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A theoretical foundation and concrete stimulus-construction methods are provided for 
studying motion-from-spatial-texture without contamination by motion mechanisms sensitive 
to other aspects of the signal. Specifically, examples are constructed of a special class of ran- 
dom stimuli called texture quilts. Although, as we demonstrate experimentally, certain texture 
quilts display consistent apparent motion, it is proven that their motion content (a) is 
unavailable to standard motion analysis (such as might be accomplished by an Adelson/ 
Bergen motion-energy analyzer, a Watson/Ahumada motion sensor, or by any elaborated 
Reichardt detector), and (b) cannot be exposed to standard motion analysis by any purely 
temporal signal transformation no matter how nonlinear (e.g., temporal differentiation 
followed by rectification). Applying such a purely temporal transformation to any texture 
quilt produces a spatiotemporal function P whose motion is unavailable to standard motion 
analysis: The expected response of every Reichardt detector to P is 0 at every instant in time. 
The simplest mechanism sufficient to sense the motion exhibited by texture quilts consists of 
three successive stages: (i) a purely spatial linear filter, (ii) a rectifier (but not a perfect square 
law) to transform regions of large negative or positive responses into regions of high positive 
values, and (iii) standard motion analysis. ~CJ 1991 Academic Press, Inc. 

1. INTRODUCTION 

Standard Motion Analysis. The extensive literature on the motion of random- 
dot cinematograms (Anstis, 1970; Baker & Braddick, 1982a, 1982b; Bell & Lappin, 
1979; Braddick, 1973, 1974; Chang & Julesz, 1983a, 1983b, 1985; vanDoorn & 
Koenderink, 1984; Julesz, 1971; Lappin & Bell, 1972; Nakayama & Silverman, 
1984; Ramachandran & Anstis, 1983) points toward the view that a “short-range” 
system (Braddick, 1973, 1974) submits the raw spatiotemporal luminance function 
directly to standard motion analysis (such as might be accomplished by an Adelson/ 
Bergen motion-energy detector (Adelson & Bergen, 1985) a Watson/Ahumada 
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motion sensor (Watson & Ahumada, 1983a, 1983b, 1985), an elaborated Reichardt 
detector (van Santen & Sperling, 1984, 1985), or some variants of a gradient detec- 
tor (Marr & Ullman, 1981; Adelson & Bergen, 1986). 

Fourier and Non-Fourier Mechanisms. An impressive number of observations 
suggest that standard motion analysis is not the whole story (Bowne, McKee, & 
Glaser, 1989; Cavanagh, Arguin, & von Grunau, 1989; Derrington & Badcock, 
1985; Derrington & Henning, 1987; Green, 1986; Lelkins & Koenderink, 1984; 
Pantle & Turano, 1986; Petersik, Hicks, & Pantle, 1978; Ramachandran, Ginsburg, 
& Anstis, 1983; Ramachandran, Rao, & Vidyasagar, 1973; Sperling, 1976; Turano 
& Pantle, 1989). In particular, Chubb and Sperling (1987, 1988) have demonstrated 
a variety of stimuli that display consistent, unambiguous apparent motion, yet that 
do not systematically stimulate mechanisms that apply standard motion analysis 
directly to luminance. For reasons that become clear in Section 2, we call any 
motion system that applies standard analysis to the raw signal as a Fourier 
mechanism, and we refer to any system that applies standard analysis to a non- 
linear transformation of the signal as a non-Fourier mechanism. 

Microbalanced Stimuli. The methods used by Chubb & Sperling to construct 
stimuli whose obvious and consistent motion content cannot be revealed by 
applying standard motion analysis directly to luminance are founded on the notion 
of a microbalanced random stimulus. In Section 2.35, we show that the expected 
response of any standard motion analyzer applied directly to any microbalanced 
random stimulus is equal to the expected response of the corresponding analyzer 
tuned to motion of the same type, but in the opposite direction. 

Microbalanced random stimuli allow us to differentially stimulate non-Fourier 
motion mechanisms without systematically engaging Fourier mechanisms. This is 
the source of their importance in the study of motion perception. 

There are probably several types of non-Fourier motion mechanisms, dis- 
tinguished by the different transformations they apply to the signal prior to 
standard motion analysis. In this paper, we extend the theory of microbalanced 
random stimuli in order to develop methods for constructing stimuli that selectively 
engage specific classes of non-Fourier mechanisms without stimulating either 
Fourier mechanisms or other classes of non-Fourier mechanisms. 

Pointwise Transformations; Static Nonlinearities. A transformation T is called 
pointwise if the output of Tat any point (x, y, t) in space-time depends only on the 
(stimulus) input value at that point. A nonlinear pointwise transformation some- 
times is called a static nonlinearity. For instance, simple rectifiers and thresholders 
are pointwise transformations. In Section 3, we address the problem of isolating the 
class of non-Fourier mechanisms that apply a simple pointwise transformation 
prior to standard motion analysis from the class of all those mechanisms that apply 
more complicated transformations. The central result in this section is proposi- 
tion 3.2 which provides necessary and sufficient conditions for a random stimulus 
Z to be such that any pointwise transformation of Z is microbalanced. 
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Purely Temporal Transformations and Texture Quilts. The results with pointwise 
transformations are extended in Section 4 to purely temporal transformations 
(defined in Section 2.2). Whereas, for a pointwise transformation, the transformed 
value at the point (x, y, t) depends only on the stimulus value at (x, y, t), in a 
purely temporal transformation the transformed value at (x, y, t) may depend in 
any way whatsoever on the entire history of stimulus values at (x, y). We define the 
class of stimuli called texture quilts (Definition 4.1) whose importance derives from 
the fact (proven in proposition 4.3) that any purely temporal transformation of a 
texture quilt is microbalanced. Concrete methods are provided for constructing 
binary and sinusoidal texture quilts that display consistent motion. 

In Section 5, these construction methods are applied in an experiment designed 
to demonstrate the effectiveness of three textural properties as carriers of motion 
information. The textural properties are (i) spatial frequency variation, (ii) orienta- 
tion variation, and (iii) variation between perceptually distinct textures with 
identical expected energy spectra. 

2. PRELIMINARIES 

This section states the background facts presupposed by the main discussion of 
the paper. 

2.1. Discrete Dynamic Visual Stimuli 

Notation. Let R denote the real numbers, and Z (Z’) the integers (positive 
integers). We use square brackets to enclose arguments of discrete functions, and 
parentheses to enclose arguments of continuous functions. 

The Range of a Stimulus. We want the term “stimulus” to refer not only to the 
luminance function submitted as input to the retina, but to any physiologically 
reasonable transformation of the spatiotemporal luminance function which might 
be submitted as input to a component processor of the visual system. Consequently, 
although luminance is physically a nonnegative quantity, we do not apply this 
constraint to the class of functions we admit as stimuli. We allow stimuli to take 
values throughout the positive and negative real numbers. 

The Domain of a Stimulus. To remain close to our intuitions about neurally 
realized visual processors, we take stimuli to be a functions of the discrete domain 
Z3 (where the dimensions correspond to horizontal and vertical space, and time). 
In addition, for mathematical convenience, and without loss of physiological 
plausibility, we require a stimulus to be 0 almost everywhere in its (infinite) 
domain. 

The Definition of a Stimulus. We call any function I: Z3 -+ [w a stimulus provided 
Z[x, y, t] = 0 for all but finitely many points of Z3. 

We shall be considering stimuli as functions of two spatial dimensions x, y and 
time t. 
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Stimulus Contrast. As is now well established (e.g., Shapley & Enroth-Cugell, 
1984), early retinal gain-control mechanisms pass not stimulus luminance, but 
rather a signal approximating stimulus contrast, the normalized deviation at each 
time t of luminance at each point (x, y) in the visual field from a “background 
level,” or “level of adaptation,” which reflects the average luminance over points 
proximal to (x, y, t) in space and time. Because the transformation from luminance 
to contrast is a processing stage that is general to all of vision, we shall drop 
reference to mean luminance L,, and characterize L only by its contrast modulation 
function, C: 

c+- 1. 
0 

What we argue in this paper is that the broad-band spatial filtering that mediates 
the step from luminance to contrast is succeeded by additional filtering stages in 
which a number of narrowly tuned spatial filters are applied to the visual signal, 
their output rectified, and the resulting spatiotemporal signal processed for motion 
information. 

The History of a Stimulus at a Point in Space. For any stimulus Z, any point 
(x, Y) E Z*, we define Ztx,.,+ the history of Z at (x, y), by setting 

~(x,,m = ZCX? YY 11 (2) 

for all t E Z. 

Space-Time Separable Stimuli. A stimulus Z is called space-time separable iff Z 
can be expressed as the product of a spatial function f: Z* + IL! and a temporal 
function g: Z + R: For all (x, y, t) E Z’, Z[x, y, t] =J[x, y] g[t]. 

The Fourier Transform of a Stimulus. Because any stimulus Z is nonzero at only 
a finite number of points, the energy in Z is finite, implying that Z has a well-defined 
Fourier transform. 

We denote Z’s Fourier transform by I-: writing j for the complex number (0, l), 

,ijw,8,7)= f 
f f zcx, y, t] ,-j(fm+@+rf). 

.x=-cc )‘=-m t= --cc 

Although f is detined for all real numbers w, 8, 7, it is periodic over 2x in each 
argument. This fact is reflected in the inverse transform: 

In the Fourier domain, we consistently use w  to index frequencies relative to x, 8 
frequencies relative to y, and z frequencies relative to t. 
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The Function 0. We write 0 for any function that assigns 0 to each element in 
its domain. Thus, 0 defined on Z3 is the stimulus that is zero throughout space and 
time. We also write 0 for the temporal function that sets O[t] = 0 for all t E Z. 

2.2. Mappings and Stimulus Transformations 

Let Q be the set of all real-valued functions of Z3, and call any function of Q into 
$2 a mapping. (We shall need the general notion of a mapping only briefly in order 
to specify the subset of well-behaved mappings called transformations.) For any 
mapping M and any IE 52, M(Z) is a real-valued function of Z3; accordingly, we 
write M(I)[x, y, t] for the value of M(I) at any point (x, y, t)EZ3. 

If it is continuous, a function f: R --, R submits to a wide range of useful opera- 
tions. For instance, if f is continuous, it can be integrated over any finite interval. 
Of course, f need not be continuous to meet this condition. For instance, f is 
integrable over any finite interval if f is discontinuous at only a finite number of 
points in any finite interval. If fis integrable over any finite interval, and iff also 
is bounded, then for any function g for which JR g converges, jiwfg also converges. 
In particular, JR fg converges if g is a density function. For the results reported 
here, we restrict our attention to a special class of mappings, which we shall call 
stimulus transformations, that have properties analogous to those of the well- 
behaved function f: We specify these desirable properties in the following 
paragraph. 

Continuous Mappings; Finitely Integrable Mappings; Bounded Mappings. For 
any ZESZ, anypER, any *eZ3, we write I,,, for the element of Q that is identical 
to Z at all locations of Z3 except II/, where it takes the value p. Any mapping M is 
called continuous if M(Z,+, )[[I is a continuous function of p for any ZE Q, and 
any $, [ E Z3. A4 is called finitely integrable if, for any such I, $, and [, M(Z,+ ,)[[I 
is an integrable function of p over any finite interval. Finally, M is called bounded 
if, for any such Z, $, and [, M(1, c p )[5] is a bounded function of p over the set 
of real numbers. 

DEFINITION OF A STIMULUS TRANSFORMATION. A stimulus transformation (which 
we shall often refer to simply as a transformation) is a bounded, finitely integrable, 
mapping T such that T(S) is a stimulus for any stimulus S, and T(0) = 0. 

There are other reasonable constraints we might impose on the notion of a 
stimulus transformation. For instance, we might require a stimulus transformation 
to be time-invariant and causal. However, we do not include these conditions in our 
definition because they are not required for the results we report. 

Purely Temporal Stimulus Transformations. Let Q, be the set of all functions 
mapping Z into R. A transformation H is called purely temporal iff there exists a 
function H,: $2 T + D T such that for any stimulus Z, any (x, 4: t) E Z3, 

H(Z)C.T Y, tl = H,(~,,,.,dtl. (5) 
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That is, the value at the point (x, y, t) E Z3 that results from applying H to Z 
depends only on the history of Z at (x, y). Since it is obvious from the context, we 
drop the distinction between H and H,, and allow H to be applied both to full- 
fledged stimuli and to simple functions of time. Thus, for any temporal function 
P: Z -+ R, we shall write H(P) to indicate the temporal function H,(P). 

We shall be particularly concerned with two types of transformations: pointwise 
transformations and linear, shift-invariant transformations. 

Pointwise Transformations and Rectifiers. For any functions f: A + B and 
g: B + C, the composition g*f: A -+ C is given by 

g*f(a)=g(f(a)) (6) 

for any a E A. For any f: R + R, we call the mapping f*, yielding the spatiotemporal 
function f l I when applied to stimulus Z, a pointwise mapping (because its output 
value at any point in space-time depends only on its input value at that point). 

As is evident, f* is a transformation iff (i) f(0) = 0, (ii) f is bounded on R, and 
(iii) f is integrable over any bounded real interval. A transformation f* is called a 
positive halJlwaoe rectifier if f is monotonically increasing, and f [u] = 0 for all v < 0; 
fi is called a negative half-wave rectifier if f is monotonically decreasing, and 
f [v] = 0 for v 2 0. Finally, f* is called a full-wave rectifier if f is a monotonically 
increasing function of absolute value. 

Linear, Sh$-Invariant (LSZ) Transformations. For any offset $ E Z3, define the 
mapping S@ by 

for any ZE Q. Thus S$(Z) is derived by shifting Z by the offset I/I in Z3. Any mapping 
M is called shift-invariant iff 

S~(M(Z)) = M(S@(Z)) (8) 

for any J/E Z3, any ZE Q. In addition, M is linear iff for any Z, JE Q, any real 
numbers rc and ,I 

M(Kz+ AJ) = KM(Z) + M(J). (9) 

As is well known, any linear, shift-invariant (LSI) transformation can be expressed 
as a convolution, which is defined for any UE Z3 by 

(k * Z)[u] = c k[u - v] Z[v], (10) 
“EZ3 

for some k: Z3 + R. The function k is called the impulse response of the transforma- 
tion k*. 
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2.3. Random Stimuli 

For any real random variable X with densityf, we write E[X] for the expectation 
Qf x: 

E[X] = lR xf(x) dx. (11) 

The notion of a random stimulus generalizes that of a (nonrandom) stimulus in 
that the values assigned points in space-time by a random stimulus are random 
variables (with finite variances) rather than constants. 

DEFINITION OF A RANDOM STIMULUS. Call any family { R[x, y, t]ll(x, y, t)E Z3} 
of jointly distributed random variables a random stimulus provided 

(i) R[x, y, t] is constant and equal to 0 for all but finitely many 
(x, J’, t) E Z3, and 

(ii) ECRC-x, Y, tl*l exists for all (x, y, t) E Z3. 

As with nonrandom stimuli, we write i? for the Fourier transform of any random 
stimulus R; and, for any x = (x, y) E Z’ we write R, for the temporal random 
function defined by 

for all times t E Z. 

R,Ctl = Nx> tl (12) 

Space- Time Separable Random Stimuli. We call a random stimulus R space-time 
separable iff R is space-time separable with probability 1. 

Constant Stimuli. Any ordinary stimulus can be regarded as a random stimulus 
that does not vary across independent realizations. We call such unvarying stimuli 
constant. 

The Motion-from-Fourier-Components Principle. Parseval’s relation states that 
the energy in a stimulus is proportional to the energy in its Fourier transform. 
Individual spatiotemporal Fourier components are drifting sinusoidal gratings. 
Thus, we can add up the energy in a dynamic visual stimulus either point-by-point 
in space-time, or drifting sinusoid by drifting sinusoid. A commonly encountered 
rule of thumb (van Santen & Sperling, 1985; Watson & Ahumada, 1983b; Watson, 
Ahumada, & Farrell, 1986) for predicting the apparent motion of an arbitrary 
stimulus Z[x, y, t] = f [x, t] (constant in the vertical dimension of space), is the 
motion-from-Fourier-components principle: For Z regarded as a linear combination 
of drifting sinusoidal gratings, if most of Z’s energy is contributed by rightward- 
drifting gratings, then perceived motion should be to the right. If most of the energy 
resides in the leftward-drifting gratings, perceived motion should be to the left. 
Otherwise Z should manifest no decisive motion in either direction. 
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Drift-Balanced Random Stimuli. The class of drift-balanced random stimuli 
(Chubb & Sperling, 1987, 1988) provides a rich pool of counterexamples to the 
motion-from-Fourier-components principle. A random stimulus R is drift balanced 
iff the expected energy in R of each drifting sinusoidal component is equal to the 
expected energy of the component of the same spatial frequency, drifting at the 
same rate, but in the opposite direction. The term drift balanced is defined formally 
as follows. 

DEFINITION OF A DRIFT-BALANCED RANDOM STIMULUS. Call any random 
stimulus R drift balanced iff 

Jmh 0, 4121 =alRw, 0, -d21 (13) 

for all (0, 8, 5) E lR3.’ 
Thus, for any class of spatiotemporal linear receptors tuned to stimulus energy 

in a certain spatiotemporal frequency band, a drift-balanced random stimulus will, 
on the average, stimulate equally well those receptors tuned to the corresponding 
band of opposite temporal orientation. 

Microbalanced Random Stimuli. Consider the following two-flash stimulus S: In 
flash 1, a bright spot (call it Spot 1) appears. In flash 2, Spot 1 disappears, and two 
new spots appear, one to the left and one symmetrically to the right of Spot 1. As 
one might suppose, S is drift balanced. On the other hand, it is equally clear that 
a Fourier motion detector whose spatial reach encompasses the location of Spot 1 
and only one of the Spots in flash 2 may well be stimulated in a fixed direction by 
S. Thus, although S is drift balanced, some Fourier motion detectors may be 
stimulated strongly and systematically by S. These detectors can be differentially 
selected by spatial windowing, and thereby the drift-balanced stimulus S is con- 
verted into a non-drift-balanced stimulus by multiplying it by an appropriate space- 
time separable function. The following subclass of drift-balanced random stimuli 
cannot be made non-drift-balanced by space-time separable windowing. 

DEFINITION OF A MICROBALANCED RANDOM STIMULUS. Call any random 
stimulus I microbalanced iff the product WI is drift balanced for any space-time 
separable function W. 

One can think of the multiplying function W as a “window” through which a 
spatiotemporal subregion of Z can be “viewed” in isolation. The space-time 
separability of W ensures that W is “transparent” with respect to the motion-con- 
tent of the region to which it is applied: W does not distort Z’s motion with any 
motion content of its own. The fact that Z is microbalanced means that any sub- 
region of Z encountered through a “motion-transparent window” is drift balanced. 

’ For a proof that the expected energy of the Fourier transform of any random stimulus is everywhere 
well defined see Chubb & Sperling (1988, Appendix A). 



TEXTURE QUILTS 419 

The following characterization of the class of microbalanced random stimuli, and 
all other results stated without proof in this section, are from Chubb and Sperling 
(1988). 

2.3.1. A random stimulus I is microbalanced if and only if 

E[I[x, y, t] I[.~‘, y’, t’] -Z[x, y, t’] I[x’, y’, t]] =o 

for all x, y, t, xl, y’, t’ E Z. 

(14) 

Some other relevant facts about microbalanced random stimuli: 

2.3.2. For any independent microbalanced random stimuli I and J, 

I. the product IJ is microbalanced, 

and 

II. the convolution I * J is microbalanced. 

2.3.3. (a) Any space-time separable random stimulus is microbalanced; (b) any 
constant microbalanced stimulus is space-time separable. 

The following result is useful in constructing a wide range of microbalanced 
random stimuli which display striking apparent motion. 

2.3.4. Let r be a family of pairwise independent, microbalanced random stimuli, 
al2 but at most one of which have expectation 0. Then any linear combination of r 
is microbalanced. 

Reichardt Detectors and Microbalanced Random Stimuli. Two Fourier motion 
detectors proposed for psychophysical data (Adelson & Bergen, 1985; Watson & 
Ahumada, 1983a, 1983b) can be recast as Reichardt detectors (Adelson & Bergen, 
1985; van Santen & Sperling, 1985). The Reichardt detector has many useful 
properties as a motion detector without regard to its specific instantiation (van 
Santen & Sperling, 1984, 1985). 

Figure 1 shows a diagram of the Reichardt detector. It consists of spatial recep- 
tors characterized by spatial functions fi and fi, temporal filters g, * and g2*, multi- 
pliers, a differencer, and another temporal filter h *. The spatial receptors fj, i = 1, 2, 
act on the input stimulus Z to produce intermediate outputs, 

YiCfl = c ficx, Yl Rx, Y, fl. (15) 
,.K,y)tz2 

At the next stage, each temporal filter g,* transforms its input y, (i, j= 1, 2), 
yielding four temporal output functions: gj * yi. The left and right multipliers then 
compute the products 

CY, * s,CtllCYz * s2Ctll and CYl * g*CtllC.?5 * s,Ctll, (16) 
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FIG. 1. The Reichardt detector. Let I be a random stimulus. Then, in response to I, for 
i= 1, 2, the box containing the spatial function f,: Zz + [w, outputs the temporal function, 
)I: ,r,y,EZ~fi[~, JJ] 1[x, y, ~1; each of the boxes marked g,* outputs the convolution of its input with the 
temporal function g,: Z + R; each of the boxes marked with a multiplication sign outputs the product 
of its inputs; the box marked with a minus sign outputs its left input minus its right; and the box con- 
taining h* outputs the convolution of its input with the temporal function h: Z + 02. To see how the 
Reichardt detector senses motion, supposef, is identical toy,, but shifted in space by some offset, and 
suppose the lilters g,* do not alter their input, while the filters g,* simply delay their input by some 
amount 6, of time. Then a rigidly translating pattern moving in the direction of box f2’s offset from box 
f, will elicit some time-varying response from box f, , and the same response a short time later from box 
fi. I f  that “short time later” is precisely ?I,, the output of the righthand multiplier will be positive as long 
as the pattern keeps drifting. This will result in a net negative Reichardt detector output. I f  the pattern 
drift is in the opposite direction, the detector response will be positive. 

respectively, and the differencer subtracts the output from the right multiplier from 
that of the left multiplier: 

(17) 

The final output is produced by applying the filter h*, whose purpose is to smooth 
the time-varying, differencer output D. Since many Fourier mechanisms can be 
expressed as, or closely approximated by, Reichardt detectors (Adelson & Bergen, 
1985, 1986; van Santen & Sperling, 1985), the following characterization of the class 
of microbalanced stimuli can be regarded as the cornerstone of the claim that 
microbalanced random stimuli bypass Fourier motion mechanisms. 
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2.35 For any random stimulus I, the following conditions are equivalent: 

(I) Z is microbalanced. 

(II) The expected response of every Reichardt detector to I is 0 at every instant 
in time. 

Proof Chubb & Sperling (1988) proved that I implies II. To obtain the reverse 
implication, note that if II holds, then, in particular, for any points (x, y), 
(x’, y’) E Z2 and any 6, E Z, the expected response to 1 is the temporal function 0 
for a particular simple Reichardt detector that computes 

I[.~, y, t] I[x’, y’, t-S,] - I[x, y, t-S,] I[x’, y’, t]. (18) 

This Reichardt detector is constructed by making (i) f, (of Fig. 1) the function that 
takes the value 1 at (x, y) and 0 everywhere else, (ii)f2 the function that takes the 
value 1 at (x’, y’) and 0 everywhere else, (iii) each of g, * and h* the identity trans- 
formation, and (iv) g,* the filter that delays its input by 6, units of time. However, 
if the expected response to I is 0 throughout time for any such Reichardt detector, 
then Eq. (14) holds, and proposition 2.3.1 implies that I is microbalanced. 1 

3. RANDOM STIMULI MICROBALANCED UNDER ALL POINTWISE TRANSFORMATIONS 

The main purpose of this paper is to provide tools for differentially stimulating 
specific types of non-Fourier motion mechanisms without engaging either Fourier 
mechanisms or other types of non-Fourier mechanisms. A non-Fourier motion 
mechanism is one that applies an initial nonlinear transformation to the visual 
signal and subjects the output to standard motion analysis. In this section, we 
provide some results relevant to the psychophysical problem of stimulating non- 
Fourier mechanisms whose initial transformation is nonpointwise without engaging 
any mechanism whose initial transformation is pointwise. The main finding is stated 
in proposition 3.2, which provides necessary and sufficient conditions for a random 
stimulus Z to be such that f* I is microbalanced for any pointwise transformation 
f*. In Section 4 we apply this result to construct random stimuli (texture quilts) 
which are microbalanced, and are, moreover, guaranteed to remain microbalanced 
after any purely temporal transformation. Such stimuli are useful for selectively 
stimulating non-Fourier motion mechanisms that extract motion information from 
stimuli that have undergone nonlinear spatial stimulus transformations. 

We begin by considering an example of a stimulus (Chubb & Sperling, 1987, 
1988) that is microbalanced under all pointwise transformations, but whose motion 
can be revealed by a purely temporal nonlinear transformation. 

3.1. Stimulus J: Traveling Reversal of a Random Black-or- White Vertical Bar 
Pattern. Let ME Z +. We construct the random stimulus J of M + 1 frames 
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indexed 0, 1, . . . . A4, each of which contains M vertical bars, indexed 1,2, . . . . M from 
left to right. In frame 0 of stimulus J, all M vertical bars first appear. The contrast 
of each bar is 1 or - 1 with equal probability, and bar contrasts are jointly inde- 
pendent. In each successive frame m, m = 1,2, . . . . M, the m th rectangle flips its con- 
trast to 1 if its previous contrast was - 1; otherwise it flips from 1 to - 1. In 
frame 1, rectangle 1 flips contrast; in frame 2, rectangle 2 flips, and in successive 
frames, successive rectangles flip contrast from left to right, until the Mth rectangle 
flips in frame M, after which all the rectangles turn off. An xt cross-section of 
frames 0 to M of J is shown in Fig. 2a. 

The traveling contrast-reversal, stimulus J, is easily expressed as a sum of 
pairwise independent, space-time separable random stimuli, all with expectation 0; 
thus propositions 2.3.3a and 2.3.4 imply that J is microbalanced. Moreover, it is 
easy to see that, because J’s frames are comprised of only two values, any pointwise 
transformation of J merely serves to rescale each of J’s frames, and to shift it by 
a constant: that is, for any f: R -+ R, f* J = ,U + K, where 2 E R, and K is a stimulus 

a b 

space space 

space 

FIG. 2. Exposing the motion of the traveling contrast-reversal of the random black-or-white vertical 
bar pattern .I to standard motion-analysis. (a) An xt cross-section of J. (b) An XI cross-section of the 
partial derivative of J with respect to time. (c)An xt cross-section of laJ/atl. Each of J and U/at is 
microbalanced. However, hV/atl is not. In particular, l&I/arl has most of its energy at those frequencies 
whose velocity is equal to the velocity of the traveling contrast-reversal. 
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that assigns a constant value across all points at which J is nonzero. Clearly, f-J 
is another microbalanced random function (this follows easily from proposi- 
tion 2.3.4). Thus, pointwise transformations fail to expose J’s motion. 

Exposing J’s Motion to Standard Analysis. Perhaps the simplest way to extract 
J’s motion is to full-wave rectify the partial derivative of J taken with respect to 
time. The stages of this transformation are illustrated in Figs. 2b and 2c. Figure 2b 
shows aJ/&. This function is itself microbalanced (propositions 2.3.211 and 2.3.3a 
imply that any purely temporal LSI transformation of a microbalanced random 
stimulus is microbalanced). However, laJ/& (Fig. 2c) has most of its energy at 
those spatiotemporal frequencies whose velocity is equal to the velocity of the 
traveling contrast-reversal whose motion we wish to detect. Thus we see that, 
although J’s motion cannot be exposed to standard analysis by a simple pointwise 
transformation, a temporal linear filter followed by a pointwise nonlinearity does 
suffice. 

We turn now to the problem of stipulating the general conditions that a random 
stimulus Z must satisfy so that f* I will be microbalanced for any pointwise transfor- 
mation f*. Call any random stimulus Z microbalanced under a given transformation 
T iff T(Z) is microbalanced. 

We state the following basic proposition (3.2) and its subsequent corollary (3.3) 
for continuously distributed random stimuli. The corresponding result for discretely 
distributed random stimuli is simpler and should be evident. 

3.2. NECESSARY AND SUFFICIENT CONDITIONS FOR A RANDOM STIMULUS TO BE 
MICROBALANCED UNDER ALL POINTWISE TRANSFORMATIONS. Let I be a random 
stimulus such that for any (x, y, t), (x’, y’, t’)EZ’, (Z[x, y, t], Z[x’, y’, t’]) has a 
continuous joint density. Then the follokng conditions are equivalent: 

(1) Z is microbalanced under all pointGse transformations. 

(2) For all x, y, t, x’, y’, t’E Z, the joint density f of (Z[x, y, t], Z[x’, y’, t’]) 
and the joint density g of (Z[x, y. t’], Z[x’, y’, t]) satisfy 

f(P, 4) +f(4, P) = g(p, 9) + g(q, P) (19) 

foranyp,qERsuch thatp#Oandq#O. 

Proof: Set K = Z[x, y, t], 1, = Z[x’, y’, t’], y = Z[x, y, t’], and v = Z[x’, y’, t]. 
Thus, (K, A) is distributed in lR2 with density ,f and (y, v) is distributed with 
density g. 

((2) implies (1)): By definition of any pointwise transformation he, we have 
h(0) = 0. Thus we need integrate only over values of K and 1 which are both non- 
zero in computing the expectation E[h(ti) h(A)]. In particular, if Eq. (19) is satisfied 
for all p #O and q #O, then h*Z is microbalanced since 
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E[~(K) N~)l=; j. j 4~) h(q)fh 4) d’dq R CA9 

+ jj h(q) h(p) f(q, P) dq dp 
R R 1 

1 =- 
2 A(P) h(q)f(p, q)dp dq 

+ j j h(p) h(q)f(q, p)dpdq 
R R 1 

1 
=- 

2 sj h(p) h(q)(f(p, q) +./Is, P)) dp dq 
R R 

1 
=-I s 2 R R 

h(p) h(q)(g(p, q) + g(q, P)) dp dq = ECh(y) h(v)l. (20) 

(Note: the boundedness and finite integrability of ho ensure that these expectations 
exist.) 

(Not (2) implies not (1)): On the other hand, suppose Eq. (19) fails for some 
X, y, t, x’, y’, t’ E Z. One way in which this might happen is if f(r, r) > g(r, r) for 
some nonzero r E R. In this case, there exists a neighborhood N of r, not including 
0, such that f(m, n) > g(m, n) for all m, n E N. Thus, for the function h: R + [w 
defined by 

if neN, 

otherwise, 
(21) 

h* is a pointwise transformation (the function h is bounded on R, finitely 
integrable, and h(O) = 0). However, h l Z is not microbalanced since 

ECNK) NJ,)1 = IN jN.W, n) dm dn > jN jN s(m, n) dm dn 

= ah(Y) Mv)l. (22) 

To recapitulate, if Condition 2 fails because there exists a nonzero r E Iw for which 
f(r, r) # g(r, r), then Condition 1 fails (I is not microbalanced under all pointwise 
transformations). 

The only other way in which Condition 2 can fail is iff(r, r) = g(r, r) for all r # 0 
in R, but for some p, q E R, with neither p nor q equal to 0, f(p, q) +f(q, p) > 
g(p, q) + g(q, p). In this case, we obtain disjoint neighborhoods M of p and N of 
q, neither including 0, such that 

.f(m, n) +fh m) > sh n) + 0, m) (23) 
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for all mEM, nEN, consequently, 

jM jNf(m, n) +fh m) dm dn > j, jN Am, n) + g(n, m) dm dn. (24) 

Moreover, since-by assumption--f(p, p) = g(p, p) and f(q, q) = g(q, q), we can 
tailor the neighborhoods M and N to make the difference 

m, m’) dm dm’ + 
ss 
N N f(n, n’) dn dn’ 1 

- D j g(m, m’) dm dm’ + 
IS 

g(n, n’) dn dn’ 
MM N N 1 

as small as we want. Consider, then, the function h: R -+ R defined by 

(25) 

if MGMUN, 
otherwise. (26) 

Again, h* is a pointwise transformation. However, h l I fails again to be micro- 
balanced because, for suitably tailored M and N, 

E[h(ic)h(l)]=j j 
MM 

f(u,u)dudt~+j j f(u,u)dudu 
NN 

+j j f(u,u)+f(o,U)dudu 
MN 

> j j g(u,u)dudu+ j 
MM 

j g(u,u)dudu 
N N 

+ jM jN ‘!T(u, 0) + g( u, u) du du = E[h(y) h(v)]. i (27) 

3.3. COROLLARY. Let Z be a random stimulus such that for all (x, y, t), 
(x’, y’, t’) E Z3, the pair (Z[x, y, t], Z[x’, v’, t’]) has a continuous joint density. Then 
Z is microbalanced under all pointwise transformations if the following condition holds 
for all x, y, t, x’, y’, t’E Z: For f the joint density of (Z[x, y, t], Z[x’, y’, t’]), and g 
the joint density of (Z[x, y, t’], Z[x’, y’, t]), either 

f(p,q)=dp,q) forallp,qERpZO,qZO, (28) 

or 

f(p,q)=g(q,p) forallp,qERp#O,q#O. (29) 

Proof: If Eq. (28) holds for some (x, y, t), (x’, y’, t’) E Z3, then we also have 

f (9, P) = g(q9 P) for all p, qeRp#O,q#O, (30) 

and we obtain Eq. (19) by adding Eq. (28) and Eq. (30). The same reasoning 
applies for Eq. (29). [ 
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A random stimulus microbalanced under all pointwise transformations, but quite 
different from J of example 3.1 is the following, suggested by J. Lappin (1989). 

3.4. Stimulus K: Rotating Random-Dot Cylinder. Construct K by taking the 
parallel projection of a set of points on (and/or inside) the surface of a cylinder 
rotating around a vertical axis. Let the contrast values of the points be independent, 
identically distributed random variables. As is well known, when properly con- 
structed, K can display a very strong kinetic depth effect, with dots moving in one 
direction seen as being in the front of the axis of rotation, and dots moving in the 
other direction seen as being in the back (Dosher, Landy, & Sperling, 1989; Uilman, 
1979). Nonetheless, K is microbalanced under all pointwise transformations: All of 
K’s systematic motion is horizontal; thus, we can drop reference to y, and note that 
for any x, t, x’, t’, the joint distribution of (K[x, t], K[x’, t’]) is identical to that of 
(K[x, t’], K[x’, t]). Hence, by Corollary 3.3, Condition 3, K is microbalanced 
under all pointwise transformations. 

4. TEXTURE QUILTS 

The rest of this paper is devoted to illustrating how the results of Section 3 can 
be applied to construct stimuli which display consistent apparent motion that 
cannot be exposed to standard analysis by any purely temporal transformation. 
Specifically, we demonstrate several motion-displaying stimuli, called texture quilts 
(Definition 4.1), that are microbalanced under all purely temporal transformations. 

As illustrated in Fig. 3, the simplest transformations that suffice to expose the 
motion of texture quilts to standard analysis involve a purely spatial linear filter s* 
followed by a rectifier r*: 

T(Q)=r*(s*Q). (31) 

The spatial filter s* will respond with varying energy throughout regions of the 
visual field, depending on whether or not the textures to which it is tuned populate 
those regions. However, the output of a linear filter to a texture is positive or 
negative depending on the local phase of the texture. The purpose of rectification 
is to transform regions of high-variance s* response into regions of high average 
value, thus ensuring that the rectified output registers the presence or absence of 
texture, independent of phase. The result T(Q) is a spatiotemporal function whose 
value reflects the local texture preferences of s* in the visual field as a function of 
time (Bergen & Adelson, 1988; Caelli, 1985)’ 

’ In general, a spatial linear filter followed by a pointwise nonlinearity can have arbitrarily high order 
Volterra kernels, depending on the order of the Taylor series of the pointwise transformation. However, 
if we take the rectifier of step (2) to be Rect(x)=x’, then this squared output of a spatial filter is a 
second order spatial transformation. Standard motion analysis is yet another second order transforma- 
tion. Thus, when we subject the squared filter output to standard motion analysis, we are applying a 
fourth order operator. 
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FIG. 3. Fourier and non-Fourier motion mechanisms, (a) Fourier motion mechanisms apply 
standard motion-analysis directly to the luminance signal L. (b), (c), and (d) Non-Fourier mechanisms 
apply standard motion-analysis to a nonlinear transformation of luminance. (b) A simple non-Fourier 
mechanism applies a signal transformation comprised of a spatiotemporal linear filter, followed by a 
pointwise nonlinearity. The S’S indicate spatial and temporal convolution, respectively, and ’ indicates 
function composition. The filtering performed in (b) is roughly pointwise in time (the temporal impulse 
response b2 approximates an impulse), and the nonlinearity applied is a full-wave rectifier. This system 
(with appropriately chosen spatial filter, bl) will extract the motion of the texture quilts shown in 
Figs. 4b, 5d, 6c, and 6d. It will not extract the motion of stimulus J, the traveling contrast-reversal of 
the random vertical bar pattern shown in Fig. 2a. (c) A spatially pointwise (the spatial impulse response 
cl approximates an impulse), system with a flicker-sensitive temporal filter and a full-wave rectifier. 
Because of the flicker sensitivity, this mechanism will extract the motion of the traveling contrast-reversal 
of the random vertical bar pattern shown in Fig. 2a but not the motion of the texture quilts shown in 
Figs. 4b, 5d, 6c, and 6d. (d) The temporal filter d2 averages the temporal filters b2 and c2, and the 
pointwise nonlinearity is a full-wave rectifier. With an appropriate spatial filter dl, the non-Fourier 
system extracts the motion of any corresponding texture quilt as well as the motion of the traveling 
contrast-reversal of the random vertical bar pattern shown in Fig. 2a. However, it would be less well 
suited to these tasks than the detectors shown in (b) and (c) whose temporal filters it averages. 

The essential trick in all the quilt examples we consider is to patch together 
various brief displays of static, random texture, taking appropriate measures to 
ensure that the resultant stimulus satisfies the following definition. 

4.1. DEFINITION OF A TEXTURE QUILT. Let A c Z2 be a set of points in space, 
and let t,, t,, . . . . t, be a strictly increasing sequence of times, with T = 
{t 11 t, < t < tN}. Call any random stimulus Q satisfying the following conditions a 
texture quilt: 
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(i) Q assigns 0 to all points outside A x T. 

(ii) For i = 0, 1, . . . . N- 1, the random values assigned by Q to points in A at 
time ti remain unchanged until time ti + , . 

(iii) Independence. For i= 0, 1, . . . . N- 1, the random substimuli Qi, defined, 
for all points CI in space and all times t, by 

tibt<tj+,,crEA 
otherwise, (32) 

are jointly independent. 
(iv) Symmetry. For any ~1, /I E A, and any t E T, the joint distribution of 

(Q[u, t], Q[fl, t]) is identical to the joint distribution of (Q[/?, t], Q[cr, t]). 

Terminology. Call A and T respectively Q’s spatial and temporal regions of 
actioity, and for i = 0, 1, . . . . N- 1, call {t 11 ti Q t < ti+ i } the ith timebfock of Q. 

The empirical usefulness of texture quilts derives from proposition 4.3 in conjunc- 
tion with the fact that it is easy to construct various sorts of texture quilts which 
display consistent apparent motion across independent realizations. The proof of 
proposition 4.3 is eased by the following 

4.2. LEMMA. Let Q be a texture quilt with spatial region of activity A. Then for 
any CI, BE A, the pair of temporal functions (Q,, Qp) is distributed identically to the 
reverse pair ( Qg, Q,). 

Proof: From Definition 4.1(i) and (ii), note that for temporal functions P and 
R, the density of the joint assignment (Q,, Q,) = (P, R) is 0 unless each of P and 
R is constant throughout each time block, and 0 outside T. Thus, any P and R for 
which the joint assignment (QE, Q,) = (P, R) has nonzero density are completely 
determined by the values P[ti] = pi, and R[ti] =ri, for i=O, 1, . . . . N- 1; forf, the 
joint density of (Q,[ti], Qs[ti]), Definition 4.l(iii) thus implies that the density of 
the joint assignment (Q,, Q,) = (P, R) is 

But by Definition 4.l(iv), the quantity (33) is equal to 

N-1 

ivo fi(ri, Pi), (34) 

which is the density of the reverse occurrence that (Q,, QZ) = (P, R). 1 

4.3. TEXTURE QUILTS ARE MICROBALANCED UNDER PURELY TEMPORAL TRANSFOR- 
MATIONS. I. Any texture quilt with a continuous joint density is microbalanced 
under all purely temporal, continuous transformations. 
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II. Any discretely distributed texture quilt is microbalanced under all purely 
temporal transformations. 

Proof of I. Let Q be a texture quilt with a continuous joint density, and let @ 
be an arbitrary purely temporal, continuous transformation. We must prove that 
a(Q) is microbalanced. We can, of course, accomplish this by proving that Q(Q) 
is microbalanced under all pointwise transformations (since, in particular, the 
identity transformation is pointwise). This turns out to be a convenient approach. 

Let tl, B be points in space, and let t and u be points in time. Because @ is 
bounded and continuous and Q has a continuous joint density, we know that the 
joint density f of (@(Q)[cr, t], @(&)[/3, u]) and the joint density g of (@(Q)[p, t], 
@(Q)[a, u]) both exist and are continuous on R2. We shall show for any (p, r) E lR2 
with neither p nor r equal to 0, that either f(p, r) = g(p, r) or f (p, r) = g(r, p). The 
proposition will then follow from Corollary 3.3. 

Case 1. At least one of o! or p is outside A. Suppose a is outside A. Then 
by Definition 4.1(i), Qol = 0; hence @(Q)[cr, t] = @(Q)[a, u] = 0. Consequently, 
,f( p, r) = g(r, p) = 0 whenever p # 0. Thus Eq. (29) holds vacuously, with 

f(p, r)= dry PI=0 for all p, r E R, p # 0, r # 0. (35) 

Case 2. Both CI and /I are in A. Let F be the joint density of (Q,, QP) and G 
be the joint density of (Q,, Q,). By Lemma 4.2, F= G. Clearly, then, for F@ the 
joint density of (@(Q,), @(Q,)) and G, the joint density of (@(Q,), @(Q.)), it 
follows that Fg = G,. For any p, rE R, recall that f(p, r) is the density of the 
co-occurrence that @(Q)[cx, t] = p, and @(Q)[/I, u] = r, but this is precisely the 
density of the event that (@(Qll)[r], @(Qp)[u]) = (p, r). This density, however, is 
equal to the integral of F@ over all pairs of temporal functions (P, R) such 
that P[t] = p and R[u] = r. Similarly, g(p, r) is the density of the co-occurrence 
that @(Q)[/?, t] = p, and @(Q)[cr, u] = r, but this is the density of the event that 
(@(Qp)[t], @(Q,)[u]) = (p, r), which is equal to the integral of G, over all pairs 
of temporal functions (P, R) such that P[t] = p and R[u] = r. However, as we 
have already noted, F@ = G,, implying that f = g. Apply Corollary 3.3 to complete 
the proof. 1 

The proof of II is similar. 
The rest of Section 4 is devoted to showing how to construct two kinds of simple 

texture quilts. In Section 5, we apply these construction techniques in an experiment 
to investigate what sorts of textural characteristics are actually processed for 
motion information by the visual system. 

4.4. Binary Texture Quilts 

4.4.1. A General Technique for Constructing Binary Texture Quilts. The sim- 
plest sorts of texture quilts involve only two contrast values. As in Definition 4.1, 
let T= {t 11 t, < t < tN} be the temporal region of activity, with new timeblocks 
beginning at times t,, t, , . . . . t, ~, . Let A be the spatial region of activity. Associate 
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with timeblocks i = 0, 1, . . . . N - 1 spatial functions fi (called timeblock pictures), 
each of which is 0 everywhere outside A, and takes only the values 1 and - 1 within 
A. In addition, associate with timeblocks 0 through N- 1 a family 

of jointly independent random variables, each of which takes the value 1 or - 1 
with equal probability. Then, for i= 0, 1, . . . . N - 1, set 

if t is in timeblock i, 
otherwise, (37) 

and construct the random stimulus 

B=q&B,+(d,B,+ “. +4N-lBN-l. (38) 

It is easy to see that B is a texture quilt. First, the functions Bi are defined to 
satisfy Definition 4.1(i) and (ii). The joint independence of the random variables di 
ensures that B satisfies Definition 4.l(iii). To see that Definition 4.l(iv) is satisfied, 
note that for any IX, BE A, either (i) Bi[~, ti] = Bi[p, ti] or (ii) Bi[c(, ti] = 
-Bi[p, ti]. In case (i), 

B[@y ti] = 4iBi [x7 til= 4tBi[pt til= B[as til, (39) 

implying that the pair (B[a, ti], B[& t;]) is distributed identically to the pair 
(B[/?, tj], B[a, ti]) (each pair with an equal probability of taking the value (1, 1) 
or (- 1, - 1)). In case (ii) 

B[a, til = -B[S, til, (40) 

and the pair (B[cr, tilt B[/l, ti]) is distributed identically to the pair (B[B, tj], 
B[cc, t ;] ), each with an equal probability of assuming the value (1, - 1) or ( - 1, 1). 
Thus Definition 4.l(iv) is satisfied along with 4.1(i), (ii), and (iii). 

4.4.2. Stimulus: The Sidestepping, Randomly Contrast-Reversing, Vertical Edge. 
In Fig. 4b are displayed the 9 timeblock pictures comprising a particularly simple 
binary texture quilt. Note that the vertical dimension of Fig. 4b combines time and 
vertical space, precisely as a strip of movie film, scanned vertically, combines time 
and space. Timeblock pictures are separated by gray lines. Figure 4a shows the 
timeblock pictures f0 through fs used in the construction, f, assigns the value - 1 
to all points (x, y) of the horizontal rectangle comprising the spatial region of 
activity, A. fi assigns 1 to the points in the leftmost eighth of A, and - 1 to the 
points in the right seven-eighths. The timeblock pictures fi through fs continue to 
shift the vertical edge rightward through A until, in picture 8, A is uniformly 1. 
Multiplying each timeblock picture i= 1, 2, . . . . 9 by its associated random variable 
#i yields, in this particular realization, the stimulus given in Fig. 4b. 
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frame a frame b 

9 9 

FIG. 4. Edge-driven motion from an ordinary edge and from a binary texture quilt. (a) A rightward 
moving light-dark edge visible to Fourier and non-Fourier motion systems. Nine entire frames 
are shown; each frame consists of an area of contrast + 1 and area of contrast - 1. (b) A realization 
of the sidestepping, randomly contrast-reversing vertical edge. This random stimulus is a texture quilt 
and hence microbalanced under all purely temporal transformations: that is, its rightward motion 
would be inaccessible to standard motion-analysis even if this analysis were preceded by an arbitrary, 
purely temporal transformation. Each frame of (b) was derived from the corresponding frame of (a) by 
multiplying the entire frame by a random variable that takes the value 1 or - 1 with equal probability. 
The frame random variables are jointly independent. A straightforward way to extract the motion of 
this texture quilt is to (i) apply a linear filter sensitive to vertical edges, (ii) rectify the tiltered output, 
and (iii) submit the result to standard motion analysis. 

The construction of the sidestepping contrast-reversing edge (Fig. 4b) is sym- 
metric to the construction of the traveling contrast-reversal of a random black-or- 
white vertical bar pattern (J in Fig. 2a). Transposing the x and t dimensions in 
Fig. 4b gives, the x&cross-section of a random stimulus J (e.g., Fig. 2a). This 
stimulus exhibits an unusual symmetry between space and time. Whereas the 
texture quilt of Fig. 4b is microbalanced under all purely temporal transformations, 
its transpose J (Fig. 2b) is microbalanced under all purely spatial transformations. 
Extracting motion from J requires temporal filtering followed by a nonlinearity. 
This process is essentially different from the process by which motion is extracted 
from texture quilts (e.g., Figs. 4b, 7a, 7b, and 7c) which requires a spatial non- 
linearity. 

4.4.3. Stimulus: Oppositely Oriented Static Squarewaves Selected by a Drifting 
Grating. Figure 5d shows the four timeblock pictures comprising another binary 
texture quilt constructed using technique 4.4.1. In Fig. 5a is shown a probabilisti- 
tally defined sinewave grating, a stimulus whose motion is readily extracted by 
standard motion-analysis. In Figs. 5bl and 5b2 are shown static vertical and 
horizontal squarewave gratings. The stimulus of Fig. 5c is obtained by using Fig. 5a 
to select between the vertical and horizontal gratings of Figs. 5bl and 5b2. If the 
function of Fig. 5a is 1 at a certain point in space-time, the corresponding point in 
Fig. 5c is assigned the value of the corresponding point in Fig. 5bl; otherwise the 
point in Fig. 5c is assigned the value of the corresponding point in Fig. 5b2. 
Although Figs. 5c and 5d look similar, they differ in an important respect: the 
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FIG. 5. Orientation-driven non-Fourier motion from a binary texture quilt. (a) A probabilistically 
defined sinewave grating that steps rightward 90 degrees between frames. The rightward motion in (a) 
is accessible to all motion detectors. (bl) Four frames of a static, vertical squarewave grating; (b2) Four 
frames of a static horizontal squarewave grating. (c) A rightward translating texture pattern. For every 
white point in (a), the corresponding value in (c) is chosen from the vertical squarewave grating in (bl); 
for every black point in (a), the corresponding value in (c) is chosen from the horizontal square- 
wave grating in (b2). (c)is not microbalanced; standard motion-analyzers can be designed to 
detect its motion. (d) A texture quilt. The frames of (d) are derived by multiplying the corresponding 
frames of (c) by jointly independent random variables, each of which takes the value 1 or - 1 with equal 
probability. The texture quilt (d) is microbalanced under all purely temporal transformations, and 
therefore its rightward motion is unavailable to any mechanism that applies standard motion analysis 
to a purely temporal transformation of the visual signal. 
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stimulus of Fig. 5d is microbalanced under all purely temporal transformations, 
while that of Fig. 5c is not microbalanced. It is possible to design Fourier 
mechanisms to detect the motion of Fig. 5c, but not that of Fig. 5d. The critical 
difference is that the timeblock pictures of Fig. 5d are jointly independent, while 
those of Fig. SC are not: Fig. 5d is obtained by randomly reversing the contrasts of 
the timeblock pictures of Fig. 5c. 

4.5. Sinusoidal Texture Quilts 

It is not difficult to elaborate technique 4.4.1 to a method for constructing quilts 
involving textures of arbitrarily many contrast values. We illustrate the principle in 
the construction of quilts comprised of patches of sinusoidal grating. 

4.5.1. A General Technique for Constructing Sinusoidal Texture Quilts. As in 
Definition 4.1, let T = {t 11 to < t < tN) be the temporal region of activity, with new 
timeblocks beginning at times to, t, , . . . . t,- , Let A be the spatial region of activity. 
Associate with timeblocks i = 0, 1, . . . . N- 1, spatial functions W,, each of which is 
0 everywhere outside A, and takes only the values 1 and - 1 within A. The stimulus 
in each time block will be composed of two components characterized by spatial 
frequencies (oi, 0;) and (Qi, g,), respectively, and independent phases pi, pi, respec- 
tively. Let 

be integers. Let P be an integer, and let 

be jointly independent random variables, each uniformly distributed on the set 
to, 1, . . . . P- 1 j. Then, define the stimulus S as the sum of N component stimuli Si 
defined in each timeblock, 

N-l 

s= c si, (43) 
i=O 

where, for i= 0, 1, . . . . N- 1, S, is zero everywhere outside timeblock i; and for all 
t in timeblock i, 

cos(2n(oix + eiy - p,)/P) if Wi[x, y] = 1, 

Si[Xy yy  t]=fj[xy y]= COS(271(~iX+~,y-pi)/P) if Wi[x, y]= -1, (44) 
0 otherwise. 

It is easy to check that S satisfies Definition 4.1(i) and (ii). The joint 
independence of the random phase variables pi, pi, for i = 0, 1, . . . . N - 1 entails 
Definition 4.1 (iii). 
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It remains to check that S satisfies Definition 4.l(iv). Consider points a, p E A. If 
Wi[a] # W,[/?], then, as is easily checked, ,S[a, tJ and SC/?, ti] are independent 
and identically distributed (each assuming a value from among {cos(27rp/P) )I p = 
0, 1, . . . . P- l} with equal probability). On the other hand, if Wi[a] = Wi[p], then 
the pair (S[a, ti], S[p, ti]) is distributed identically to the pair (SC/?, ti], S[a, tj]) 
as a consequence of the following 

LEMMA. Let PE Z, and let a= (a,, a,,), fi= (b,, /?,) and o = (or, oY) all be 
elements of Z2. Then for any integer p E (0, 1, . . . . P- 1 }, there exists an integer 
qE (0, 1, . ..) P- l} such that (writing . for dot product) 

cos(2x(w .a - p)/P) = cos(2x(w ./? - q)/P) (45) 

frame a frame b 

FIG. 6. Sinusoidal texture quilts: Motion driven by differences in orientation and in spatial frequency. 
(b) and (c) show realizations of random stimuli. each of which is microbalanced under all purely tem- 
poral transformations. Their rightward motion cannot be detected by any mechanism that applies 
standard motion analysis to a purely temporal transformation of the signal. In each case, the four frames 
in (a) select between two sinusoidal patterns. The phases of sinusoids are jointly independent across 
frames and across different-frequency sinusoidal components patched together in the same frame. The 
sinusoids mixed in (b) differ in orientation, whereas the sinusoids mixed in (c) have the same orienta- 
tion, but differ in spatial frequency. 
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and 

cos(2n(cc,. p - p)/P) = cos(27c(w. a - q)/P). (46) 

Proof As the reader may check, this is true for q=(o.ix+o.b--p) 
modulo P. 1 

Thus, for ix, /l such that Wj [a] = I%‘,[/?], we observe that for any outcome p, = p, 
there exists an equally likely outcome pi = q, such that 

(cos(27r(o;~ o! - p)/P), cos(2n(o; /I - p)/P, 

= (COS(2rc(O,~ p - q)/P), COS(2Z(Oi. c( - q)/P)). (47) 

We infer that the pair (S[cc, ti], S[& ti]) is distributed identically to the pair 
(SCP, fil, SC4 [iI). 

4.5.2. Stimulus: Oppositely Oriented Static Sinusoids Selected by a Drifting 
Grating. The sinusoidal analog to the binary texture quilt of Fig. 5d is shown in 
Fig. 6b. In Fig. 6a are shown the functions W,, W,, W,, and W, used to select 
between horizontal and vertical gratings. For this quilt, Gi = 0, = 0, for i = 1, 2, 3,4; 
and for some integer F (with F/P the number of cycles per pixel), oi = 8, = F. The 
texture quilt of Fig. 6b modulates textural orientation across space and time. Alter- 
natively, we can just as easily keep orientation constant and vary spatial frequency. 

4.5.3. Stimulus: Static Sinusoids of Different Spatial Frequencies, Selected bJ> a 
Drifting Grating. Figure 6c shows a texture quilt using the sampling functions of 
Fig. 6a, but setting o, = Bi = 2Gj = 2g, for i = 1, 2, . . . . 4. 

5. WHAT ASPECTS OF TEXTURE DOES THE VISUAL SYSTEM PROCESS FOR MOTION? 

In this section, we describe a psychophysical experiment investigating the ques- 
tion of what characteristics of spatial texture are analyzed for motion information 
by the visual system. Three texture quilts are compared across four different viewing 
conditions. These conditions comprise a sequence of similar but increasingly 
challenging motion discrimination tasks. 

5.1. Procedure 

Every texture quilt used in this experiment is comprised of a sequence of jointly 
independent timeblocks, each lasting l/30 s. (Each timeblock consists of two identi- 
cal refreshes at l/60 s.) Each texture quilt is stochastically periodic with a period of 
8 timeblocks: that is, for any integer i, the ith timeblock is identically distributed 
to the i+ 8th timeblock. Accordingly, we refer to 8 timeblocks of the texture quilt 
as one cycle. The motion elicited by each quilt is carried by a squarewave that 
selects between two textures, and steps l/4 cycle on every odd timeblock. The 
squarewave thus completes one of its four-step cycles in each 8 timeblock cycle of 
the quilt. 



436 CHUBB AND SPERLING 

On each trial, a texture quilt moving randomly left or right is presented, and the 
subject is required to signal (with a button-press) which way the quilt appeared 
to move. The subject is asked to maintain fixation on a small spot present in 
the middle of the stimulus throughout the display, and receives feedback after 
each trial. For each quilt under each viewing condition, the subject performs 100 
practice trials followed directly by 100 actual trials. Quilt realizations are jointly 
independent across trials. The starting phase of the quilt is chosen randomly on 
each trial. 

The Four Viewing Conditions. For a given quilt, the four viewing conditions 
differ with respect to the number of quilt cycles displayed. In Condition 1, the 
easiest condition, the subject sees two quilt cycles (each cycle comprised of eight 
stimulus timeblocks), with each timeblock displayed for l/30 s. In Conditions 2, 3, 
and 4, the subject sees 1.5, 1, and 0.5 quilt cycles, respectively. 

5.1.1. Three Quilt Stimuli. The first quilt (the F-quilt) modulates textural spa- 
tial frequency as a function of space and time, while keeping orientation constant. 
The 8 timeblocks comprising one full cycle of the F-quilt are shown in Fig. 7a. 
A second quilt (the O-quilt, Fig. 7b) modulates textural orientation as a function 
of space and time, while keeping spatial frequency constant. A third quilt (the 
E-quilt, Fig. 7c) spatiotemporally modulates texture between jointly independent 
binary noise and the so-called “even” texture (Julesz, Gilbert, & Victor, 1978). 

All stimuli were viewed from 1 m against a mean luminant background. At this 
distance, each quilt spanned 6.8 horizontal and 3.2 vertical degrees, and the 
modulating squarewave moved at an average velocity of 12.75 deg/s. 

5.1.2. Why These Three Quilts. In each of the three quilts, a squarewave with 
vertical bars is used to modulate between two textures as a function of space 
and time. The squarewave has a spatial frequency of 0.3 c/deg, and steps l/4 
cycle rightward on every odd timeblock (temporal frequency 3.75 Hz, velocity 
12.75 deg/s). We use a l/4 cycle stepping squarewave to modulate between the two 
textures comprising each quilt in order to rule out the possibility that the motion 
elicited by the quilt is being carried by the border between textural regions. That 
is, the l/4 cycle stepping squarewave has the advantage that the signal derived from 
the borders between texture regions is ambiguous in motion content. Given the 
requirement of l/4 cycle steps, we changed the particular instantiation of the quilt 
on even timeblocks (i.e., within steps of the squarewave) in order to spread textural 
energy broadly in temporal frequency without altering the spatial frequency content 
of the texture. 

It has been previously observed (Green, 1986; Ramachandran, Ginsburg, & 
Anstis, 1983; Watson & Ahumada, 1983a) that motion is carried more effectively by 
spatiotemporal variation of textural spatial frequency than by variation of textural 
orientation. The F-quilt and O-quilt were chosen to further investigate this claim. 
The E-quilt is of interest because the two textures of which it is composed (jointly 
independent binary noise and the even texture) have identical second order 
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frame frame frame 
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FIG. 7. Three quilts used to study motion carried by modulation of texture spatial frequency, by 
texture orientation, and by higher order textural characteristics. (a) Eight frames that comprise one cycle 
of the F-quilt. Motion is generated by a squarewave modulation of textural spatial frequency. The 
squarewave grating selects between vertical sinusoidal gratings of spatial frequency 1.2 and 2.4 c/deg. The 
texture-modulating squarewave is 0.3 c/deg, and steps l/4 cycle rightward on every odd frame. Every 
even frame is independent of and distributed identically to the preceding frame. Presentation proceeds 
at the rate of 30 frames/s. This gives the texture-modulating squarewave a temporal frequency of 3.75 Hz 
and a mean velocity of 25 deg/s. (b) Eight frames that comprise one cycle of the O-quilt. In the O-quilt, 
textural orientation is modulated by the same squarewave used to modulate spatial frequency in the 
F-quilt. The O-quilt squarewave selects between oppositely oriented sinusoidal gratings that have a 
spatial frequency of 2.8 c/deg. (c) Eight frames that comprise one cycle of the E-quilt. In the E-quilt. the 
texture-modulating squarewave selects between jointly independent binary noise and an even 
texture (Julesz, Gilbert, & Victor, 1978). Despite the evident difference between these two textures. every 
time-independent linear filter has the same expected power for both textures. Thus, if motion-from- 
texture resulted from applying a simple squaring transformation to the output of a spatial linear lilter 
and submitting the result to standard motion analysis. the motion of the E-quilt would be invisible. 
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statistics. That is, the joint distribution of any given pair of points in space is the 
same under both the component textures of the E-quilt. This means that, despite 
the obvious difference in appearance between the component textures, the expected 
energy in the response of any given spatial linear filter is the same for both compo- 
nent textures. If the pointwise nonlinearity applied to the output of the spatial 
linear filter prior to motion analysis were simple squaring, it would be impossible 
to detect the motion of the E-quilt. 

Victor and Conte (1990) studied apparent motion elicited by E-quilts, and noted 
that it is much weaker than motion elicited by comparable stimuli (also texture 
quilts) that modulate between textures differing in spatial frequency. Our experi- 
ment confirms this finding. 

5.2. Results 

Two subjects participated in the study, CC (the experimenter) and GA (naive). 
The results for CC are shown in Fig. 8 bottom, and those for GA are shown in 

FIG. 8. The percent of correct direction-of-motion judgments to the F-quilt, the O-quilt, and the 
E-quilt as a function of stimulus duration. The panels show data for subjects CC and GA, respectively. 
Each data point is the mean of 100 judgments. (Squares) F-quilt; (triangles) O-quilt; (circles) E-quilt. 
The stimulus durations of 133, 266, 400, and 533 ms, correspond to stimulus presentations of 0.5, 1, 1.5, 
and 2 quilt cycles. 
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Fig. 8 top. Note first that both subjects were able to reliably discriminate left/right 
motion in all three stimuli although subject GA failed with the E-quilt at the 
briefest exposure. The two subjects performed comparably well at motion direction 
discrimination of the O-quilt, but CC was much better than GA at detecting the 
motion of both the F-quilt and the E-quilt. Subject CC was better at detecting the 
motion of the F-quilt than the O-quilt; the reverse was true of subject GA. 

It is possible that these performance differences reflect a genuine differences in the 
perceptual apparatus of the two subjects. However, we cannot rule out the 
possibility that the better performance of subject CC is due merely to his vastly 
greater experience with motion perception tasks of this sort. 

5.3. Discussion 

Many of the models proposed to explain rapid, preattentive segregation of spatial 
textures (Beck, Sutter, & Ivry, 1987; Bergen & Adelson, 1988; Caelli, 1985; Malik 
& Perona, 1989; Sutter, Beck, & Graham, 1989) can easily be adapted to deal with 
the motion displayed by texture quilts. The texture segregation models in this class 
typically subject the visual input function to a linear transformation (a “texture 
grabber”) followed by a pointwise nonlinearity (such as a rectifier or thresholder) 
to indicate the presence or absence of the texture. Such models propose that two 
contiguous textural regions would generate a perceptual boundary if the visual 
system were equipped with a linear filter that is differentially tuned to one of the 
textures. 

An analogous mechanism to detect the motion of texture quilts, suggested by the 
current experiment and the work of Victor and Conte (1990), (i) convolves the 
input stimulus with a spatial texture-grabbing filter tuned to the moving texture, 
then (ii) squares the output of the filter, to transform regions of high energy filter 
output into regions of high average value, and (iii) subjects the rectified output to 
standard motion analysis. However, the transformation applied in steps (i) and (ii) 
does not distinguish between the two textures comprising the E-quilt, and therefore 
fails to account for the good performance with the E-quilt. A simple modification 
to deal with texture segregation and motion perception of the E-quilt is to assume 
some other post-filter rectification operation than the squaring operation. It is quite 
easy to choose a linear filter in combination with a post-filter rectifier (other than 
the squaring operation) that will segregate the random and even textures (e.g., 
Julesz & Bergen, 1983). The current experiment does not specifically indicate the 
kind of rectification that might be involved. 

What sorts of filters are available to the visual system to compute motion from 
texture? For example, Daugman.(l985) points out that (i) Gabor filters provide an 
optimal tradeoff between resolution in the space and spatial frequency domains, 
and (ii) many investigators note that simple cells in cat striate cortex are well 
modeled by oriented Gabor filters (e.g., Andrews & Pollen, 1979; DeValois, 
DeValois, & Yund, 1979; Wilson & Sherman, 1976). Are the linear filters that serve 
motion-from-texture computations Gabor-like cortical simple cells? The theory 
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reported here provides a tool, and the demonstration experiments illustrate how it 
might be used to answer such questions. 

6. SUMMARY 

The main contributions of this paper are to (i) introduce the notion of a random 
stimulus microbalanced under all pointwise transformations, (ii) provide necessary 
and sufficient conditions for a random stimulus to be of this sort, (iii) use this result 
to construct apparent motion stimuli called texture quilts that are microbalanced 
under all purely temporal transformations, and (iv) show that subjects can reliably 
discriminate the motion direction of three kinds of texture quilts. 

Texture quilts provide a flexible array of tools for studying motion perception 
that is truly mediated by spatiotemporal modulation of spatial texture without con- 
tamination by mechanisms responsive to the motion extracted directly by standard 
analysis or motion extracted by standard analysis of any purely temporal transfor- 
mation of the stimulus. 
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