Behavior Research Methods, Instruments, & Computers
1984,16 (2), 199-216

HIPS: Image processing under UNIX.
Software and applications

MICHAEL S. LANDY, YOAV COHEN, and GEORGE SPERLING
New York University, New York, New York

HIPS (Human Information Processing Laboratory’s Image;Processmg stem) is a software
system for image processing that runs under the UNIX operating system. ‘FIYI PS is modular and
flexible: it provides automatic documentation of its actions, and is relatively independent of
special equipment. It has proved its usefulness in the study of the perception of American Sign
Language (ASL). Here, we demonstrate some of its applications in the study of vision, and as a
tool in general signal processing. Ten examples of HIPS-generated stimuli and—in some cases—
analyses are provided, including the spatial filtering analysis of two types of visual illusions;
the study of frequency channels with sine-wave gratings and band-limited noise; 3-dimensional
perceptual reconstruction from 2-dimensional images in the kinetic depth effect; the perception
of depth in random dot stereograms and cinematograms; and the perceptual segregation of
objects induced by differential dot motion. Finally, examples of noise-masked, cartoon coded,

and hierarchically encoded ASL images are provided.

The rapid decline in the cost of computer hardware
makes it possible for psychologists to engage in image
processing. In this paper, we first describe a powerful,
yet flexible, software system, HIPS (Human Informa-
tion Processmg Laboratory’s Image Processing _ystem)
that is relatively independent of speclal equipment.
Second, we present potential applications of image
processing in the laboratory and demonstrate them using
the language of our software system.

THE ENVIRONMENT

Our research involves a study of the perception of
American Sign Language (ASL), which is a manual form
of communication used primarily by the hearing im-
paired. The aim is to find images that are intelligible to
“speakers” of ASL and yet that can be encoded using
minimal channe]l bandwidth (Sperling, 1980, 1981;
Sperling, Pavel, Cohen, Landy, & Schwartz, 1983).
For this research, we have set up a computing environ-
ment that is capable of reading and storing sequences of
video images, transforming the images in the spatial and
temporal domains, and, finally, presenting the results to

The work on image processing of American Sign Language
was supported by National Science Foundation, Science and
Technology to Aid the Handicapped, Grant PFR-80171189. The
preparation of this article was supported by the NSF (above) and
by USAF Grant USR-79-0279 (for Yoav Cohen and George
Sperling). We wish to acknowledge the many contributions of
M. Pavel and the assistance of Thomas Riedl and Robert Picardi.
Y. Cohen’s mailing address is: The National Institute for Educa-

tional Testing and Evaluation, Jerusalem, Israel. M. S. Landy and -

G. Sperling’s is: Human Information Processing Laboratory, De-
partment of Psychology, New York University, New York, NY
10003.

199

readers of ASL in order to assess the legibility of the
images.

The Hardware

A wide variety of special-purpose image-processing
peripherals have recently become available. Some of
these devices are capable of performing many complex
image-processing tasks without drawing on the capacity

.of a main, general-purpose computer, but their prices

are forbidding for the traditionally low-budget psy-
chology laboratory. Therefore, we decided to sacrifice
speed of processing, and to emulate in software all
image transformations. Rather early, however, we real-
ized that we gained a lot in terms of flexibility and ease
of development of image-processing tools.

The present hardware configuration consists of a
VAX 11/750 computer to which a special-purpose
image processor (a Grinnell GMR 27-30) is attached.
In addition, the system has several terminals and printers,
and a general-purpose parallel interface (a DR11-C). The
Grinnell system is capable of converting between video
and digital representation of images. As will become
clear, HIPS does not depend on this particular hardware
configuration. Much more central to the design of HIPS
is the UNIX operating system, under which the image-
processing software was developed.

The UNIX Operating System

The design of the image-processing software was influ-
enced by the special features of UNIX (Ritchie & Thomp-
son, 1978). Therefore, we will discuss them briefly. Fora
fuller, yet nontechnical, description of how UNIX ap-
pears to the user, the reader is referred to Kernighan and
Mashey (1981). '

Copyright 1984 Psychonomic Society, Inc,

200 LANDY, COHEN, AND SPERLING
A program in UNIX is executed by typing its name.
Thus, the system program for listing files, Is, is invoked

simply by typing
Is

This action outputs a list of files that reside in the user’s
current file directory. ,

There is no difference between system and user’s
programs in this respect. From the user’s point of view,
any program that resides in the command “search set”
can be invoked by typing its name, be it a user or a
system program.

Most UNIX system programs can be invoked with a
list of arguments. Thus, the line

Is dirl dir2 dir3

is a request to output the lists of entries in the three
named subdirectories. The list of subdirectory names is
an argument list that is parsed by the program Is. The
same facility is offered to the applications programmer,
who can easily write programs that access and parse
their arguments.

Every program in UNIX has associated with it three
files: the standard input, standard output, and standard
diagnostic. By default, the input and output are directed
from and to the user’s terminal, but the flexibility of
program execution can be enhanced by using I/O re-
direction. For example,

Is > dirlist

demonstrates output redirection. By using the “>”
symbol, the output of Is is redirected to the file dirlist,
instead of being sent to the terminal. As an example of
input redirection, consider the program wec, which
counts the number of characters, words, and lines in a
text file. The command

we < dirlist

performs the count on the file dirlist, which was created
in the previous example. Note that the output of wc is
sent to the terminal, since no output redirection was
specified.

One of the most convenient features of UNIX is
the possibility of sending the output of one program
directly to a second program. For example, instead of
the two commands

1s > dirlist
we < dirlist

the user can type.

Is lwe

This has precisely the same ultimate effect, ‘but it
allows more processes to be run simultaneously and
saves mass storage; in the above case, the temporary
file dirlist is rendered unnecessary. In most cases, this
saves execution time and disk access (Stevens & Hunt,
1982). In this facility, which is called a pipe and is
designated by the “|” symbol, there is more than mere
convenience: It greatly affects the way in which pro-
grams in UNIX are written. Its main advantage is that
the user can,write a collection of relatively small pro-
grams, each carrying out a simple operation. These are
then recombined using the pipe operator in order to
perform a wide range of more complex tasks. A single
user command can consist of a single program or a se-
quence of any number of programs combined with
pipes, where each program in the sequence reads its
input from the previous program and outputs to the
following program .in the sequence. Such a sequence of
programs combined with pipes in one command is
called a pipeline.

UNIX provides a rich command language (or job con-
trol language)—the shell (Bourne, 1978; Thompson,
1975). When combined with the pipe facility, it provides
a powerful tool for integrating lower level programs into
higher level “super programs.” All of the above-mentioned
features make UNIX an attractive programming environ-
ment.

THE SOFTWARE SYSTEM

In developing the software system for image process-
ing (HIPS), we adopted a modular design philosophy
akin to that of UNIX. We tried to build a collection of
simple tools that users can recombine according to
their needs.

Modularity, simplicity, and flexibility are major
objectives in the image-processing software. Our working
environment is one of research, rather than of produc-
tion; therefore, considerations of program efficiency
are secondary to users’ productivity. Nevertheless, the
flexibility of the UNIX command language (the shell)
allows for a very convenient production environment as
well. In addition, as UNIX is seen by its designers, we
view HIPS as a system in a state of continuing evolution.
New tools are programmed as needed, and old programs
are discarded when they prove to be cumbersome or
superfluous.

Very early in the course of developing HIPS, it be-
came apparent that it might be applied in a wider range
of domains than originally intended. Therefore, we
expended extra effort to provide a flexible system that
could then be extended according to future needs. The
result is a system that is a collection of a few general
functions and many image-processing tools, all unified
by the sequence-header concept. This and related
concepts are described in the following sections, but for
a more technical description and for a fuller descrip-

tion of the available programs, the reader is referred to
Landy, Cohen, and Sperling (1984). After more than
a year of using HIPS, our choice of design features
more than fulfilled our expectations. '

The Sequence Header

In HIPS, the user performs operations on single
images or sequences of images. An image sequence is an
ordered sequence of single images in the same format.
For example, a sequence depicting moving objects
taken from a video or film source consists of a number
of discrete frames and is represented in HIPS as an image
sequence.

Each image or sequence of images is preceded by a
collection of items that describe the way in which the
pictorial material is represented (its format), and the
parameters that pertain to this format. As an example,
consider the representation by picture elements (pixels).
In this format, an image is considered to be an array of
points, and the gray level (brightness) of each point is
represented by a number (this is usually the output
format of image digitizers). In order to apply a transfor-
mation to a sequence of images in this format, one has
to know the number of bits used to represent each pixel,
the dimensions of the array that represents a single
image, and how many images are contained in the
sequence.

In addition to parameters, the header contains de-
scriptive entries for the purpose of documentation.
There are entries for the origin of the sequence, a verbal
description of the sequence, and so on. More important,
there is an entry that documents the history of the
sequence. When a sequence is processed by a program,
some of the entries in the header are modified. Thus, if
the sequence inseq is reduced in size by a factor of 2
by the command

reduce 2 < inseq > outseq

the numbers of rows and columns are halved, and this
change is reflected in the header of outsey. In addition,
one line is added to the history section of the header.
This line documents the fact that the program reduce
was applied and records the date on which this was
done, Figure 1 is an example of a header as it would be
displayed on the user’s terminal by the command

rframe | adddesc —d *9/5/82” —o “M. Landy” \
—s “Face 1 —a “This is the first of the ASL sequences” |\
reduce | tee outseq | seeheader.

This command reads a single digitized frame from the
Grinnell interface into memory. The HIPS program
adddesc adds some descriptive information to the

header, including the date the image was digitized

(—d). the originator of the image (—0). the sequence
name (-—s), and general descriptive text (—a). The

HIPS: IMAGE PROCESSING UNDER UNIX 201

rirame | adddesc -d "9/5/82° -0 "M. Landy® \
-s “Face 17 -a “This is the flrst of the ASL sequences® | \
reguce | tee oulseq | seeheader

@

M. Landy
Facé 1

Onginal name.
Seauence name
Numper of frames: 1
Original gate’ 9/5/82
Number ot rows: 256
Numper of columns: 256
Bits per pwxel: 8

Bit packing: No

Pixel format: Bytes

Sequence history:

rirame "-D Mon Oct 31 10:41:56 1983 | \
reduce "-D Mon Oct 31 10:41:57 1983"

Sequence Description:

This is the first of the ASL sequences

()

Figure 1. Output of the Seeheader program: (a) a command;
(b) the output on the terminal that results from running the
command in (a).

command then reduces the image size by a factor of
two (the default). We use the UNIX program tee (a
pipe-fitting juncture) to save a copy of the sequence in a
file, and concurrently to examine the header with
seeheader. Note that the “\” character serves as an
indicator to the operating system that the command
continues onto the following line.

The history section serves both as a mechanism for
automatic documentation and as an actual script for
repeating the same set of operations on a sequence.

" Each line in the history section begins with a program

name followed by a list of arguments. The last argument
in each line is 2 dummy argument, recording the time of
execution. The whole history section, unchanged, can
serve as an input to UNIX’s command language (the
shell), so that the same set of operations can be reap-
plied as one long UNIX pipe. The last entry on each
line, the date argument, is ignored by all image-processing
programs.

Image Formats

Pixel Format

HIPS is capable of manipulating a variety of image
formats. We have already mentioned the “pixel format,”
in which an image is represented as an array of values.
These values can be represented as single bytes, as
longer integers, floating point, or complex numbers,
according to the precision needed by the user and the
particular algorithm that has to be applied. Thus, the
pixel format is a general category that subsumes several
related formats. Pixels can also be represented by single
bits (binary images) or as numbers in ASCII code. This
last format, although wasteful in terms of storage and
time, is useful for transforming images into regular
text files. As text files, sequences can then be processed

202 LANDY, COHEN, AND SPERLING
by other UNIX programs such as the statistical package
of Perlman (1980, 1981).

3-D Format

Although it is the most common, pixel format is not
always optimal. For this reason, HIPS offers other
formats as well. Consider, for example, the case in which
images are initially generated by the computer. Whereas
digitized images are usually represented in pixel format,
images or sequences that are generated by computer
graphics systems are usually encoded as points, lines,
and surfaces in a 2- or 3-dimensional space. Currently,
HIPS supports images in “PLOT-3D” format, in which
points and straight lines are represented by their coordi-
nates in a 3-dimensional reference system. This repre-
sentation, however, is not isolated from other forms of
representation; plots can be converted to pixel format
and are then available for processing by the whole gamut
of tools in HIPS. We will see examples of the use of this
format below as we examine a number of applications
of HIPS to psychology.

Hierarchical Formats

Another way to represent images is by viewing an
image as a hierarchical structure, in which the nodes
on each level correspond to subareas of the node that is
higher in the hierarchy; the top of the hierarchy (or the
root of the tree) stands for the entire image. HIPS
recognizes some of these formats, such as quad-trees
(Pavlidis, 1982) and supports conversion between
pixel formats and hierarchical formats. One of the
advantages of using hierarchical codes is the reduction
in the space needed for storage of images.

Spanning Trees; Run-Length Formats

Other formats for image compression supported by
HIPS include spanning trees (in the sense of Reingold,
Nievergelt, & Deo, 1977), for efficient storage of line
drawings, and rmun-length codes (Rosenfeld & Kak,
1976), for efficient storage and transmission of images
that contain large areas of uniform gray level.

New Formats

As the foregoing discussion suggests, the multiplicity
of image formats, and the fact that the sequence header
is independent of a particular format, pay handsomely
in terms of flexibility and generality. In fact, new for-
mats can be added to HIPS at will, the only restriction
on the developer of new tools being that new format
names should not conflict with prior definitions and
that each new program should include a proper test for
ensuring that the input is in the correct format for the
particular algorithm.

General Structure of a Program

The pipe facility of UNIX, and the concept of a se-
quence header, together determine the general structure

of an image-processing program. In most cases, programs
read the pictorial material and the header from the
standard input file and write the updated header and the
transformed sequence onto the standard output file.
The diagnostic file is reserved for error messages, warn-
ings, and other messages that are not an integral part of
the output sequence. Before reading the pictorial ma-
terial, the program parses its arguments and reads the
header. The reading of the header and other manipula-
tions of the header are performed by a small set of
functions that reside in a system library. If the param-
eters of the header match the requirements of the pro-
gram, the header is updated and written onto the output
file. Only then does the actual processing of the se-
quence begin.

Since HIPS was developed on a virtual-memory
machine, we set no software limits on the sizes of the
header or the images. Memory space for both are allo-
cated at execution time, and usually at least one image
of a sequence resides in core. This is an advantage, but
can become a handicap if the program is one component
in a long pipeline or if the computer system is under a
heavy load, because the UNIX system will get very
sluggish if too many huge programs are running concur-
rently. In our experience, however, these cases are rare,
and for the type of images that we process (seldom
larger than 10K pixels), the freedom from size limita-
tions and the allocation of memory for whole images
result in ease and efficiency of operation. On the other
hand, this programming strategy restricts the use of
HIPS on high-resolution material to systems with a large
amount of core. As core becomes much cheaper, this
becomes less and less of a restriction. In any case, low-
resolution work and one-dimensional signal processing
can be performed on even the smallest of systems.

HIPS is written in the language C (Kernighan &
Ritchie, 1978). This is the language in which most of
UNIX itself is written. It is a block-structured language
and bears a slight resemblance to Pascal.

Available Tools

It is an unwritten rule that no program should be
written, upgraded, or revised unless necessary. With few
exceptions, we have adhered to this rule. The collection
of tools in HIPS is capable of performing all the tasks we
have required, but not of doing everything.
~ Currently available tools for image- processing are
described in the following paragraphs, grouped into
broad categories according to function. This is not an
exhaustive list; rather, it is intended to give an idea of
the breadth and potential of HIPS, More programs and
examples are given in the subsequent section, in which
we discuss potential applications.

Peripheral Interface :
A small number of programs directly involve periph-
eral devices, such as the image processor (Grinnell),

video cassette recorder (VCR), movie camera, and film
projector. These are the only programs that are specifi-
cally device dependent and that would need to be
modified in order to accommodate a different image
processor or control of other devices. Included are pro-
grams to start image digitization, read a single digitized
frame into memory, control a Betamax VCR (start,
stop, pause, etc.), control a Lafayette motion analyzer
(single-step a film projector for multiple-frame film
input), control a Sony motion analyzer (for multiple-
frame video input), single-step a Bolex film camera (for
synchronized recording onto film), send single frozen
frames to the image processor (for viewing on a video
monitor - - recording on film or video), and send image
sequences to the image processor (synchronized with the
video sync).

Header Manipulation

HIPS provides a small number of programs to ma-
nipulate image sequence headers. The most useful pro-
gram is Seeheader (demonstrated above), which allows
the user to examine a sequence header. Other programs
allow the user to add documentary infomation to the
header and to extract or strip the header from a se-
quence. After removing the header from a sequence,
especially a sequence in ASCII format, the user can then
operate on the data with non-HIPS programs, such as
statistical packages and editors.

Sequence Generation

In addition to creating a sequence by digitizing a
video image, HIPS allows the user to create synthetic
images from scratch. There are programs for creating
uniform image . sequences (genframe and fgenframe)
and checkerboards (checkers). Additionally, these pro-
grams can be combined with the program pad, which
places a given sequence in a uniform frame, in order to
create a wide variety of rectangular patterns. These pat-
terns can also be thought of as Fourier spectra, rather
than as images. In this case, applying the inverse Fourier

transform (also a program in HIPS, inv.fourtr) allows

one to easily generate complex grating patterns. Synthetic
images can be entered as arrays of numeric data and
then converted to other image formats. Lastly, various
sorts of line drawings can be created using the PLOT-3D
package, which we describe below.

Operations on Sequences

A number of simple operations on image sequences
are available. These programs will extract subsequences
(subseq), create longer sequences through frame repeti-
tion or interpolation (repframe), and strobe sequences
down to a single image by averaging (strobe). Separate
sequences can be concatenated into single sequences by
catframes. Lastly, for motion analysis, difference se-
quences can be derived such that each image in the new
sequence consists of the point-by-point difference of
each successive frame pair in a given sequence (autodiff).

HIPS: IMAGE PROCESSING UNDER UNIX 203
Transformations on Frames

Programs are available to reduce and enlarge images
(reduce and enlarge), crop, and frame images in a back-
ground (extract and pad), and rotate and reflect images
(rotate180 and reflect). Programs addseq and mulseq
allow the user to add or multiply two image sequences
point by point. For example, if the user mulsegs the
Fourier transform of a sequence by the Fourier spec-
trum of a filter and then applies the inverse Fourier
transform, this is equivalent to a filtering operation.
Furthermore, for most filters, this method is quite a
bit faster than applying the equivalent convolution
operator in the spatial domain.

Operations on Pixels

It is quite common in image processing to apply the
same transformation to all of the pixels in an image
sequence. Programs exist in HIPS to apply logarithmic,
exponential, and power function transformation (logimg,
stretchpix, and powerpix). Other programs create
photographic negatives (neg), perform thresholding
(thresh), and apply linear and second-order scaling
(scale). Lastly, a number of programs exist that convert
between the various image formats, such as floating
point to complex (froc), byte to ASCII (ptoa), and
so on.

Calcpix
In an image processing laboratory, writing simple,

. single-pixel-oriented transformations is a fairly routine

process, and such transformations are often needed for
special, one-time-only purposes. One of the most useful
programs we have created is a program that allows the
user to define a new image-processing transformation.
The program, called calcpix, takes as one of its param-
eters a line of code in the programming language C and
creates a new made-to-order image-processing filter that
applies this code to image sequences. This code is em-
bedded in a program that handles header processing,
input, output, and so on. This creates a program that is
general with respect to image parameters (such as
frame size and number of frames). The new filter is
compiled and then applied to calcpix’s input, Thus,
calcpix can be used in a pipeline like any other HIPS
program, and yet define a totally new program., We
will see several uses of this tool when we turn to ap-
plications. :

Image Statistics

A number of programs have been written to compute
basic statistics on pixel-formatted images, such as mean
gray level, variance, entropy, and so on (framevar and
pixentropy). A gray-level histogram may be computed
by histo; this results in another image sequence in
histogram format. This sequence can then be analyzed
further, or converted back to pixel format by a program
(disphist) that allows the histogram to be viewed on the
image-processor output or printer.

204 LANDY, COHEN, AND SPERLING
Noise Generation

To investigate the effects of noise on the intelligi-
bility of images, as we have been doing (Pavel, Sperling,

Riedl, & Vanderbeek, 1984; Riedl, 1984), there are .

programs that add random noise to image sequences.
Two sorts of noise have been implemented. In one
case, independent samples from a Gaussian distribution
(gnoise) are added to each pixel of an image sequence.
The other noise source currently implemented in HIPS
attempts to mimic digital channel noise by randomly
reversing the bits in the binary representation of the
image (noise). For each bit in the image, an independent
decision is made as to whether or not to reverse that bit,
according to a given probability of reversals.

Digital Transforms and Filtering

Transform processing and filtering are important
features of any image-processing system. HIPS includes
programs for transformation to and from the 2- and
3-dimensional Fourier domain (fourtr, inv.fourtr, and
fourtr3d), the discrete cosine transform (subroutines
dect_2d and dctinv_2d), and the Walsh transform
(Gonzalez & Wintz, 1977) (walshtr and inv.walshtr).
In the Fourier domain, a number of classical low-pass,
high-pass, and band-pass filters can be applied, including
the Butterworth, ideal, and exponential filters, using
programs lowpass, highpass, and bandpass.

Convolution, Edge Detection, and Enhancement

Convolution, the spatial equivalent of filtering in the
Fourier domain, can be accomplished directly with the
program mask. This program allows the user to apply a
number of convolution masks to an image simul-
taneously. The outputs of these masks may then be
combined in various ways, both linearly and nonlinearly.
A library of predefined mask combinations, which in-
cludes many edge-enhancement and Laplacian operators,
has been written. A number of nonlinear techniques for
filtering and edge detection are available, including
median and extremum filtering (Lester, Brenner, &
Selles, 1980) (programs median and extremumy), binary
noise cleaning, thinning, and thickening (Landy et al.,
1984) (programs bclean, thin, and thicken), and the
edge-detection methods of Shaw (1979) (program disc-
edge) and Abdou (1978) (program abdou).

Transmission and Compression

Our own work has involved the examination of a
number of image-storage and transmission methods.
These techniques allow the user to utilize the redundancy
in an image sequence in order to store the image se-
quence more efficiently. Programs have been written for
a varety of hierarchical encoding methods (Pavlidis,
1982) (programs hc_bin,hc_bin_r,binquad,,binquad__r,
ahc3, and ahc3_r) and DPCM encoding (Gonzalez &
Wintz, 1977) (programs dpcm_r and dpcm_t). The
UNIX system that we use (Berkeley 4.2) includes its

own program for adaptive Huffman coding (Huffman,
1952), which is useful as a baseline for analysis of other
techniques.

3-Dimensional Plotting

A subpackage within HIPS has been written for
generation and manipulation of 3-dimensional line
drawings: A large number of programs are available in
this package, allowing the user to create images popu-
lated with various solid objects drawn in outline (gpoly
and gcube). These objects can be moved and rotated
(tshift and trot), as can the viewpoint of the scene
(vshift and vrot). This allows the user to to generate scenes
that move and rotate in either paralle]l or polar per-
spective (using view). This format is fully convertible to
and from pixel format (plot3topix and pixto3d), allow-
ing line drawings to be further analyzed by any and all
of the above-mentioned transformations.

POTENTIAL APPLICATIONS OF
IMAGE PROCESSING

The software that we have just overviewed was
written specifically for a project concerning the percep-
tion of images of American Sign Language (Sperling,
1980, 1981; Sperling et al., 1983). It is our purpose
here to demonstrate that the potential applications of
a system such as this to psychology go well beyond the
particular project for which it was developed. We pro-
vide 10 examples to illustrate how an image-processing
system such as HIPS can be a useful tool for the experi-
mental psychologist. We outline how HIPS can profit-
ably be employed for other areas of vision research and
for the processing of one-dimensional signals.

Visual Spatial Frequency Channels: Examples 1-3

Sine-Waves and Linear Systems Analysis

Image-processing tools have natural applications to
studies of spatial vision. Ever since the introduction
of sine-wave-modulated flicker to the study of temporal
factors in vision (DeLange, 1952; Ives, 1922) and of
the sine-wave grating to studies of spatial vision (e.g.,
Robson, 1966; Schade, 1956), the use of linear systems
theory to characterize human performance in visual
tasks has been widespread. An image-processing system
can be useful in this kind of research, both as a tool for
simulating models of human performance and for the
generation of psychophysical stimuli.

Models of human performance in visual tasks typi-
cally postulate a number of simple linear or quasi-
linear transformations of the input luminance profile
(Campbell & Robson, 1968; Graham & Nachmias,
1971; Wilson & Bergen, 1979) followed by a nonlinear
decision process that generates the response (Sperling,
1964). At each step in the process, a noise source may
corrupt the information.

Simulation

Each of the stages proposed for human processing of
visual information is easily simulated in an image-
processing environment such as HIPS. The input image is
generated within HIPS or is photographed and digitized.
Filtering operations corresponding to the optics of the
eye and the transformations that we assumed for the
various sorts of geniculate or cortical cells (or, equiva-
lently, by “psychophysical” channels) can be applied.
This can be accomplished either by convolution with a
receptive field profile or by filtering in the Fourier

domain. Other linear and nonlinear operations can be

applied subsequently, and statistics can be computed in
order to yield the simulated response of the subject. At
any stage, the noise programs may be used to add noise
to the system at that point.

Example 1: Spatial Filtering of the
Miiller-Lyer Stimulus

The first example comes from Ginsburg (1978),
whose dissertation is concerned with the spatial frequency
channels hypothesis (Graham, 1981), and the application
of this hypothesis to a wide variety of perceptual phenom-
ena. A good deal of this work involves the transformation
of images (derived from text and from visual illusions) by
linear filters (derived from the human MTF—modulation
transfer function). For example, Ginsburg proposed that
the familiar Miller-Lyer illusion is a direct consequence
of low-pass spatial frequency filtering, that is, of the out-
put of the low-frequency channel. Figure 2 illustrates the
familiar illusion and an “MTF-L” (Ginsburg’s terminol-
ogy) filtered version of it. The hypothesis is that the per-
ceived difference of length of the two central line seg-
ments in Figure 2a derives from the output of the low-
frequency channel, represented in Figure 2b. On the
other hand, it turns out that a high-pass filtered represen-
tation of the Miiller-Lyer stimulus also yields the illusion
(Carlson, Anderson, & Moeller, 1980), so simple low-pass
filtering cannot be the whole explanation.

Figure 2 is generated as follows. First, the Miiller-Lyer
stimulus is created by typing the image in ASCII as an
array of Os and 1s (Figure 2c). This gives a coarse ap-
proximation to the illusion similar to that used by
Ginsburg (1978). (A more typical Miiller-Lyer stimulus
can easily be obtained by digitizing a photograph of it.)
The array of Figure 2c¢ is converted to byte format as
follows:

atob —c 32 <ml > mll

which converts from ASCII to byte format ((atob) and
creates (—c) an image sequence in byte format with
32 x 32 pixels and one frame. The pixels are read from
file ml, and the output is placed in file mll. Next, the
Fourier transform of Ginsburg’s MTF-L (5 x 5) is typed,
similarly to the image. This is converted to image format
by atof:

atof —c¢ 64 < mtfin > mtfinl

HIPS: IMAGE PROCESSING UNDER UNIX 205

()

(b) -

©

©0000C00000000000000000BG0000000
0000000000000 0000000000000000000
00000000 N000000D0COO0000000G0000
DOGOOVC0OC0000000000000000000R000
0000000000 000000C000Q0000D00CC000
©0000000000000000000000000C00000
©000000000000000000000000000O000
00000 OMNDO00000000000OOMO000000000
000006 ONOO000000000ON00000G000CD
OO COO0OONNNMNENNMNNNENIERNODOO00000000
©00000ONO0O00000000OONOO000000QGS
00000 OMO000000000000ORO000000GOG
©00000000000000000000C00000000B0G
0000000000000 0000000000000O00000
0000000000000 000C0000000000000000
0000000000 000000C00000000000000O
©00C0000000000000000CO00000000C0D
0000000000000 0000000D00000000G00
000000000 00000000000000000000000
00000 C000ONO00O0OOMOOGOGO0CO000000O
000000000 MOOO00000ONMO000000000000
000000 COR NN MMM MNNNENOOOO00000000
00000000 ONOOOOO0DOMOOOGG000CC00O
00000000 ONO000OOM0OO000000000BOO
0000000000000 00000000000000C00C00
0000000000000 00CC0000000000000C0C0
0000000000 CO000C0000000000000000
0000000000000000000000000000C0CO
000000000000 R000000C0000000000000
0000000000000 0000000C00D080000C00
090000000000 000000000C0000BO000GCE
©0 0000000000000 0000000C00000000G

Figure 2. (a) Reconstruction of a demonstration by Ginsburg
(1978) of the classical Miiller-Lyer illusion. (b) MTF-L (5 x 5)
version of the stimuli in (a). This demonstration purports to
explain the illusion as resulting from the representation of the
stimuli in a low spatial frequency channel, such as the one
pictured here. For printing purposes, (a) and (b) are actually
photographic negatives of the images as they appear on the
display monitor. (c) The ASCH input used to create image (a).

which creates a 64 x 64 frame in floating-point format.
The original illusion is displayed on the image processor’s
video monitor by the command

enlarge 4 < mll | wframe

which enlarges the image by a factor of four and sends it
off to the image processor by wframe (“write frame”)
to be converted to standard video. Figure 2a is a photo-
graph of this video image.

The filtered version of the Miiller-Lyer stimulus
shown in Figure 2b is created with the following pipe-
line:

enlarge < mll | btof | fourtr | mulseq mtfinl | inv.fourtr —f 11\
scale | enlarge 4 | wirame

206 LANDY, COHEN, AND SPERLING

This pipeline enlarges the illusion frame to 64 x 64
pixels, converts it to floating-point format, and trans-
forms it to the Fourier domain. The Fourier frame is
then multiplied by the low-pass filter spectrum and
returned to the spatial domain. At this point, the frame
is still in floating-point format. The program scale con-
verts the frame to byte format, linearly scaling the
values to fill the entire dynamic range. Lastly, the
image is enlarged and converted to video.

Example 2: Sine- and Square-Wave Gratings

HIPS can be used for the generation of psycho-
physical stimuli. The image-processing primitives may be
combined to form complex sine- and square-wave grat-
ings, masked by noise, tapered, and so on. We illustrate
the creation of complex stimuli in Examples 3-10,
but include this example here in order to introduce the
ideas.

There are several ways to generate a grating pattern
using HIPS. The simplest method is to use fealcpix, the
floating-point version of calcpix, as follows:

fgenframe 0 128 | fcalcpix “opix = sin(3.1415926 * ¢/ nc); ”

The program fgenframe (generating floating-point
frames) generates a uniform frame of size 128 x 128
with all gray values set to zero. Fealcpix then converts
this image to a sine-wave grating of one period and
vertical orientation. The fealepix calcuation utilizes the
variables ¢, which is the column number of this pixel,
and nc, which is the number of columns in the image.
The input image (from fgenframe or any other source)
can be of any dimension and still yield a sine-wave
grating with one period and vertical orientation. Vari-
ables ¢ and nc are predefined within fealcpix (and the
byte-formatted version of the program, calcpix), along
with other variables for the row (r and nr), the frame
(f and nf), and temporary variables made available to
the user. In any case, given the grating pattern, the pro-
gram scale may then be used in order to control mean
luminance and contrast.

A second method for the generation of sine-wave
gratings involves the Fourier transform. Since gratings
have particularly simple Fourier spectra, this method of
generating gratings begins by using HIPS to create the
spectrum and then converting it to the spatial domain.
The pipeline

fgenframe 1 1 {pad 0 128 128 0 1 | inv.fourtr —f

accomplishes this by first creatinig the spectrum [a 1 in
pixel (0,1), and Os elsewhere] and then applying the
inverse Fourier transform, with the output constrained
to be in floating point. In actuality, because the spec-
trum we generated was asymmetric (in the discrete
Fourier transform sense), its inverse is complex. Con-
straining the inverse transform to give only the real
part yields the desired grating pattern.

Creating a square-wave grating pattern is simple,
given a sine-wave grating. Applying the program thresh,
which can be directed to threshold the sine-wave grating
at zero, yields a square-wave grating of equal black and
white bar sizes. Again, scale can be used to control
mean luminance and contrast. Lastly, different gratings
may be combined by using addseq and mulseq.

Example 3: Frequency Band-Limited Spatial Patterns
Mostafavi and Sakrison (1976) measured the detec-
tion thresholds for two kinds of complex pattern stimuli
containing only a narrow band of spatial frequencies,
but with scrambled phase. Figure 3a illustrates a HIPS-
generated pattern corresponding to their isotropic filter
case; Figure 3b illustrates their nonisotropic case, in
which the angle of the components is restricted to
be close to the vertical. Mostafavi and Sakrison gen-
erated these stimuli by first creating a Gaussian noise
pattern, and then by filtering either isotropically:

2
[.[' ’ I]
w
H() = exp 7

or nonisotropically:

[—"l

I

H .8 = exp

where f and @ are the frequency and angle, respectively,
of the Fourier transform of the filter in polar coordinates,
fo is the center frequency of the passband of the filter,
w and w,; are the spatial half-bandwidths of the iso-
tropic and nonisotropic filters, respectively, and w, is
the angular half-bandwidth.

The filtering operations are performed quite simply
using HIPS. The isotropic filter is generated with the
following command string:

fgenframe 0 256 256 | fcalcpix ™ \
dl =(r <=n1f2) 71 : r-n5;\
d2 = (c <=nc/2) ? ¢ :c—nc;\
opix = exp(—pow(((sqrt(d1*d1+d2*d2)-8.)/ \
2.),2.)/2.; 7 > symfilter

@ (b)

Figure 3. (a) Isotropicaily and (b) nonisotropically bandpass
filte;ed Gaussian noise (after Mostafavi & Sakrison, 1976).

As before, a single uniform frame is generated, and then
filled using fealcpix. The Mostafavi and Sakrison (1976)
equations treat the Fourier domain in polar form; much
of the fealepix parameter string converts the row and
column (r and ¢) to frequency (using the predefined
temporary variables dl and d2), keeping in mind the
folding of the discrete Fourier transform. The final
result is stored in the output pixel opix. The noniso-
tropic filter spectrum is generated as follows:

fgenframe 0 256 256 | fcalcpix ™\
#define P1 3.1415926 \
dl=(<=n1/2) 7r:1-n1;\
d2=(c<=ncf2) ?c:c-nc;\
d3 = sqrt(d1*d1+d2*d2);\
d4 = (d2 !=0.) ? atan(d1/d2) : P)/2.;\
opix = exp(—pow(((d3-8.)/2.),2.)/2.) *\
exp(—pow(((d4—-0.)/.2),2.)/2.); * > asymfilter

The additional complication in the nonisotropic case
is the need to define the filter for both the frequency
and the angle.

Figures 3a and 3b are generated by first generating
Gaussian noise, applying the filters in the Fourier do-
main, and then inverse transforming back to spatial
coordinates. The pipelines for Figure 3a are:

fgenframe 0 256 256 | gnoise 1 | fourtr j mulseq symfilter |\
inv.fourtr —f >symout

genframe 128 512 512 | wframe

mulseq taperfilt < symout | scale 2560 128 | wframe

The first line generates the Gaussian noise, converts to
the Fourier domain and applies the isotropic filter, and
then converts to the spatial domain. The next line fills
the monitor screen with a uniform gray background.
The last line smoothly tapers the edges of the pattern
and embeds this image in the gray background, scaling
the floating image for the same mean luminance as the
background. The nonisotropic filter, asymfilt, is applied
instead in order to derive Figure 3b.

The tapering mask was not described in Mostafavi
and Sakrison (1976), and we generate ours as follows:

fgenframe 0 256 256 | fcalcpix '\
il = (>n1/2)) 7 1—(nr/2) : (nr/2)—r1;\
i2 = (c>(ncf2)) ? c—(nc/2) : (nc/—c;\
dl =i1*2./n1;\
d2 =i2*2./nc;\
d3 = (1.—pow(pow(d1,5.)+pow(d2,5.),1./5.))*8.;\
if (d3<0.) d3=0;\
if (d3>1.) d3=1;\
#define P1 3.1415926 \
d3 = (d3-.5)*PL;\
opix = (sin(d3)+1.)/2.;” > taperfilt

Form Perception: Examples 4-5

HIPS can be used for studies of the perception of

HIPS: IMAGE PROCESSING UNDER UNIX 207
form. Form stimuli can be generated using HIPS, by
using the PLOT-3D package to generate line drawings,
by synthetically generating form stimuli, or by digitizing
pictures of stimulus materials. All these stimuli, however
created, may be processed by HIPS in order to simulate
models of form perception.

Example 4: The Kinetic Depth Effect

Schwartz and Sperling (1983) studied the perception
of direction (and form) in the kinetic depth effect.
The stimuli in their experiments were 2-dimensional
projections of rotating 3-dimensional wire cubes. The
2-dimensional projections were inherently ambiguous
and could be perceived as rotating in either of two direc-
tions. These dynamic 2-dimensional projections were
biased for particular directions of rotation by adding
various depth cues. In other cases, opposing cues were
pitted against each other.

Figure 4 shows one frame of a sequence that con-
tains two cubes, one inside the other, plotted in polar
perspective. Both cubes are rotating about the same
vertical axis. Either cube can be perceived as rotating in
either direction. Because of polar perspective, perceiv-
ing one of these directions will cause the cube to be
perceived (correctly) as a rigid 3-dimensional cube; the
other direction will cause the cube to be perceived
(incorrectly) as a nonrigid, rubbery, distorting 3-dimen-
sional object. Spontaneous reversals of depth occur
while viewing this pattern, causing the direction of

-rotation and perceived form to reverse; for one or both

cubes. When the cubes are depicted as rotating in oppo-
site directions, the cues of rigidity (provided by polar
perspective) and context (provided by rigid notation
of the other cube) are in conflict.

Figure 4. One frame from a sequence depicting two 3-D
wire cubes shown in polar perspective, rotating about a common
vertical axis (based on Schwartz & Sperling, 1983). When the
sequence is viewed, observers perceive each cube rotating in
either of two directions. In one of these modes, the cube is
rigid; in the other, it is distinctly nonrigid. By rotating the two
cubes in opposite directions, this demonstration pits the ten-
dency to perceive objects as rigid against the tendency to per-
ceive objects as rotating in the same direction as their context.
For printing purposes, this fi igure is actually a photogtaphlc
negative of the image as it appears in the display.

208 LANDY, COHEN, AND SPERLING

The PLOT-3D package allows the user to generate
2-dimensional projections of 3-dimensional wire objects,
such as these cubes, quite easily. The frame in Figure 4
is taken from a sequence generated as follows:

geube | gmag 100 100 100 | trot 2903 > x
geube | gmag 200 200 200 | trot 29 0 -3>y
_gsyncxy | gshift 0 0 600 | view | plot3topix { bpack | bmovie

The first two lines generate cubes of two different
sizes rotating in opposite directions. The program trot
is requested to rotate the cubes in 3-deg increments for
30 frames in all. Because of the symmetry of the cube,
90 deg of rotation is sufficient to represent the entire
stimulus, and repetitive presentations yield a smoothly
rotating cube. The gsync command combines the two
cubes frame by frame. Gshift moves the scene away
from the viewer, and view applies the perspective trans-
formation. The plot is then converted to pixel format,
and then to binary packed format (for more efficient
presentation). Finally, bmovie presents the binary
sequence repeatedly on the video monitor.

Example 5: Form Perception and
Spatial Frequency Channels

One of the more useful features of HIPS is the ease
of transformation to and from the Fourier domain.
This feature may be employed in studies of form per-
ception in which the application of a channels model is
envisioned, as in recent studies by Palmer and Bucher
(1981, 1982) of the disambiguation of an ambiguous
form. Their most often used form is an outline drawing
of an equilateral triangle (first suggested by Attneave,
1968). This figure is perceived as an arrow pointing
(ambiguously) in one of three directions. Palmer and
Bucher manipulated perceived direction by manipulat-
ing the context in which the triangle appeared. For
example, Figure 5a shows an image of three triangles
aligned along their bases. Palmer and Bucher found that
subjects most frequently perceived the triangles in this
stimulus as pointing upwards, :

It is natural to apply a Fourier model to this phenom-
enon (Janez, 1983). Janez’s hypothesis is that the sub-
ject transforms the image to the Fourier domain and
computes the average spectral energy at various angles.
The direction with the most energy is used to define a
pair of orthogonal axes that are then applied as a refer-
ence frame to the figure. If either axis aligns with a
comner of the triangle, it is posited that the triangle is
most readily perceived as pointing in that direction.
Thus, the bases-aligned condition of Figure Sa should be
perceived as pointing vertically if more spectral energy
is contained in the vertical direction than in any other
direction. .

HIPS is easily applied to the problem of finding the
direction of maximum spectral energy. The bases-
aligned stimulus is generated by the PLOT-3D system:

©

Figure 5. (a) Three equilateral triangles in the bases-aligned
condition described by Palmer and Bucher (1982). In this con-
figuration, triangles are perceived as pointing upward. Fourier
analysis of this phenomenon suggests that the ambiguity is
resolved by finding the direction in which there is peak spectral
energy. For example, Janez (1983) proposed that the perceived
direction of pointing is either parallel or perpendicular to the
direction of peak spectral energy. (b) The Fourier power spec-
trum of (a); peak spectral energy is in the vertical direction, the
perceived direction of pointing. (c) An angular ray pattern for
the directional analysis of (b). For printing purposes, (a), (b),
and (c) are actually photographic negatives of the images as they
appear in the display.]

gpoly 3 | gshift 6 | gpoly 3 | gshift —3 {gpoly 3 1\
gmag 25 25 25 | plot3topix |\
extract 256 256 128 128 | bpack > bal

This pipeline generates three triangles (with gpoly) and
shifts them to be side by side (with gshift). It then
magnifies the vector drawing (with gmag, which magni-
fies the drawing by a factor of 25 in x, y, and z), con-
verts to pixel format, and crops the image to 256 x 256
pixels. This image is finally stored in file “bal” (“base-
aligned”) in bit-packed format (for space-saving con-
siderations, since the figure is, after all, binary). The
Fourier spectrum of the figure is created by

bunpack < bal | fourtr —s > bal.spectrum

This spectrum, shown in Figure Sb, is displayed on the
monitor with the following command:

scale < bal.spectrum | wframe

The next step is to create images that extract the
spectral energy at given angles. This is accomplished by
creating binary images that are nonzero only for a given
span of angles. In this case, we create patterns centered
at angles of 0, 5, 10, ... 180 deg and of widths of
15 deg. The 20-deg pattern is shown in Figure Sc. These
patterns are generated by writing a HIPS pipeline using
calcpix. The pipeline is then repeatedly run using the
ability of the Berkeley shell (Joy, 1980) to “program”
- the running of programs. The following shell script
runs the pipeline over and over again, with shell vari-
able i taking on the values 0, 5, 10, ... 180 and inserting
that value in the calcpix argument. These patterns are
then stored (in bit-packed format, using bpack) in files
patt0, patt5, patt10, ... patt180.

@i=0
while ($i <=180)
echo $i
genframe 0 256 256 |\
calepix “il =r — nr/2;i2 = ¢ — nc/2;\
d1 = (i2!=0) ? atan(((double) i1)/i2)*180./\
3.1415926 : 90.;\
d2 = fabs($i — d1);\
opix = (d2 <=7.5 11 (d2 >=172.5 && d2 <=\
187.5)) 21:0;"\
| bpack > patt8i
@i=§i+5
end

Next, two analyses, energy computation and normali-
zation, are carried out. First, the spectrum of Figure Sb
is multiplied by each ray pattern, and the average
energy in that ray is computed by summing the squared
magnitudes of all the resulting components. Second,
since each ray contains a different number of com-
ponents (we are in discrete Fourier space in a square
image, rather than a circular image), the average pixel
value of each ray pattern is computed (which is propor-
tional to the number of nonzero elements in the pattern).
Dividing these two numbers yields a normalized result

HIPS: IMAGE PROCESSING UNDER UNIX 209
that is proportional to the average sp;ctral energy in
the angular band.

The energy computation is carried out in the follow-
ing shell script:

@i=0

while ($i <= 180)

echo $i ’

bunpack —b < patt$i | btof | mulseq $1 | framevar
@i=8i+5

end

This script multiplies the power spectrum by each ray
pattern (after first unpacking -the ray pattern and con-
verting it to floating-point format, using bunpack and
btof) and computes the frame statistics with framevar
(which yields both mean and variance). The mean gray
level of the image consisting of the power spectrum
multiplied by the ray pattern is used here and is propor-
tional to the average spectral power in the angular ray.

We then carry out the same computation of average
gray level for the ray patterns alone:

@i=0

while ($i <= 180)

echo $i

bunpack —b < patt$i | framevar
@i=§i+5

end

Dividing the means for each angle from the energy com-
putation by those from the normalization yields the
final result. As can be seen from the results given in
Table 1, the energy is most concentrated at an angle of
90 deg, which should imply a set of axes oriented verti-
cally and horizontally, and the triangles should be per-
ceived most readily as pointing upward

Studies of Stereopsis and Motion Perception:
Examples 6-7

HIPS can be used to generate a wide variety of stim-
uli used in the study of binocular stereopsis and motion

Table 1
Average Spectral Power in Various Angular Bands—a Fourier Analysis of the
Bases-Aligned Stimulus of Palmer and Bucher (1981) Shown in Figure 5a

Angle Average Power Angle Average Power Angle Average Power ‘Angle Average Power

0 19 45 23 90 100 13§ 23
5 20 50 20 95 91 140 3

10 23 55 18 100 33 145 65

15 30 60 17 105 . 21 150 76

20 46 65 17 110 18 155 74

25 77 70 18 115 17 160 35

30 74 75 20 120 18 165 27

35 _ 59 80 32 125 19 170 23

40 29 85 91 130 21 175 21

Note—Columns show the orientation angIe of the center of the band and the average spectral power in each band (normalized to the
largest power) for the spectrum shown in Figure 5b. Maximum power is at 90 deg, consistent with Janez’s (1983) model for the

resolution of the ambiguous pointing.

210 LANDY, COHEN, AND SPERLING

detection. This includes random-dot stereograms and
cinematograms (Julesz, 1971), disparate views of static
and moving 3-dimensional line drawings (generated with
PLOT-3D), and stimuli involving random-dot motion for
image-segregation studies (e.g., Anstis, 1970; Baker &
Braddick, 1982; Braddick, 1974; Nakayama, 1981;
cf. Sperling, 1976). Sequences generated in this fashion
can be used as stimuli for psychophysical experiments,
and they can then be transformed to pixel format and
subjected to various other transformations (e.g., spatial
filtering) in order to verify the action of a proposed
model upon them. We consider two examples of the
generation of random-dot stimuli.

Example 6: Random-Dot Stereograms
and Cinematograms

Stereograms. The generation of random-dot stereo-
grams is quite easy using HIPS. Figure 6a shows a random-
dot stereogram on a 100 x 100 grid with 25% black
pixels, illustrating a central square floating in depth
above a surround. The central disparity is three pixels.
The figure is generated with the following commands:

genframe 128 100 100 | shiftpix —7 | noise .25 | shiftpix 7 > right
calepix “if (1>=25 && 1<75) {\
if (c>=25 && c<75)\
opix = picin[r] [c~3];\
else if (c>=22 && c<25)\
opix = picinr] [c+53];\
}” <right > left
genframe 128 512 512 | wframe
pad 0110 110 5 5 < left | enlarge | wframe 140 22
pad 0110 110 5 § < right | enlarge | wframe 140 282

(a)

b .

Figure 6. (a) A random-dot stereogram (after Julesz, 1971).
(b) Two consecutive frames from a random-dot motion sequence
(after Baker & Braddick, 1982). The dots in the center square
move upward, while those in the surrounding area move down-
ward.

)

The first command creates a random-dot pattern by
generating a uniform 100 x 100 frame, shifting each
pixel so that there is only one bit per pixel, adding bit
reversal noise to 25% of the bits (creating 25% random
black pixels), and then shifting the pixels again for
contrast. This image is presented to the right eye. The
second command (calcpix) creates the left eye’s image
by adding a crossed disparity of three pixels in the
central 50 x 50 square. The pixels that are uncovered by
shifting the square to the right are grabbed from those
that are covered by it on the right. The last three com-
mands present the patterns on the monitor with a
uniform black border on a white background to facili-
tate binocular fusion. ,

Cinematograms, A cinematogram is a sequence of
stereograms. In this next example, each frame of the
cinematogram presents the same disparity information—
a square floating above a surround—but the points are
chosen randomly and independently in successive frames.
The cinematogram is a simple extension of the stereo-
gram. It is generated by the following commands:

genframe 128 60 100 100 | shiftpix \

-7 ('noise .25 | bpack > right
bunpack —b < right | calepix “if (r>=25 && 1<75) {\
if (c>=25 && c<75)\
opix = picin[r] [c-3];\
else if (¢>=22 && ¢<25) \
opix = picin{r] [c+53];\
} | bpack > left
bunpack < right | pad 0 104 104 { pad 255 104 114 010 }\
pad 0 104 218 0 104 | bpack > b.right
bunpack < left | pad 0 104 104 | pad 255 104 11400 |\
pad 0 104 218 0 0 | bpack | andseq b.right > combined
bmovie < combined

The first command generates a sequence of 60 inde-
pendent random-dot patterns. The second command is
identical to that in the previous example and generates
the left eye’s disparate pattern. The next two commands
generate the borders and combine the sequences into
one side-by-side set of images. The last command shows
the sequence repeatedly on‘the monitor. When viewed
through a stereoscope, the sequence is perceived as a
dynamically noisy square floating above an equally
noisy surround,

Example 7: Image Segregation With
Differing Dot Motion

In an experiment by Baker and Braddick (1982),
a field of random dots was presented in which the dots
moved in a different manner in different portions of the
field. The following pipeline illustrates how such a
stimulus might be generated. It creates a sequence in
which dots within a central square move upward, while
dots in the surrounding area move downward.

genframe 128 40 40 | shiftpix —7 | noise .25 |\
repframe 40 —n’) calcpix \
“if (1>=10 && r<30 && c>=10 && c<30) \)
opix = picin[10+((r-10+)%20)] [c] ;\
else \
opix = picin[(40+1-)%40)] [c] ;" |\
pad 0 44 44 2 2 | enlarge | bpack | bmovie

This pipeline first generates a sequence of identical
40 x 40 random-dot fields. The calcpix command then
performs the dot shifting, moving each dot up or down
by the number of the given frame f. This sequence is
then given a border with pad, enlarged by a factor of
two, packed so that only one bit per pixel is used, and
then presented on the monitor. Two frames of this
sequence can be seen in Figure 6b, where close exami-
nation reveals the dot motion. Viewing this sequence,
subjects easily segregate the central square from the
surround.

Other applications to motion and stereopsis. There
are several instances in which filtering or other image
transformations might be useful in stereopsis research.
The most obvious example is generating stereograms in
which one or both of the images are filtered in various
ways (Julesz, 1971). A second example would be in
cases in which a channels model might be invoked to
explain a certain phenomenon. In the letter stereograms
of Kaufman and Pitblado (1965), different rivalrous
characters in the left and right images can produce a
sensation of depth, presumably based on gross features
of the letters, such as size and font. In current terms,
this phenomenon is likely to be based on processing in
low-frequency channels. As we have seen, predictions
of a spatial-frequency-channel analysis can be tested
using image-processing software, which can filter images
(spectrally or by convolution with receptive fields) and
further analyze the resulting images, or present the
filtered versions as psychophysical stimuli to determine
whether the perception of depth is preserved. Similarly,
spatial filtering of motion stimuli may help to define
the characteristics of channels responsible for motion
detection.

The Effects of Visual Noise: Examples 8-9

Because HIPS allows for the generation of various
sorts of static and dynamic noise, it is a flexible tool for
the generation of stimuli involving noise and for the
examination of models in which noise plays a signifi-
cant role. Two examples are chosen from studies involv-
ing noise stimuli; the first involves sensory psycho-
physics, and the second involves cognitive, linguistic
elements,

Example 8: Noise in Psychophysical Experimentation

In his thesis, Pelli (1981) analyzed the internal noise
in psychophysical spatial frequency channels by a
common technique used in the analysis of analog elec-

HIPS: IMAGE PROCESSING UNDER UNIX 211
tronics: determining the input noise that would produce
an equivalent response in an internally noiseless device.
His target stimuli were 1-dimensional, sinusoidal grat-
ings masked by dynamic noise. The gratings were
tapered in the temporal and in both spatial dimensions
by Gaussian windows. The target gratings were masked
by either 1- or 2-dimensional dynamic noise, and the
threshold modulation for the grating was determined.
The noise was generated by a simple electronic circuit,
depicted in Figure 7a. The circuit utilized a 31-bit shift
register, in which each noise sample was taken from the
rightmost bit (yielding a 0 or a 1) and then the register
was shifted one position to the right, with the previous
bits from positions 13 and 31 exclusive or-ed and put
back in bit position 1. This digital noise generator
yields a pseudorandom sequence of Os and 1s that takes
231_1~10'° shifts before the pattern repeats. In one
condition, the noise sequence was then interpreted as a
sequence of +1s and —1s, scaled by a noise contrast
factor and added to the target grating. This method
yields a dynamic “snow” added to the grating pattern.

@

l—h [2]3] - [12[18]14] - -[30[31 >~
e

{ XOR &

(b)

. Figure 7. Edge-tapered grating patterns with added noise.
(a) Block diagram of the noise source. (b) Vertical sine-wave
grating with added 2-dimensional noise. (c) Vertical sine-wave
grating with added 1-dimensional noise. (After Pelli, 1981)

212 LANDY, COHEN, AND SPERLING

In the other condition, the noise values for one raster
scan line were repeated on all other scan lines, yielding
a 1-dimensional noise mask.

We simulate both noise conditions using the HIPS °

software. Consider first 2-dimensional noise created,
along with the target, by the following HIPS command:

fgenframe 0 128 128 | fcalcpix —o sinewave \
“opix = sin((double) ¢ * 5. * 2 * 3.1415926 / nc); ”\
| repframe 60 —n | fcalcpix —o taper \
“opix = ipix * exp(—pow(((double)c\
~(nc/2))/(nc/4),2.)/2.) \
* exp(—pow(((double)r—(nr/2))/(n1/4),2.)/2)\
* ex_p(-—pow(((double)f—-30)/(f/5),2.)/2.); Y
] fecalcpix —o bitnoise “if (first) jil = 0x7f81ea92:\
first = 0;]\ ’
i2=1i1 & 1;i3 = (i1>>18)&1;il = (i1>>1)&0X3EFEEEff; \
il |= ((i2*i3) & 1) << 30;0pix +=i2?1 : =1;"\
| scale 50 128 | movie —d

This command generates a uniform frame and utilizes
fealepix to create a vertical sinusoidal grating. Repframe
is used to create a sequence of 60 frames by frame
repetition (adding new frame using —n). The next fealcpix
command applies a Gaussian taper to each of the three
dimensions. The final fealcpix command simulates the
shift-register noise generator and adds or subtracts the
noise values from each pixel, This sequence is then scaled
and converted to byte format, and presented on the mon-
itor, Figure 7b shows the middle frame of this sequence.

For the case of 1-dimensional noise, the situation is
slightly different, and it turns out that a sequence must
be stored temporarily, The command sequence for this
case (whose output is illustrated in Figure 7c) is the
following:

fgenframe 0 128 128 | fcalcpix —o sinewave \
“opix = sin((double) ¢ * § * 2 * 3.1415926 / nc); "\
| repframe 60 —n | fcalcpix —o taper \
“opix = ipix * exp(—pow(((double)c\
~(nc/2))/(nc/4),2.)/2.) \
* exp(~pow(((double)r—(nr/2))/(nc/4),2.)/2.) \
* exp(—pow(((double)f—-30)/5,2.)/2.); ” > temp
fgenframe 0 60 1 128 |\
fealcpix —o bitnoise “if (first) {il = 0x7f81ea92;\
first = 0;}\
i2=11 & 1;13 = (i1>>18)&1; il = (i1>>1)&O0x3fELFIfT; \
il =(({2°13) & 1) << 30;0pix+=i271:-1;"\
{ enlarge 128 —v { addseq temp \
) scale 50 128 | movie —d —12

The first command generates a tapered grating and
saves it in a temporary file. The second command
generates shift-register noise in a 1 x 128 pixel sequence
and then enlarges that sequence vertically in order to
create the 1-dimensional noise. This sequence is then
added to the tapered grating sequence, and the result
is treated as before.

Example 9: Noise in Perceptual Experiments

The next example involves a study from our own
laboratory. In this work (Pavel et al,, 1984; Riedl,
1984), sequences of video images of a deaf person com-
municating in American Sign Language (ASL) are pre-
sented to deaf subjects in order to gauge comprehensi-
bility of the sequences. In different conditions, differ-
ent amplitude noise is added to the ASL image se-
quences. The intelligibility of the resulting sequences
yields an index against which to measure the resistance
of ASL to more general distortions and as part of our
continuing investigations into the perceptual features of
ASL images.

Since investigations of noise-perturbed ASL image
sequences using HIPS will be reported in more detail in
the following paper (Riedl, 1984), we will only remark

- here that HIPS efficiently accomplishes the component

tasks required for generating stimulus materials for
formal tests. HIPS is used to automatically digitize and
archive the ASL image sequences from VCR and film
originals. Image transformations are then applied in
order to vary contrast and noise content. These new
stimuli are then arranged in counterbalanced orders and
recorded on a VCR automatically in preparation for
their use as stimulus tapes for our experiments.

Applications of Image Processing to
American Sign Language (ASL)

Our research on the application of image processing
to the perception of ASL was the original impetus for
the development of HIPS, and therefore the greatest
number of programs were written for that project. This
research involves the transformation of video ASL
image sequences in a wide variety of ways in order to
gauge the effects of such transformations on the intelligi-
bility of the images. ‘A large number of programs were
written for standard image-processing transformations,
including gray-scale stretching, contrast enhancement,
edge enhancement and detection, filtering and con-
volution, thresholding, and so forth. Because the project
involves not only the intelligibility of distorted images,
but also the ability to efficiently encode and transmit
this information, we have also programmed a number of
image-coding techniques. Since this paper is intended as
an overview of potential uses for image processing, we
will restrict ourselves to just one example.

Example 10: Hierarchical Coding of Edge-Detected
ASL Image Sequences .

Figure 8a illustrates one frame from a “cartoon”
sequence of ASL images. The image is generated by the
following command:

rframe 384 256 48 128 | reduce 4 | btof | scale jdog .6 7 —i 1\
thresh 90 | neg | belean 3 | neg | bpack

This command digitizes a single frame from the video

(b)

Figure 8. ASL imagery. (a) A frame from an ASL cartoon
produced by darkening the 10% most negative points in a DOG
transformation of the original. Both the original and cartoon are
96 x 64 pixels; additional *‘cleaning up” of small groups of
black pixels has been applied to the cartoon. (b) A representa-
tion of the *“‘cuts” in a quadtree encoding of the image in (a).
(After Cohen, Landy, & Pavel, 1983)

input, reduces it in size by a factor of four, and contrast-
enhances it. Then a variant of the edge-detection al-
gorithm of Marr and Hildreth (1980) is applied. Their
method involves convolving an image with a receptive
field that is a difference of two Gaussian distributions
of unequal variance (a difference of Gaussians, or DOG,

HIPS: IMAGE PROCESSING UNDER UNIX 213
mask). Marr and Hildreth used the zero crossings of the
convolution output. We, instead, threshold the output,
yielding the most negative-going convolution outputs as
black points in the output image (thus drawing cartoon
lines on the dark side of edges in the original image).
Lastly, we apply a transformation that deletes small
unconnected regions in the image.

We have been coding cartoon images such as this in
a variety of ways. One promising coding scheme is the
quadtree method. In this method, an image is trans-
mitted as a tree structure in which each node in the
tree represents a square subarea of the image. At each
level of the tree, if the image area corresponding to a
given node is uniform [all white (W) or all black (B)],
then that node becomes a leaf of the tree and is labeled
with the color of that image region. Otherwise, the node
is labeled G, for gray, and given four sons that cor-
respond to the four quadrants of that image area. Thus,
areas of the image are recursively cut until uniform
regions—single pixels, if necessary—are reached. As an
encoding method, quadtrees transmit a binary repre-
sentation of the tree we have described, and can be quite
efficient (Cohen, Landy, & Pavel, 1983). Figure 8b
illustrates, in image form, the cuts made by a quadtree
algorithm on the cartoon image of Figure 8a. It is
generated with the following HIPS pipeline:

binquad 32 1 —g < cartoon | binquad_r —d 20 200 1\
shiftpix —1 | pad 50 393 265 5 5 | wframe

This applies the binquad program with the —g option,
indicating that it should actually generate the binary
hierarchical code. Then the binquad receiver program
binquad_r decodes the encoded image, creating a dis-
playable (—d) version of the cuts. This is then placed in
a border using pad and sent to the image processor
using wframe. The gray outlines designate cuts that
the encoding tree make in the image. In large, uniform
areas, fewer cuts are made to the image than in textured
areas, and consequently the encoding tree has fewer
nodes than there are pixels. Hierarchical quadtree
codes are among the most efficient codes available for
these cartoon images (Cohen et al., 1983).

General Signal Processing

Testing Models

The image-processing software may be effectively
used in the analysis of psychophysical models. For ex-
ample, if a model refers to a number of spatial frequency
channels being applied to a given image, with various
sorts of noise added at each stage, and some form of
linking hypothesis, then the user can apply these opera-
tions directly to digital images. Thus, a picture of a
psychophysical stimulus may be digitized by the image
processor, or the stimulus may be synthesized directly
by HIPS. This image is subjected to various linear and
nonlinear transformations, and is further corrupted by
noise at any stage. Stimuli can be presented to humans

214 LANDY, COHEN, AND SPERLING

for psychophysical testing and, concurrently, be further
processed by HIPS for statistical evaluation of models.
As psychophysical models become increasingly complex
and mathematically intractable, it is our feeling that
research methods involving simulation such as we have
outlined will become increasingly useful.

1-Dimensional Signals

As we have seen in several of the preceding examples,
HIPS is flexible with respect to image parameters such as
image size. This flexibility allows the user to use HIPS
for 1-dimensional as well as 2-dimensional signal process-
ing. An image with only one row but a large number of
columns is, in effect, a 1-dimensional signal. Any of the
image transforms may be used with such an image,
including filtering, convolution, scaling, stretching,
thresholding, encoding, and so forth. Thus, without
modification, HIPS can process 1-dimensional signals.

One-dimensional signals occur in a number of psycho-
logical domains, particularly audition, in which signal
processing has a long history. Another domain of 1-
dimensional signals is physiological measures such as
evoked potentials, blood pressure, measures of eye
position, etc. Other continuous 1l-dimensional signals
occur in measurements of pursuit and tracking (by hand
or eye) and in other dynamic measures of motor per-
formance. Discrete 1-dimensional signals, such as record-
ing of heartbeats, so-called cumulative records of animal
responding under various reinforcement contingencies,
etc., are also amenable to HIPS. HIPS may be used for
signal averaging and smoothing, correlating individual
recordings with the average, detecting peaks and troughs
by convolution, and so forth. A large number of spe-
cialized, digital, signal-processing tools already exist for
1-dimensional signals, and it is therefore not likely that
a general image-processing system like HIPS can out-
perform any particular specialized system. But there is
much convenience for the user in learning and main-
taining only one system, and it is still noteworthy that
HIPS can have potential applications in such a wide
variety of domains.

CONCLUSIONS

HIPS is a software image-processing system with a
modular design. It has proved to be highly flexible,
powerful, and easy to use. Although it was written with
a particular application in mind, we have demonstrated
its potential utility in a wide range of psychological
research. .

REFERENCES

Aspou, 1. (1978). Methods of edge detection (Tech. Rep.
No. 830). University of Southern California, Image Processing
Institute Report.

AnsTis, S. M. (1970). Phi movement as a subtraction process.
Vision Research, 10, 1411-1430, ,

ATTNEAVE, F. (1968). Triangles as ambiguous figures. American
Journal of Psychology, 81, 447-453,

BaKER, C. L., & BRADDICK, O. J. (1982). Does segregation of dif-
ferently moving areas depend on relative or absolute displace-
ment? Vision Research, 22, 851-856.

Bournk, R. S. (1978). An introduction to the UNIX shell. Bell
System Technical Journal, 87, 2797-2822.

Brabpbick, O. J. (1974). A short-range process in apparent mo-
tion. Vision Research, 14, 519-527.

CanLsoN, C. R., ANpErson, C. H., & MoELLER, J. R. (1980).
Visual illusions without low spatial frequencies. Investigative
Ophthalmology & Visual Science, 19, 165-166.

CampBELL, F. W., & RoBsoN, J. G. (1968). Application of Fourier
analysis to the visibility of gratings. Journal of Physiology, 197,
551-566.

CoHEN, Y., LanNDY, M. S., & Paver, M. (1983). Hierarchical
coding of binary images. Mathematical Studies in Perception
and Cognition, 83-8, New York University, Department of
Psychology.

De Lance, H. (1952). Relationship between critical flicker-
frequency and a set of low frequency characteristics of the eye.
Journal of the Optical Society of America, 44, 380-389.

GINSBURG, A. (1978). Visual information processing based on
spatial filters constrained by biological data. Doctoral disserta-
tion, University of Cambridge, Cambridge, England.

GonzaLEz, R. C., & WiNTz, P. (1977). Digital image processing.
Reading, MA: Addison-Wesley.

GRrAHAM, N. (1981). Psychophysics of spatial frequency channels.
In Perceptual organization (pp. 1-30). M. Kubovy & J. Pomerantz
(Eds.), Hillsdale, NJ: Eribaum.

GraHAM, N., & NacuMias, J. (1971). Detection of grating pat-
terns containing two spatial frequencies: A comparison of single-
channel and multiple-channel models. Vision Research, 11,
251-259.

HurrMan, D. A. (1952). A method for the construction of mini-
mum redundancy codes. Proceedings of the Institute of Radio
Engineers, 40, 1098-1101.

Ives, H. E. (1922). A theory of intermittent vision. Journal of the
Optical Society of America, 6, 343-361.

JANEZ, L. (1983). Orientation of the visual reference frame: Quan-
titative theory. Paper presented at the 16th annual Mathematical
Psychology meeting, Boulder, CO.

Joy, W. N. (1980). An introduction to the C shell. In The Unix
programmer’s manual (7th ed., Vol. 2c, p. 46). Berkely, CA:
Department of Electrical Engineering and Computer Science,
University of California at Berkely.

JuLesz, B. (1971). Foundations of cyclopean perception. Chicago:
University of Chicago Press.

KaurMan, L., & P1tBLADO, C. B. (1965). Further observations on
the nature of effective binocular disparities. American Journal of
Psychology, 18, 379-391.

KEeRrNIGHAN, B. W,, & MasHEY, J. R. (1981, April). The UNIX
programming environment. Computer, pp. 12-22.

KERNIGHAN, B. W, & Rircuig, D. M. (1978). The C program-
ming language. Englewood Cliffs, NJ: Prentice-Hall.

Lanpy, M. S, CoxeN, Y., & SperLiNg, G. (1984). HIPS: A
Unix-based image processing system. Computer Vision, Graph-
ics, and Image Processing, 28, 331-347.

LEesTER, J. M., BRENNER, J. F., & SeLLES, W. D. (1980). Local
transforms for biomedical image analysis. Computer Graphics
and Image Processing, 13, 17-30.

MARR, D., & HiLDRETH, E. (1980). Theory of edge detection. Pro-
ceedings of the Royal Society of London, B 207, 187-217.

MosTaravi, H,, & SakrisoN, D. J. (1976). Structure and proper-
ties of a single channel in the human visual system. Vision
Research, 16, 957-968.

Nakavama, K. (1981). Differential motion hyperacuity under
conditions of common image motion. Vision Research, 21,
1475-1482.)

PaLMER, S. E., & BucHer, N. M. (1981). Configural effects in
perceived pointing of ambiguous triangles. Journal of Experi-
mental Psychology, 7, 88-114.

PaLMER, S. E., & BucHER, N. M. (1982). Textural effects in per-
ceived pointing of ambiguous triangles. Journal of Experimen-
tal Psychology, 8, 693-708.

PavEL, M., SPERLING, G., RiEDL, T., & VANDERBEEK, A. (1984).
The effect of signal-to-noise ratio on the perception of American
Sign Language. Manuscript in preparation.

Pavripis, T. (1982). Algorithms for graphics and image process-
ing. Rockville, MD: Computer Science Press.

PeLL1, D. G. (1981). Effects of visual noise. Doctoral dissertation,
Cambridge University, Cambridge, England.

PeRLMAN, G. (1980). Data analysis programs for the Unix operat-
ing system. Behavior Research Methods & Instrumentation, 12,
554-558.

PeRLMAN, G. (1981). An example of cooperating compact data
analysis programs. Behavior Research Methods & Instrumenta-
tion, 13, 290-293.

ReinGoLp, E. M., NIEVERGELT, J., & DEo, N. (1977). Combina-
torial algorithms: Theory and practice. Englewood Cliffs, NJ:
Prentice-Hall.

Riepw, T. (1984). HIPS in action: Application of HIPS in research.
Behavior Research Methods, Instruments, & Computers, 16,

217-222.

Rircuie, D. M., & Tuompson, K. (1978). The UNIX time-
sharing system. Bell System Technical Journal, 57, 1905-1929.
Rosson, J. G. (1966). Spatial and temporal contrast-sensitivity
functions of the visual system. Journal of the Optical Society of

America, 56, 1141-1142.

ROSENFELD, A., & Kak, A. C. (1976). Digital picture processing.
New York: Academic Press.

Scuape, O. H. (1956). Optical and photoelectric analog of the
eye. Journal of the Optical Society of America, 46, 721-739.

HIPS: IMAGE PROCESSING UNDER UNIX 215

ScuwaRrTz, B., & SPERLING, G. (1983). Luminance controls the
perceived 3-D structure of dynamic 2-D displays. Bulletin of the
Psychonomic Society, 21, 456-458.

SHAw, G. B. (1979). Local and regional edge detectors: Some
comparisons. Computer Graphics and Image Processing, 9,
135-149.

SPERLING, G. (1964). Linear theory and the psychophysics of
flicker. Documenta Ophthalmologica, 18, 3-15.

SpeRLING, G. (1976). Movement perception in computer-driven
visual displays. Behavior Research Methods & Instrumentation,
8, 144-151.

SPERLING, G. (1980). Bandwidth requirements for video trans-
mission of American Sign Language and finger spelling. Science,
210, 797-799.

SPERLING, G. (1981). Video transmission of American Sign Lan-
guage and finger spelling: Present and projected bandwidth re-
quirements. IEEE Transactions on Communications, COM-29,
1993-2002.

SPERLING, G., PAVEL, M., CoHEN, Y., LANDY, M., & SCHWARTZ,
B. (1983). Image processing in perception and cognition. In
0. J. Braddick & A. C. Sleigh (Eds.), Physical and biolog-
ical processing of images (pp. 359-378). Berlin: Springer-
Verlag.

Stevens, W. R., & HunT, B. R. (1982). Software pipelines in
image processing. Computer Graphics and Image Processing,
20, 90-95.

TuompsoN, K. (1975). The UNIX command language. In Struc-
tured programming—Infotech state of the art report (pp. 375-
384). Berkshire, England: Infotech International, Ltd.

WiLsoN, H., & BERGEN, J. (1979). A four mechanism model for
threshold spatial vision. Vision Research, 19, 19-32.

. Appendix
A List of the Programs in HIPS Mentioned in This Article (for a More Complete Listing, See Landy, Cohen, & Spetling, 1984)
Program Synopsis
abdou Edge-fitting method (Abdou, 1978).
adddesc Descriptive information is added to an image header.
addseq Add two image sequences, point by point.
ahc3 Adaptive hierarchical code, transmitter.
ahc3_r Adaptive hierarchical code, receiver
atob Convert ASCII to byte format.
atof Convert ASCH to floating-point format.
autodiff Compute differences between successive frames.
bandpass Parameterized bandpass filtering.
belean Binary image cleaning.
binquad Binquad/quadtree coding, transmitter.
binquad_r Binquad/quadtree coding, receiver.
bmovie Display binary sequences.
bpack Pack a sequence in one-bit-per-pixel, bit-packed format.
btof Convert from byte to floating-point format.
bunpack Unpack from bit-packed to byte format.
calepix Create a new image filter.
catframes Concatenate separately stored frames into a sequence.
checkers Generate a checkerboard pattern. '
discedge Edge-fitting method (Shaw, 1979).
disphist Display histograms,
dog Apply a Gaussian filter or a difference of Gaussian filters.
dpem_r Dpcm encoding, receiver.
dpem_t Dpcm encoding, transmitter. -
enlarge Enlarge an image.
extract Crop an image.
extremum A nonlinear filter for edge sharpening.
fealcpix Create a new floating-point image filter.
fgenframe Generate a homogeneous floating-point image.
fourtr Fourier transform.
fourtr3d Fourier transform in 3 dimensions (including time).
framevar Compute gray-level mean and variance,
ftoc Convert floating to complex.

216 LANDY, COHEN, AND SPERLING

gcube
genframe
gmag
gnoise
gpoly
gshift
gsync
hc_bin
he_bin_1
highpass
histo
inv.fourtr
inv.walshtr
logimg
lowpass
mask
median
movie
mulseq
neg
noise
pad
pixentropy
pixto3d
plot3topix
powerpix
ptoa
reduce
reflect
repframe
rframe
rotate180
scale
secheader
shiftpix
stretchpix
strobe
subseq
thin
thicken
thresh
trot
tshift
view
vrot

* vshift
walshtr
wframe

Generate a vector plot of a cube.

Generate a homogeneous byte-formatted image.
Globally scale a vector plot.

Gaussian noise generation.

Generate a vector plot of a polygon.

Globally translate a vector plot.

Synchronize and combine two vector plots.
Binary tree coding, transmitter.

Binary tree coding, receiver.

Parameterized high-pass filtering.

Gray-level histogram computation.

Inverse Fourier transform.

Inverse Walsh transform.

Natural log of an image.

Parameterized low-pass filtering.

Image convolution.

A nonlinear filter for image smoothing.

Display an image sequence in real time.

Multiply a sequence by a fixed frame.

Negate an image.

Ada bit-reversal noise.

Frame an image with a homogeneous background.
Computer the entropy of an image.

Convert a byte image to vector plot format.
Convert a vector plot image to byte format.
Stretch image contrast with a power function.
Convert from any pixel format to ASCII.

Reduce image size using pixel averaging.

Reflect an image about the vertical.

Frame repetition.

Read a frame from the image processor.

Rotate an image by 180 deg.

Apply linear or second-order scaling.

Print out image header information in a readable format.
Binary shift pixel values.

Stretch pixel contrast. .

Collapse a sequence to a single frame by averaging.
Extract a subsequence.

Thin out a line drawing to one pixel wide.
Thicken a thinned line drawing.

Threshold an image.

Rotate a vector plot over time.

Translate a vector plot over time.

Compute polar perspective.

Rotate the viewer coordinates in a vector plot over time.
Translate the viewer coordinates in a vector plot over time.
Walsh transform.

Write a frame on the image processor.

