecasts (which is why we call them adaptive): if x = y or
π then E2

t xt+1 = θ2
xxt−1; this formulation is derived from a linear forecast rule of the

form xt = θxxt−1. Finally, we may set

Êtxt+1 = nxtxt+1 + (1 − nxt)θ
2
xxt−1, (4)

where nxt is the fraction of agents using rational predictors at time t. More details
about the construction of the expectations operator Êt may be found in Branch and
McGough (2008).

The form of heterogeneous expectations in (4) imposes that agents are hetero-
geneous in their forecasting of a particular aggregate outcome, rather than hetero-
geneous in their forecasts related to consumption versus pricing behavior. This as-
sumption is consistent with the learning literature which models boundedly rational
agents as econometric forecasters attempting to forecast aggregate output and infla-
tion. That agents might want a different forecasting model for inflation and output
is in line with the findings of Branch and Evans (2006) who compute simple recursive

2Here, by “optimal forecasts,” we mean forecasts that minimize mean square error. Because
we are in a non-stochastic environment (and we are not considering the possibility of associated
stochastic sunspot equilibria) optimal forecasts in our model correspond to agents having one-step
ahead perfect foresight. These issues are more carefully addressed in Section 2.1 below.

3This is the version of rationality studied by Brock and Hommes (1997); we employ it here to
approximate the notion that rational agents will minimize mean square forecast errors.
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forecasting models that are consistent with survey data on inflation and output expec-
tations. However, the assumption is still somewhat ad hoc and we checked that our
qualitative results were robust to imposing the heterogeneity in forecasting methods
across IS-AS relations.

While we call agents using type 1 predictors rational, they are actually bound-
edly rational in an important way. Our agents make time t decisions based only on
forecasts of time t + 1 aggregate data, and in particular are not ex-ante concerned
with meeting transversality conditions; however, as we will see below, when bounded
complex dynamics obtain, their transversality conditions will be satisfied ex-post. In
this way we are modeling our type 1 agents in a manner similar to Euler equation
learning – a common approach in the learning literature, particularly in the context
of New Keynesian monetary models: See Honkapohja, Mitra, and Evans (2003) for
further discussion. The Euler equation approach dictates that households’ decisions
satisfy their ex ante first-order optimality conditions and only satisfy the transversal-
ity conditions ex post. In a sense, then, our perfect foresight agents are really good
myopic forecasters. An interesting alternative that explicitly accounts for infinite
horizon planning is developed by Preston (2005), and it would be quite natural to
reconsider the questions addressed here using a model consistent with his method.

Agents with type 2 predictors use a fairly standard form of adaptive expectations.
Such expectations can be thought of as arising from a simple linear perceived law of
motion of the form xt = θxxt−1. In many models, real-time estimates of θx converge
to their REE minimal state variable (MSV) values. Here we take θ as fixed, though
an extension with real-time learning and dynamic predictor selection is a topic of
current research.4

When θ < 1 adaptive agents dampen past data in forming expectations; when
θ > 1 agents have extrapolative expectations. Adaptive expectations of this form
were assumed in Branch and McGough (2008) as well as in Brock and Hommes (1997,
1998), Branch (2002), Branch and McGough (2005), and Pesaran (1987). When
θ = 1 the adaptive predictor is usually called ‘naive’ expectations, and was the case
emphasized by Brock and Hommes (1997). The θ > 1 case was given particular
emphasis by Brock and Hommes (1998). It is straightforward to extend the adaptive
predictor to incorporate more lags. We anticipate that such an extension would
not alter the qualitative results of this paper but would alter the quantitative details.
Despite this simple form of adaptive expectations there is evidence in survey data that
agents are distributed across rational expectations and a simple univariate forecasting
model (see Branch (2004)). The contribution of this paper is to demonstrate in a
simple monetary model that time-varying, endogenously determined distributions of
heterogeneous expectations may significantly alter the equilibrium implications for a
given monetary policy.

4Branch and Evans (2006) and Guse (2006) have made some progress on this issue.
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Having specified the predictors available to agents, it remains to determine the
proportion of agents using a particular predictor. There is growing empirical evidence
that the distribution of agents’ heterogeneity is time-varying. For example, Mankiw,
Reis, and Wolfers (2003) study various surveys of inflation expectations and show
a wide, time-varying dispersion in beliefs. Branch (2004, 2005) documents time-
varying distributions of agents across discrete predictors. In each case, the nature of
the variation in the distributions appears structural: in Branch (2004, 2005) volatility
causes more agents to adopt rational expectations, and in Mankiw, Reis, and Wolfers
(2003) volatility causes dispersion to shrink. Given that the results from Branch
and McGough (2008) suggest that the dynamic properties of the economy are highly
sensitive to the fraction of rational agents, and given that there is empirical evidence of
time-varying fractions, we turn to an endogenous dynamic predictor selection version
of the heterogeneous expectations model.

With dynamic predictor selection njt, j = y, π are assumed to follow

njt =
exp [ωUj,t]

exp [ωUj,t] + exp [ωUj′,t]
j′ 6= j. (5)

Here Uj,t is a predictor fitness measure to be specified below. This is a multino-
mial logit law of motion and was employed by Brock and Hommes (1997), and then
extended to a stochastic setting by Branch and Evans (2006). The parameter ω is
called the ‘intensity of choice’; it governs how strongly agents react to past forecast
errors. Brock and de Fountnouvelle (2000) and Brazier, Harrison, King, and Yates
(2006) adopt a discrete choice setting in monetary models. Brazier, et al., assume
that ω < ∞ proxies for measurement error in calculating forecast errors. In this
setting, ω is inversely related to the variance of those errors.5

Brock and Hommes, who develop their notion of predictor selection in the context
of a univariate linear cobweb model, show that for large, but finite, values of ω there
may exist complex dynamics. The intuition for their finding is that the dynamic pre-
dictor selection coupled with the equilibrium price dynamics creates a tension between
repelling and attracting dynamics. As we will explore in detail below, our analysis of
the heterogeneous New Keynesian model with fixed predictor proportions indicates
that the steady state may be dynamically unstable for low values of n and dynami-
cally stable for large values of n; this creates precisely the sort of repelling/attracting
forces that makes bounded, complex dynamics possible.

5In our simulations below, we initialize the model in an REE. In the ‘neoclassical’ limit, i.e.
ω → ∞, the model will remain in an REE. Thus, this approach yields heterogeneity for ω < ∞, so
the existence of adaptive agents is a natural consequence of these measurement errors or random
utility terms. In a sense, heterogeneity arises because of some uncertainty about the best forecasting
model. In Branch and Evans (2006), heterogeneity arises, in a stochastic univariate model, even as
ω → ∞, and we would expect similar results if we extended that framework to a New Keynesian
model.
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Since we are modeling the predictor selection as independent of the optimization
problem, we assume that predictor success is measured in terms of mean-square error:

MSEjt = MSEjt−1 + µ
(

(xt − Êj
t−1xt)

2 − MSEjt−1

)

.

The predictor fitness metric is assumed to be

Ujt = −MSEjt − Cj. (6)

Below, in our numerical simulations we will assume that µ = 1, so that agents react to
last period’s squared error only.6 We make this assumption to minimize the number
of bifurcation parameters.7 Notice that we also assume a constant in the statistical
metric function Ujt. This constant can be interpreted as the cost of using a particular
predictor, or as Branch (2004) emphasizes, as a predisposition effect. Regardless of
the interpretation we are not going to a priori impose a hierarchy on the Cj, and
instead will treat them as bifurcation parameters. For simplicity, we set the cost of
adaptive expectations equal to zero, so that C will always represent the relative cost
of rationality. Because both adaptive and perfect foresight return the same forecast
in a steady state, the value of ωC pins down the steady state value of n, and thereby
determines the determinacy/local stability properties of the model. Many of the
interesting results below assume a predisposition toward rational expectations, that
is, C < 0.

We also assume C, ω are identical across forecasting variable. This may seem
inconsistent with the assumption that θy, θπ may differ. The approach here is flexible
enough that we could expand the parameter space and consider the effects of altering
the variable-specific C, ω as bifurcation parameters. We leave such an examination to
future research. We do not impose that predictor proportions are identical, and the
dynamics of predictor selection will be different for each nx along a real-time path.

The predictor fitness metric may seem somewhat ad-hoc given the micro founda-
tions of the model. We justify the form of (6) by appealing to the learning literature
which models expectation formation as a distinct statistical problem. Thus, agents
choose a forecasting model based on past success and then use that model to solve for
their optimal plan in the anticipated utility sense. This is not difficult to justify since
we constructed the agents’ problem so that they are forecasting aggregate variables
over which they exert no control.

6If instead we treat µ as a bifurcation parameter the qualitative results would still hold. That
is, stability properties of the steady-state would be unaffected. However, there may be different
secondary (and higher) bifurcations for different values of µ. As an example, see Brock, Dindo, and
Hommes (2006).

7Branch and Evans (2006) show that, in a cobweb model, similar results obtain provided µ is
somewhat close to one. A larger value of µ can be justified if agents are concerned about structural
change or uncertain about the right predictor to adopt.

9



2.2 The dynamic system

With dynamic predictor selection, the economy’s law of motion becomes,

yt = nyt−1yt+1 + (1 − nyt−1)θ
2
yyt−1 − σ−1

(

it −
(

nπt−1πt+1 + (1 − nπt−1)θ
2
ππt−1

))

πt = λyt + β
(

nπt−1πt+1 + (1 − nπt−1)θ
2
ππt−1

)

(7)

it = αy

(

nyt−1yt+1 + (1 − nyt−1)θ
2
yyt−1

)

+ απ

(

nπt−1πt+1 + (1 − nπt−1)θ
2
ππt−1

)

,

The laws of motion for nyt, nπt are specified below.

The timing assumptions require special discussion. We follow the adaptive learn-
ing literature in assuming that current values of the endogenous state variables are not
directly observable. This is usually assumed to avoid a simultaneity in least-squares
parameter estimates and the endogenous variables. In this setting, the assumption
preserves logical consistency for adaptive agents. Rational agents (who have one-step-
ahead perfect foresight) know current values of all variables, but the adaptive agents
do not. Under this natural assumption, predictor selection takes place at time t − 1.
The approach taken here assumes that agents have a menu of predictor choices, they
look at their most recent past forecasting performance as of the end of the period
t− 1, and choose the predictor with which they forecast one-step-ahead xt, πt. These
choices then aggregate into nt−1 upon which the current state variables depend.

As noted in the previous section, fully rational agents would be aware of the future
evolution of predictor proportions. Obtaining this information and incorporating it
into decision-making is a complicated problem and motivates the literature’s assump-
tion that agents treat the forecasting, or predictor selection, issue as a statistical
problem distinct from their optimization. In the current setting, given nt−1, agents
behave to satisfy their current Euler equation and current optimal pricing equation,
and ignore the time-varying nature of the predictor proportions8. A similar assump-
tion motivates the Euler-equation approach of Evans, Honkapohja and Mitra (2003),
Bullard and Mitra (2002), and to which Preston (2005) is an alternative. We stay
consistent with the Euler-equation approach with the difference here being that the
time evolution of beliefs is via a pair of fixed predictors while in the adaptive learn-
ing models the expectation operators are time varying. These assumptions justify
working with the conditionally linear IS and AS equations (1)-(2).

To study the model’s dynamics, impose the policy rule into the IS relation in (7)
and simplify to get

Hxt = F (nt−1)xt+1 + G(nt−1)xt−1, (8)

8Importantly, by behaving in a manner that satisfies the Euler equation, but not the ex ante

transversality condition, the perfect foresight agents’ beliefs do not make choices so that the economy
is necessarily on the stable saddle path associated to the model with fixed predictor proportions.
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where x = (y, π)′ and

F (nt) =

(

nyt(1 − σ−1αy) σ−1(1 − απ)nπt

0 βnπt

)

G(nt) =

(

(1 − nyt)(1 − σ−1αy)θ
2
y σ−1(nπt − 1)(απ − 1)θ2

π

0 β(1 − nπt)θ
2
π

)

(9)

H =

(

1 0
−λ 1

)

.

Now let z = (x′, x′

−1)
′ and n = (ny, nπ)′, and set

M(nt, ξ) =

(

F (nt)
−1H −F (nt)

−1G(nt)
I2 02

)

,

where ξ is the vector of model parameters. Finally, set

f(zt, nt, ξ) =





exp(−ωC)
{

exp(−ωC) + exp
[

−ω
((

e′1M(nt, ξ) − θ2
ye

′

3

)

zt

)2
]}

−1

exp(−ωC)
{

exp(−ωC) + exp
[

−ω ((e′2M(nt, ξ) − θ2
πe′4) zt)

2
]}

−1





where ei is the ith coordinate vector. Then the full dynamic system is

zt = M(nt−1, ξ)zt−1 (10)

nt = f(zt−1, nt−1, ξ). (11)

Given initial conditions z−1 and n−1, the system (10), (11) determines the evolution
of our economy.

3 Results

We now present results for the dynamical system (10)-(11). Because the state vector
has six dimensions, analytic results are largely intractable. In what follows, we provide
a thorough numerical analysis.

3.1 Local stability analysis

The system (10), (11) always has a steady state given by

z = 0 and n̄y = n̄π =
exp(−ωC)

exp(−ωC) + 1
. (12)
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We call this the “zero steady state,” and note that the values of inflation and output
correspond to the unique rational expectations equilibrium in case all agents are
rational and the associated RE-model is determinate.

There also may exist steady states in which inflation and output are non-zero.
When there exists a non-zero steady state, ȳ, π̄, then the steady-state values for
ny, nπ are

ny =
exp(−ωC)

exp(−ωC) + exp(−ω(1 + θy)2ȳ2)

nπ =
exp(−ωC)

exp(−ωC) + exp(−ω(1 + θπ)2π̄2)

Notice that in a non-zero steady state, adaptive agents make persistent forecasting
errors, but because of the cost C to perfect foresight, they may still prefer the adaptive
predictor.

The Jacobian of the dynamic system evaluated at the zero steady state is given
by

J =

(

M(n̄, ξ) 0
fz(0, n̄, ξ) 0

)

,

thus indicating that the zero steady state’s stability properties are determined by
the properties of M(n̄, ξ). Furthermore, the time t dynamics of zt are governed by
the eigenvalues of M(nt−1, ξ), and so to gain intuition about both local stability and
other dynamic properties of the model, we turn to the numerical analysis of the matrix
M(n).

To conduct our analysis, the model must be calibrated. Table 1 details the param-
eter constellations for the IS and AS relations: see Woodford (1999), Clarida, Gali
and Gertler (2000), Evans and McGough (2005) and McCallum and Nelson (1999).
As in Branch and McGough (2008), all broad qualitative results are robust to the
calibration employed.

Table 1: Calibrations

Author(s) σ−1 λ
W 1/.157 .024

CGG 4 .075
MN .164 .3
EM 1/.157 .3

Completing our numerical specification requires choosing values for θy and θπ

and our work in Branch and McGough (2008) indicates that the size of these values
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relative to one impacts the dependence of the model’s dynamic properties on predictor
proportions. To account for the possible impact the magnitude of θ∗ might have on
the dynamics of our model, we consider both θ∗ > 1 and θ∗ ≤ 1. For simplicity, we
assume θπ = θy.

To understand the local stability properties of the model, we first turn to an
examination of the stable manifold, for given values of n. Denote by Ws the stable
manifold of M(n), that is, the direct sum of the eigenspaces of the linear operator
M(n) whose corresponding eigenvalues have modulus less than one. Figure 1 plots the
dimension of the stable manifold for various values of the policy parameters αy, απ and
the predictor proportion n. Figure 1 sets θ > 1 and adopts the Woodford calibration.
Each panel provides the dimension of Ws, for given n, across a subset of the policy
space (απ, αy). Because the dimension of Ws gives the number of eigenvalues of M(n)
with modulus less than one, the zero steady state is stable if and only dim Ws = 4.
The NW panel sets n = 1, and therefore corresponds to the model under rational
expectations – this provides an interesting connection between the rational model’s
determinacy properties and the heterogeneous model’s stability properties, and we
will explore this connection in subsection 3.3 below. Notice also that for n = 1,
policy rules satisfying the Taylor principle generate instability.9 Now consider the
effect on the dimension of Ws as n decreases from unity: the sloped line anchored at
the point (απ, αy) = (1, 0) rotates clockwise thereby increasing the region of stability;
however, as n gets increasingly small, the region of stability entirely disappears.

FIGURE 1 HERE

The rotation behavior evident in Figure 1 suggests that the cost parameter C is
a natural bifurcation parameter. From (12), we see that ∂n̄/∂C < 0 and as C varies
between −∞ and ∞, n varies between one and zero. This relationship is intuitive since
in a steady-state rational and adaptive return the same forecast, we would expect the
steady-state fraction of rational to decrease in C. Given a policy rule that satisfies
the Taylor principle, provided there is enough weight in policy rule on the output
gap, we can choose C so that the zero steady state is stable. For example, in the NE
panel, there is a wedge of the upper left quadrant with απ > 1 and dim Ws = 4. By
further increasing C, we lower the zero steady state value of n, causing the anchored
line to rotate clockwise and the zero steady state destabilizes. When this happens a
bifurcation occurs.

FIGURE 2 HERE

Figure 2 plots the dim Ws under the same conditions except that θ ≤ 1. Here we
find that the sloped line anchored at (απ, αy) = (1, 0) rotates counterclockwise thereby

9This instability under rationality is expected: see subsection 3.3.
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decreasing the stability region. In this case, rules satisfying the Taylor principle will
not yield stability, as there is not a part of the policy space where απ > 1 and
dim Ws = 4. However, certain passive rules, i.e. απ < 1, lead to local stability of the
zero steady state for large n̄, as is evident in the top two panels. As C increases and
n̄ falls, the region of stability will disappear, so that, again, C is a natural bifurcation
parameter.

3.2 Simulations and bifurcations

The panels in Figures 1 and 2 suggest that, for appropriate policy parameters, small
values of C will imply that the zero steady-state is locally stable, while increases
in C will bifurcate the steady-state. It may be possible to characterize the primary
bifurcation by applying the center manifold reduction technique, though the daunting
nature of this task compels us to proceed numerically.10 For a given calibration, value
of θ, and setting ω = 1, we choose C so that the zero steady state is stable; then,
we consider larger values of C and for each new value of C the model is simulated
by choosing initial conditions at random near the zero steady state. The first 10,000
periods of transient dynamics are discarded, so that the remaining data will be near
the invariant attractor. We then plot these simulations in a bifurcation diagram and
in phase space.

3.2.1 Satisfying the Taylor principle

Figure 3 provides a bifurcation diagram for the Woodford calibration, θ = 1.1, and
we set απ = 1.1 and αx = .35, so that the Taylor principle is satisfied. As expected,
low costs imply that the zero steady state is stable, but when C is approximately
C = −.19. a bifurcation occurs. For larger costs, the model may exhibit compli-
cated dynamics, as the bifurcation diagram seems to exhibit periodic and aperiodic
dynamics.

FIGURE 3 HERE

Because we have not conducted the center manifold analysis, the specific nature
of the primary bifurcation can not be assessed. Figure 4 plots the stable attractors
near the primary bifurcation by plotting 10, 000 points from a simulation following
a 10, 000 length transient period. These plots suggest the emergence of complex
dynamics near C = −.19; however, whether these out of steady-state dynamics are
periodic is not readily apparent from Figure 4.

10For more information on bifurcation theory, see Kuznetsov (1998), Guckenheimer and Holmes
(1983), and Palis and Takens (1993).
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FIGURE 4 HERE

The primary bifurcation for the calibrated model occurs for values of C ≈ −.19.
Complicated dynamics do not depend on negative values of C. The main role played
by C is it controls the steady-state value n̄, and thus determines the stability proper-
ties of the model as seen in Figure 1. Figure 5 demonstrates that positive costs also
can lead to periodic and (possibly) aperiodic complex dynamics. Figure 5 provides
a series of attractor plots for the same calibration and same number of data points
as Figure 4, but with positive costs. In Figure 5, C = .45 and C = .4625 yield a
14-cycle. For larger values of C > 0, more complex behavior arises.

FIGURE 5 HERE

The intuition for the existence of complicated dynamics for larger values of C
is easily expressed by re-examining Figure 1. If the steady state is unstable and
the model is initialized near it, then the time-paths of output and inflation begin to
diverge. This divergence reduces the performance of the adaptive predictor so that
agents switch to the rational predictor, thus increasing the value of n. As n increases,
the sloped line anchored at (1, 0) rotates counter-clockwise so that the eigenvalues
of M(n) reduce in size until they are all smaller than one in modulus, contracting
the economy’s time-path of output and inflation sending the system back toward
the steady state. As the system nears the steady state, the adaptive predictor’s
performance improves and agents begin switching to it, thus reducing n, causing
clockwise rotation of the anchored line, and a corresponding increase in the size of the
eigenvalues of M(n), until the economy begins to diverge from the zero steady state,
and the process repeats indefinitely. Similarly complex behavior arises for different
costs, ω values, calibrations, and for the alternative policy rules and different values
of θ; however, θ > 1 seems to be required for a policy rule which follows the Taylor
principle to generate complex dynamics.

3.2.2 Ignoring the Taylor principle

We now turn to the case where the Taylor principle is not satisfied so that απ < 1.
When monetary policy is passive, the dynamics are quite different than under an
aggressive response to inflation. In this section, we show that there may be multi-
ple stable attractors. These attractors may take the form of multiple stable steady
states, or, a unique steady state and from which the ensuing bifurcations may produce
multiple stable attractors.

We begin by setting θ = .9, απ = .75 and αx = .5, and again adopt the Woodford
calibration. Figure 6 plots the bifurcations for values of C < 0, and clearly for C
sufficiently small there is a stable steady-state at zero. A close examination of Figure 2
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suggests that, for a small enough value of C, the zero steady state is stable. However,
Figure 6 also shows that there are two additional steady states which correspond to
non-zero values of output and inflation.11 In this diagram, the zero steady state is
denoted with a “⋄” sign and the two non-zero steady states are indicated using a “⋆”
and a “+” respectively.12 We see that as costs are set to higher values, the zero steady
state becomes unstable as expected, but the two remaining steady states retain their
stability. As costs further increase, each of these steady states destabilize through a
bifurcation process leading to multiple stable attractors.

FIGURE 6 HERE

Qualitatively different behavior may arise under alternative calibrations, as is
nicely illustrated in the bifurcation diagram under the Evans-McGough calibration,
which corresponds to a model with strong elasticities in the IS and AS relations.
Figure 7 sets θ = .5, απ = .3 and αx = .5. For small values of C the zero steady
state is stable, as expected. However, Figure 7 illustrates that as C increases the zero
steady state destabilizes and a stable two cycle emerges. Interestingly, for C near
−.05 the system again bifurcates, but this time two distinct stable 2-cycles emerge.
Here the “+” and “◦” indicate dynamics resulting from different initial conditions.

FIGURE 7 HERE

Figures 8 and 9 give a more complete picture of the bifurcations under the al-
ternative calibration and απ < 1. Figure 8 plots the bifurcation diagram for the
upper stable attractor. A similar picture (not shown) emerges for the lower attractor.
Figure 8 illustrates that as costs rise further a period doubling cascade emerges and
results in complex dynamics. Figure 9 plots the upper attractor for C = 1. Notice
that because there exists a lower attractor, the attractor in Figure 9 is not symmetric
around zero.

FIGURES 8 AND 9 HERE

Note that θ < 1 predicts behavior consistent with a statistical Phillips curve and
therefore a demand shock explanation of the business cycle. This contrasts with the
results that obtain for θ > 1, where a (weak) positive correlation is witnessed: see
Figures 4 and 5. In the current setting this finding is intuitive since larger values
of θ, and a stronger expected inflation response coefficient greater than one, places
greater feedback on inflation expectations. Hence, we would expect a “supply shock”
explanation of the business cycle.

11At these non-zero steady states, the z̄ is an eigenvector of M(n̄) corresponding to a unit eigen-
value.

12Convergence to the different steady states is obtained by simply choosing initial conditions in
the different basins of attraction.
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3.3 Determinacy, stability, and monetary policy

Consider again the model
Hxt = Fxt+1 + Gxt−1, (13)

where x = (y, π)′ and F, G, and H are given by (9) and depend on n. Recall also that

M(n, ξ) =

(

F−1H −F−1G
I2 02

)

.

If n is taken to be fixed and set n = 1, then (13) corresponds to the usual New
Keynesian model under rational expectations (in this case, G = 0). This model
is said to be determinate if there is a unique non-explosive perfect foresight path
and indeterminate otherwise (because G = 0 the RE-model can not be explosive).
Whether the model is determinate can be assessed using the usual Blanchard-Kahn
technique; and, in this case, determinacy depends on the eigenvalues of M : when
n = 1, M necessarily has two zero eigenvalues; if the remaining two are outside the
unit circle then the model is determinate.

To make the link between determinacy, stability and monetary policy, consider
again the Woodford calibration and θ = 1.1. Reproduced in Figure 10 is the NW
panel of Figure 1 corresponding to n = 1, now with the determinacy properties
imposed. We see that when the Taylor principle is satisfied and when there is low
weight placed on the output coefficient in the policy rule, the associated RE model
is determinate: there is a unique non-explosive perfect foresight solution. We also
see from Figure 1 that for low values of C, the zero steady state of our model is
unstable.13 Indeed, this dynamic instability exactly reflects the determinacy of the
RE model: they are both due to the large eigenvalues of M(1). In a model with
fully rational agents and n fixed at one, the agents must make their initial choices so
that the economy lies on Ws, the stable manifold of M(1): otherwise their ex-ante
(and ex-post) transversality condition would be violated. In case dim(Ws) = 2 there
is precisely one way for agents to make their choices and the equilibrium path is
unique.14 In our model, “rational” agents make choices based on one period ahead
forecasts and are not assumed to satisfy their ex-ante TVC: we can not assume the
economy is initialized on Ws; therefore, if n is initially near one, inflation and output
in our model will initially move away from the steady state. Of course, in our model,
n is not fixed, and as n evolves so do the eigenvalues, and thus the stable manifold,
of M(n). As we have seen, as n evolves, dim(Ws) may move between two and four,
alternately repelling and attracting inflation and output. This evolution may cause
the time path to remain bounded and converge to an invariant set, regardless of how
the initial conditions are locally chosen.

13The eigenvalues of M(n) are continuous in n which, itself, is decreasing in C.
14In case n = 1, M has two zero eigenvalues – the associated RE model is purely forward looking

– and so dim(Ws) ≥ 2.
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FIGURE 10 HERE

The determinacy region indicated in Figure 10 reflects the standard policy advice
imparted by the NK model: by choosing policy within this region, the model is
guaranteed to have a unique equilibrium. This uniqueness is thought to be of benefit
because it precludes the existence of non-fundamental “sunspot” equilibria, many
of which exhibit welfare reducing volatility. Furthermore, as shown by Bullard and
Mitra (2002), policy choices within this region yield equilibria that are stable under
learning, so that policy makers can be confident that agents can learn to coordinate
on the unique equilibrium.

Of interest to us is whether policy chosen in this advised region may also, in
the presence of heterogeneity in expectations, yield complex, and possibly welfare
reducing dynamics. In particular, we consider the following experiment: we choose a
policy in the determinacy region, that is, a policy that would be recommended under
the assumption of full rationality. We then investigate whether there exist values
of C for which the corresponding equilibrium time paths exhibit complex dynamics.
Consider again the Woodford calibration, with θ = 1.1, απ = 1.1 and αx = .32. This
policy specification yields determinacy when all agents are rational, and also yields
stability under learning. We find that, in our model, complex dynamics emerge. An
example attractor is given in Figure 11.

FIGURE 11 HERE

In the determinate RE-model there is a unique bounded path, which will arise if
rational agents’ initial beliefs place the economy on the stable manifold. However, as
indicated by Figure 11, the determinacy of the rational model does not prevent com-
plex bounded behavior if, in fact, time-varying heterogeneous expectations prevail.
Thus, a key finding of this research is that with a natural evolution of n, a model
that is determinate under rational expectations may yield complex dynamics.

3.4 Further discussion of policy implications

The monetary policy literature, though wide and diverse, typically settles on the
same recommendation: set policy so that the REE is determinate. At the end of
the day, this is the main message communicated to policy makers. At the heart
of this recommendation is the property that a determinate steady state reduces the
volatility of inflation and output. Our results indicate that a determinate REE may
lead to inefficient outcomes if there exists heterogeneous expectations: these inefficient
outcomes may either take the form of multiple equilibria – as found by Branch and
McGough (2008) – or bounded complex dynamics.15

15It has also been emphasized that policy rules should be chosen so that the associated unique
equilibrium is stable under learning: see for example, Bullard and Mitra (2002), Honkapohja and
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To illustrate this point in the starkest terms, we parameterized the model so that
it is determinate under rational expectations, and we granted agents the choice of
whether to be rational or adaptive. This is exactly the scenario discussed extensively
in the monetary policy literature and forms much of the basis for policy advice in
“ideal” conditions. Our results indicate that choosing a policy rule in this fashion
may result in bounded, possibly chaotic equilibria with inefficiently high inflation
and output volatility. Most strikingly, our arguments do not require coordination
of expectations on sunspot equilibria. We instead allow for an empirically realistic
degree of expectational heterogeneity. The dynamically evolving heterogeneity has
been documented in survey data by Mankiw, Reis, and Wolfers (2003) and Carroll
(2003). We illustrate that if policy attempts to achieve a determinate REE in a
New Keynesian model and these heterogeneous expectations dynamics are present,
the policy maker may unwittingly destabilize the economy. This suggests that policy
should be designed to account for potentially destabilizing heterogeneity in a way
that simple linear interest rate rules can not accomplish.

One may wonder how sensitive our results are to our specification of adaptive
expectations, the predictor choice dynamic, and the model parameterization. We
adopted an adaptive predictor with the same form as the MSV REE because it is the
least ad hoc specification of adaptive expectations. We could instead specify adaptive
beliefs in the Cagan sense as a geometric average of past observations. We believe that
our qualitative results are robust to this specification because the key for generating
our findings is that adaptive and rational predictors return distinct forecasts out of
steady state; this property alters the stability properties of the steady state.

Similarly, the results are not sensitive to the predictor choice mechanism. In
Branch and McGough (2005), we illustrated that a replicator dynamic will yield
similar dynamic behavior, in a cobweb model, as the MNL of Brock and Hommes
(1997). Finally, we have endeavored to verify the existence of complicated dynamics
across a broad spectrum of calibrations. The key is that for some for some n̄ we
have dim(Ws(n̄)) = 4. Branch and McGough (2008) document an extensive region of
the parameter space with this property. An open empirical question is whether the
values of ω and C are of reasonable magnitudes. Since ω parameterizes the MSE,
and C is measured in MSE units, there is no natural interpretation of these values in
terms of utility or consumption units. An interesting extension would be to embed
the predictor choice into the agent’s recursive optimization problem.

Mitra (2005) and Evans and McGough (2005). We note that the rule used to generate the plots in
Figure 11 does produce an equilibrium that is stable under learning.
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4 Conclusion

This paper examines the impact of endogenous expectations heterogeneity on a model’s
dynamic properties. Our central finding is that an otherwise linear model may exhibit
bounded complex dynamics if agents are allowed to select between competing costly
predictors (e.g. rational versus adaptive). These dynamics arise through the dual
attracting and repelling nature of the steady-state values of output and inflation –
the nature of which depends on the proportions of rational and adaptive agents. If
the steady state is attracting for higher proportions of rational agents and repelling
for lower proportions, then the natural tension between predictor cost and forecast
accuracy mirrors the implied tension of attracting and repelling dynamics. When the
economy is far from the steady state, the accuracy benefits of the rational predictor
outweighs its costs, and the proportion of rational agents rises, causing the steady
state to become attracting and thereby drawing the economy toward it. As the econ-
omy approaches the steady state, the relative effectiveness of the rational predictor
falls, so that agents begin switching to the cheaper adaptive predictor. This switching
causes the steady state to repel the economy and the process repeats itself.

The complex dynamics produced by our model are not outcomes limited to un-
usual calibrations or a priori poor policy choices: complex behavior appears to be an
almost ubiquitous feature of a time-varying heterogeneous expectations New Keyne-
sian model. Even policy designed to induce determinacy and stability under learning
when levied against a rational version of the model may be insufficient to guard against
the mentioned bad outcomes. We find that specifications of policy rules satisfying
the Taylor principle, and which yield determinacy under rationality, may result in
bounded complex dynamics, and this possibility obtains even if all agents are initially
rational.
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Figure 1: Stability of M(n), for various fixed values of n, and θ > 1.

0.5 1 1.5 2

0.5

1

1.5

2
n = 1

                            απ

α
y

0.5 1 1.5 2

0.5

1

1.5

2
n = 0.9

                            απ

α
y

0.5 1 1.5 2

0.5

1

1.5

2
n = 0.8

                            απ

α
y

0.5 1 1.5 2

0.5

1

1.5

2
n = 0.6

                            απ

α
y

dim W
s
 = 3 dim W

s
 = 4  

dim W
s
 = 2  dim W

s
 = 3 

dim W
s
 = 3 

dim W
s
 = 3 

dim W
s
 = 3 

dim W
s
 = 2  

dim W
s
 = 2  dim W

s
 = 2  

dim W
s
 = 4  

dim W
s
 = 4  

dim W
s
 = 3 

1



Figure 2: Stability of M(n), for various fixed values of n, and θ ≤ 1.
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Figure 3: Bifurcation diagram: satisfying the Taylor Principle.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C

π
t

3



Figure 4: Attractors illustrating the primary bifurcation: satisfying the Taylor Prin-
ciple.
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Figure 5: Attractors illustrating periodic and complex dynamics: satisfying the Taylor
Principle.
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Figure 6: Evolution of three steady-states: ignoring the Taylor Principle.
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Figure 7: Stable 2-cycle bifurcates into two co-existing 2-cycles: ignoring the Taylor
Principle.
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Figure 8: Bifurcation diagram for upper stable attractor: ignoring the Taylor Princi-
ple.
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Figure 9: Upper stable attractor: ignoring the Taylor Principle.
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Figure 10: Determinacy Region for the RE model.
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Figure 11: Stable attractor: determinate under rationality.
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