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Model for Visual Luminance Discrimination and Flicker Detection
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A model for vision is proposed. Its basic units are RC stages whose time constants—in three instances—
are parametrically controlled. The requirements of compressing the dynamic range of the input and of
fitting luminance pulse-detection data suffice to determine the arrangement and parameters of the com-
ponents, This model accurately predicts the psychophysical results of flicker detection (DeLange charac-
teristics at above 10 Hz), the Ferry-Porter and Weber laws in the ranges where they apply, the effects of
light adaptation, and it accounts for individual differences. By considering the variable RC stage as an
approximate analog of a synaptic excitatory process which is controlled by inhibition, significant corre-
spondences are observed between the internal connectivity of the model .and the neural connectivity of the

retina.
InpEx HEADINGS; Vision; Detection,

HIS is a report on a model which attempts to

account for data from psychophysical experi-
ments in terms of an electrical network. The basic
building block of the model is an RC stage whose time
constant may be controlled parametrically by feedback
or by feedforward. The analogy between an RC stage
of variable time constant and a synaptic inhibitory
process was proposed by Fatt and Katz! for the neuro-
muscular junction (motor end-plate) of crustacea and
subsequently proved for mammalian motor neurons by
Coombs, Eccles, and Fatt in 1955.2 Fuortes -and

* This revision was prepared while the first author was a visiting
faculty member at the University of California, Los Angeles,
California.

1P, Fatt and B, Katz, J. Physiol. (London) 121, 374 (1953).

2]. S, Coombs, J. C, Eccles, a.nd P. Fatt, J. Physxol (London)
130, 396 (1955).

Hodgkin® suggested an electrical network of this gen-
eral type to account for the transduction of light into
neural signals in the eye of Limulus. To fit the data of
various specimens, their model required 7 to 14 RC
stages, each of whose time constants was controlled
parametrically by feedback. No anatomical corre-
spondence could be found for such a large number of
parameter-controlled RC stages and attempts were
made to derive this kind of response from totally
different principles.*

The model proposed here to account for human pho-
topic vision is actually simpler than Fuortes and
Hodgkin’s Limulus model, in the sense that the human

3M. G. F. Fuortes and A. L. Hodgkin, J. Physiol. (London)
172, 239 (1964).
‘J Levinson, J. Opt. Soc. Am. §6, 95/529E (1966),
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model requires only three parameter-controlled stages.
The model has the added advantage that its major
components are compatible with what is already known
about synaptic processes and about retinal connectivity.

The model may be summarized briefly as follows,
The input signal is a retinal illumination which, in
general, varies as a function of time. The signal passes
in scquence through four main components: a 2-stage

|V

Ce Rp

0y

{b)

: l/ R:RA
: " Volt)
: cC= w

)
Lo o o -

Rp V‘;

Ro Co
L

o- 4 ~0

Fic. 1(a). LP stage. Electrical analog of a low-pass-filter stage.
The time constant r,= R,C,. The triangle here and in each of the
figures indicates an isolating transconductance z which produces
an output current equal to u times the input voltage V;_,. The
inscribed symbol is the value of u. (b). FB filter. Electrical
analog of an # stage parameter-controlled feedback filter (only
the first and last stages are indicated). The last stage controls
R of each stage as indicated. The time constant of each stage is
+=RC; when the output is zero (e.g., in the dark), the time
constant of each stage is r=7p=RK,C. The value of u is 1/R,.
(c). FF filter, Electrical analog of a parameter-controlled feed-
forward filter with a single LP delay stage (rp=R;,Cp) in the
controlling pathway. Other symbols are defined as in (b). See
text for details,
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filter (FB) whose time constants 77 are controlled by
parametric feedback, a feedforward filter (FF) whose
time constant 7 is controlled by its input, 6 linear
low-pass RC stages (LP), and a threshold detector (D)
whose output is a signal of value 0 or 1 corresponding
to nondetection or detection of the particular input
signal. Thesc components are defined explicitly below.
Then, their joint action is described and applied to
prediction of psychophysical experiments. Finally, their
relation to retinal structure and function is considered.

I. COMPONENTS OF THE MODEL

Low-Pass Filter, LP (Fig. 1a)

We shall use the term p-stage LP filter for a system
that is governed by the equations

d
Tp"]‘?‘j(/)‘*“l:'j(l)=‘L‘.'..1(I) j= 1" 2 (1)
[t

In the terminology of an electrical engineer, the set of
Eqgs. (1) represents a cascade connection of p RC
stages separated by isolation amplifiers. Here 20(f) is
the input to the first stage and v,(¢) the output of the
final stage. The constant 7,=R,(, is the time constant
of each stage.

The function of the LP filter in the model is to set
the upper limit on the speed of response, i.e.; the limit
of temporal resolution. The resolution limit is deter-
mined by 7, and p together. The response character-
istics of an LP filter are independent of the input level;
it is a linear filter whose characteristics are well known.?

Parametric-Feedback Filter, FB (Fig. 1b)

The term FB filter is used here for a cascade conncec-
tion of n RC stages, similar to the LP filter except
that the output of the final stage controls the time
constant 7 of each of the stages. The functional de-
pendence of the time constant 7 on the output is

r=rp/[14v.(1)], (2a)

where 7, is the time constant of each stage in the
absence of any input to the filter. The equations repre-
senting such a filter can be written in the form

I :
K"f()\)+vj()\)[1+v'l()‘)]=7")'-—1(}‘) Jj=1-,n, (2b)
{

with A=¢/7p. The 2;(2) are dimensionless cuantitics
chosen to permit the equations for the FB filter to be
written in their simplest form. They are related to the
actual voltages V;(/) of the network in Fig. 1(h) by

"’j(l) = (#Ro) ) V,‘ (). (2¢)

The dimensional constants w, g, and R are needed 1o
bl

_;'lv"_(;.r—;;t;view of LP filters in relation to vision see G. Sperling,
Dec. Ophthalmol. 18, 3 (1964).
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establish physical units for voltage, current, and re-
sistance, but w, u, and R are irrelevant to the behavior
of the system, and do not appear in Eqgs. (2a) and(2b).%

Some properties which we have been able to prove
for FB filters are stated here in simple terms.

Generally speaking, for large inputs an FB filter
asymptotically approaches power-law behavior. For
example, when the input is an impulse of energy e, the
peak of the response v, asymptotically approaches
kel as e gets large. When the input is a step of ampli-
tude vy, the maximum transient response (overshoot)
and the steady-state level achieved by the output both
approach proportionality to ve! "t as vy becomes large.
Because the output level v, tends toward the 1/(n+1)
power of steady inputs, the over-all time constant
(which is inversely proportional to the output) also
tends towards a power function of the input.

Let Ae be the energy of a small impulse perturbation
superimposed on a steady level of input v, and let
Av, and v, be the amplitudes of the corresponding
responses. The sensitivity S of the FB filter, §= Av,/Ae,
can be shown to approach a power law, Sy (vt
Thus, the amplitude of transient responses and of the
steady-state response, the speed of response, and the
sensitivity of the FB filter all approach power functlons
of the input.

Let the Weber fraction W be defined as’ W= Ae/v,.
(The Weber fraction for very brief pulses on a steady
background has the units of time.) Writing W in terms

* of the output pulse glves W e 9,951 ("1 For constant
W, the response Av, increases as v/ (**1), A Weber law
(constant W at input gives constant output) never
holds for an FB filter; to maintain constant outputs, W
must diminish with input. The departure from a Weber
law is greater, the smaller the number of FB stages.

The function of the FB filter in the model is to
compress the dynamic range of the input. The nervous
system does not have sufficient dyvnamic range to cover
the range of possible inputs. For example, the useful
range of neuron spike rates is from about 1/sec to
1000/sec, a range of 10% The useful range of propagated
electrotonic potentials may be somewhat greater but is
probably of the same order. When the input is large,
a 1-stage FB filter can compress an input range of
10® into an output range of 10%; a 2-stage FB filter
can compress an input range of 10* into an output
range of 10®, When the input is small, compression is
less efficient.

Because the signal that controls the sensitivity of
an FB filter is presumed to be a neural signal, it must
exert its effect while varying over only a limited range.
The FB filter is the only candidate for the function of
reducing dynamic range because only the FB filter is
controlled by a signal of reduced range (its output).
The dynamic range of photopic vision covers about
107, ranging from a threshold absorption of probably

¢ The constants in Egs. (2a—b—c) are chosen to agree with those
in Ref. 3.

135

less than 5 quanta per cone’ to an upper limit (set by
pigment bleaching) of about 10% quanta per cone®!t
The reduction in range from 107 to 10° by an FB filter
would. require it to be of at least two stages. This
argument remains valid even if only a few percent of
the possible dynamic range are used.

A second function of the FB filter in the model is to
reduce the over-all time constant of the system when
the input level increases. A similar change of time
constant is observed in vision. Presumably it evolved
because of intrinsic noise in receptors and in sensory
stimuli (e.g., the quantum nature of light). High-
intensity signals reach a given signal-to-noise ratio
(level of statistical significance) quicker than do low-
intensity signals, and a change of time constant of the
visual system would reflect a matching to the stimulus. -

Delayed Feedforward Filter, FF (Fig. 1c)
We use the notation FF filter for the network shown
in Fig. 1(c). The equations representing this network
are

d
Tvx(A)-l-[l-l-’Uo'()\)]vx()\)=vu()\) (3a)

22}

™ d
' (\) 20’ (\) = po (),

TF (i

(3b)

with A={/rp. Again, to relate the dimensionless
v’s of Egs. (3a) and (3b) to the voltages V of the
network in Fig. 1(c), dimensional constants w, u,
and Ry are required: vo(#) =wV (), vo' () =V (1), and
v (8) =uRowV1(d).

Equation (3a) represents an RC stage with a variable
time constant. Here the time constant is given by

r=r1p/[14+v'(\)], (3¢)

where v'(A) [given by Eq. (3b)] is the output of a
delaying LP stage whose time constant is 7 p and whose
input is vo. For a steady input, the time constant of the
FF filter is the same as that of each stage of the FB
filter.

Simple (i.e., nondelay) feedforward control in which
v’ is simply equal to v in Eq. (3a) has been proposed for
sensory systems by Furman'? and by Marimont.® A
simple feedforward system receives identical ezatatory
and inhibitory inputs, except for magnitude. It is
virtually equivalent to a single neuron which receives

7 G. S. Brindley, Physiology of the Retina and I/ze Visual Palh-
way (Edward Arnold Ltd., London, 1960), p

8 Calculated by assummg retinal absor tlon of 1.4X10
quanta/cm? (Refs. 10, 11) and an average Foveal cone density
of 1.4X 107 cones/cm? (Ref 12).

® G. S. Brindley, Proc. Phys. Soc. (London) 68B, 862 (1955).

W, A, H. Rushton, Ann. N. Y. Acad. Sci. 74 291 (1958).

uSs, Polyak, The Vcrlcbratc Visual System (Umv Chicago
Press Chicago, 1955), p

. G. Furman, Kybemetka 257 (1965).
“R B. Manmont J. Physiol. (London) 179 489 (1965).
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identical excitatory and inhibitory inputs, a system
which was analyzed by Rall.1415

The delay stage within the FF filter is necessary
because at high intensities the signal .in the control
path is in effect a divisor of the input signal. If the
same signal were to act both as input and as control,
both as numerator and as denominator, it would in
effect cancel itself. The delay acts to spread out the
input signal in time, so that the output of the FF filter
represents the present input compared to the time-
average of recent inputs.

The remarkable characteristic of the FF filter is
that in conjunction with any prior linear or power-law
component it asymptotically produces a Weber-law
system (i.e., one which is sensitive to the ratio of a
change relative to a steady baseline rather than to the
absolute magnitude of the change). If the input to the
FF filter is W= Avo/v (a small pulse superimposed on
a steady background) then the output Awv, is directly
proportional to W when v, is large. The Weber-law
behavior of the model as a whole thus results from the
FF filter.

Although a Weber law traditionally has been as-
sumed to imply a logarithmic response characteristic,
the FF filter achieves Weber-law sensitivity without
having a logarithmic response anywhere in the filter.
The FF filter also accentuates the system’s sensitivity
to differential inputs. In fact, its response to large
steady inputs is independent of their magnitude, and
only relatively rapid changes of input are reflected in
the output.

Threshold Detector

A detector is defined as a stage whose output ¥V is 1,
corresponding to “yes, I see it” (flash, flicker, etc.) or
0, corresponding to “no.” In the present case, the out-
put ¥ is 1 whenever the input varies by more than
+e; ¥V is 0 otherwise. We have tried to keep the de-
tector as simple as possible; for example, it has no
frequency dependence or statistical uncertainty.

Connecting the Components

The model consists of the components connected in
the order shown in Fig. 2, a transducer K to convert
units of luminance to units of voltage, the FB filter,
followed by the FF filter, the LP filter, and finally the
detector. This ordering as well as the function of the
various stages in the model is quite well determined.
The FB filter must come first in order to reduce the
dynamic range; the FF filter converts the model to a
Weber-law system; the LP filter sets the temporal-

1 W, Rall, Exptl. Neurol. 2, 503 (1960).

13W, Rall, in R, F. Reiss, Neural Theory and Modeling (Stanford
Univ. Press, California, 1964), p. 73. The variable-r RC stage is
equivalent to a neuron which receives its excitatory and inhibitory
inputs directly onto the soma, which has an equilibrium potential
for inhibition (K* and/or Cl~ ioms) equal to the resting potential,
and in which excitation is restricted to small values.
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Fi16. 2. Block diagram of the model to illustrate signal flow.
The parameters to be estimated are indicated under each block:
k is a constant to convert luminance units to voltage units;
n-FB is a parameter controlled feedback filter of » stages, each
with dark time constant 7p; FF is a parameter controlled delayed
feedforward filter also with dark time constant rr (the delay
stage has time constant 7p); p-LP is an LP filter consisting of
# RC stages each with time constant +,; D represents a detector
with threshold +e.

resolution limit; and the detector ultimately makes
binary decisions on the last continuous signal. The
only uncertainty of the arrangement is whether the
LP stages are all lumped together or whether they are
interleaved with the other filters. For simplicity, they
have been lumped.

The results of the next section indicate that # (the
number of stages in the FB filter) is two and p (the
number of LP stages) is taken as six. This givcs a set
of ten differential equations which completely defines
the model up to the detector. The general solutions of
this set of equations are not known to the authors.
However, for inputs consisting of steps and pulses, an
exact solution has been derived for the FB filter (see
Appendix), the solution for the FF stage has been
approximated by perturbation analysis, and of course
the solution for the linear LP stages is well known.
For inputs consisting of sine waves, approximations
have been derived for the FB and FF stages by per-
turbation analysis (see Appendix). The description
of the behavior of the model that follows is based
primarily on analytic solutions and on small signal
approximations; it has also been verified by computer
simulation.

II. LUMINANCE DISCRIMINATION

Data
The problem

The classical problem of luminance discrimination
may be formulated as follows. Let the system (model or
eye) be adapted to an input background luminance
until a steady state is reached. Then, let a pulse incre-
ment of luminance Al of duration 7" be added. What is
Al*, the minimum detectable Al, as a function of / and
of T'? The asterisk is used here to indicate a threshold
quantity, or a statistic derived from threshold
measurements,

Dala statistics

Data from psychophysical luminance-discrimination
experiments usually give, for each [, log(Al*-T) as a
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Fic. 3. Log of minimum energy for detection (—logS) as a
function of the duration T of a rectangular pulse, illustrating the
definition of 7* and S*. Data are from Herrick,!® Background
luminance is 470 td; ce—increment test pulses; +—decrement
pulses. Dashed asymptotes were drawn by inspection to data for
decrement pulses; their intersections with the axes define =* and
Si*, Lines through increment puises of 7.2 and 314 msec (0)
define 7,* and $,* as described in text. Other increment data (@)
are not used in this calculation.

function of log7. Typical data for just one value of I
are illustrated in Fig. 3. At short durations, a horizontal
asymplote (representing a constant energy) is drawn
through the data; at long durations, a line of slope 1
(representing a constant luminance) is drawn through
the data. From these two asymptotes we abstract two
significant quantities to characterize the data, sensi-
tivity' S* and critical duration 7*. The critical duration
7* is the T-axis value at the point of intersection of the
two asymptotes. The sensitivity S* is the reciprocal of
the threshold energy represented by the horizontal
asymptote $*=limyso(A*T)L. Instead of S*, we some-
times refer directly to the limiting energy of a short
threshold pulse S*-1.

Figure 3 also illustrates graphically a calculation
method for computing #* and S* from just two thresh-
olds, one threshold for a long duration 7" and one for
a short duration 7. On a log-log plot, a straight line
with slope 1 and a straight line with slope 0, respec-
tively, are drawn through the two threshold points.
The projections onto the x and y axes of the intersec-
tion of the two lines give 7* and S*, respectively. The
statistics 7* and S* thus may be calculated from
different threshold pairs in order to illustrate the
variability of their estimate. To determine how well
the model fits experimental data, rather than examining
the undigested data directly, we will examine the
relations between predicted and observed values of
™, S* and [

Experimental Data

Suflicient experimental-data for comparison with the
model are available for three observers: Graham and
Kemp'® (one observer) and Herrick.? Herrick provided

(1(‘)"3;) H. Graham and E. H. Kemp, J. Gen. Physiol, 21, 635
TR M, Herrick, J.- Comp. Physiol. Psychol, 49, 437 (1956).
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I'16. 4. Comparison of observed values of sensitivity $* and
critical duration' 7* with predictions by the model. Data from
Herrick’s!® observer JC (left) and from Graham and Kemp!®
(right). Symbols indicate data on which »* and S* are based.
For JC: O—increment pulses of 7.2 and 314 msec, ¢—increment
pulses of 32.1 and 314 msec, +— decrement pulses, asymptotes
drawn through all durations. For Graham and Kemp: @~
increment pulses of 5 and 500 msec, o---increment pulses of 2
and 500 msec. The lines of slope one in top row of graphs represent
asymptotic Webher laws with the indicated Weber constant. Solid
curves are generated hy the model with shape parameters given
in Table I. The coordinates are scaled so that curves pass through
(0,0) when I=1ls. See Table I for scale factors let, 7rf, and S

control over pupil size which was lacking in the other
study. Herrick’s observers viewed a circular field sub-
tending 2°, illuminated to a luminance /, upon which
an increment or decrement Al (also 2°) was super-
imposed. Figure 4 illustrates the relations between S*
and [, between 7* and /, and between r* and S* for
two observers only, because of space limitations.

‘The data illustrated in Fig. 4 are based on our
analysis of Herrick’s original data, which we obtained
from the American Documentation Institute.!® The
values of S* and r* for negative (decrement) test
flashes were obtained by the asymptote method illus-
trated in Fig. 3. Values of 7* for positive (increment)
test flashes were obtained by the calculation method,
using thresholds measured for pulse lengths of 7.8 and
314 msec and also for pulse lengths of 32.1 and 314
msec (for 7*>40 msec). Thus, two completely inde-
pendent values of S* are available for increment
flashes. The two values of r* are semi-independent
because they share the 314-msec pulse.

Graham’s subject viewed a semi-circular field of 38’
radius upon which an increment (same dimensions)
was superimposed. An adjacent comparison field did
not receive the increment but hecause of an 8’ houndary

4989 ($1.25), Library of. Congress,

18 ADI Document No.
Washington, D. C. 20540;
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dividing the two fields, we doubt that the comparison
field influenced the results.

Our analyses of Herrick’s'® and of Graham and
Kemp’s'® data generally agree with their analyses
except for one important difference. Both authors con-
clude that the relation between log/ and logr* is linear.
While this approximation may be valid for a middle
range of luminances, 7* appears to reach limiting values
both at very low and at very high luminances. Our
calculations also reveal a small but consistent difference
of * between increment and decrement test flashes
for Herrick’s observer JB.

Predictions by the Model

To specify the model completely we need to estimate
the values of seven constents: n, 7r, T7p, p, Tp, ¢ and
k. Here, n is the number of stages in the FB filter, 7»
is the dark time constant of the variable stages in the
FB and FF filters, 7p is the time constant of the delay
stage in the FF filter, p is the number of LP stages, 7,
is their time constant, e is the threshold of the detector,
and % is a factor relating input luminance to the voltage
units of the model. This array of constants is less
formidable than it appears.

To begin with, overwhelming experimental evi-
. dence!® indicates that n+p is large, e.g., 2>8. Since
n is 2 (see below), p>35. For five or more cascaded
stages, the impulse response of an LP filter is approxi-
mately gaussian with only one significant parameter—
the over-all time constant. This means that p and 7,
represent only one independent parameter. Hence we
arbitrarily fix p=6 and vary 7, to obtain the desired
over-all time constant for the LP filter.

The functional requirement for the FB filter (for
dynamic-range reduction) had indicated #n=2 (Sec. I).
Anatomical considerations (Sec. IV) suggest n=1
although »=2 cannot be excluded. Comparison of the
model with data clearly excludes values of #>3, and
excludes =1 for two of the three subjects. The con-
stant # thus is fixed at 2 and should be regarded as a
stable feature of the model rather than as a parameter.

Estimation of Paramelers

The five constants which remain may vary from sub-
ject to subject and therefore are parametersof the model.
Of these five parameters, three are scale factors (i.e., they
relate units of measurement) and two alter the behavior
of the model.

When the ratios 7p/7F and r,/75 are kept fixed then,
except for scaling (choice of origin in log-log graphs),
the behavior of the model is independent of the choice
of values for the parameters 7r, &, and e. Here we
assume that, at any background luminance, the eye-
like the model—is approximately linear for inputs near

1 H, DeLange, J. Opt. Soc. Am. 48, 777 (1958).
2 D, H. Kelly, J. Opt. Soc. Am. 51, 422 (1961).
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TabLE I. Estimated shape parameters and scale factors of the
model: 7p as determined from scale factor for time axis also is
indicated. Values for = are in msec, for / in trolands, and for 1/S
in msecXtrolands. (For Graham and Kemp,!* / is in mL and
1/S is in msecXmL.)

Observer T/ TR p/TF et Tref 1/8 ret
Herrick,'s JC 4.7/29.0 11.5/290 17.6(10) 55 56.5
(DeLange,* L) .
Herrick, JB 8.5/19.0 10.0/190 125 44 236
Graham & 4.2/25.0 20.0/25.0 0.20 56 0.74
Kemp?®
DeLange, V 5.7/25.00  15.0/25.00 10 50

* Nominal value, insufficient data for estimation,

threshold. Our estimation procedure utilizes the small-
signal linearity of the model.

Another property that simplifies estimation is that
at low luminances the effect of the six LP stages is
almost negligible compared to that of the three con-
trolled stages (2-FB plus 1-FF) and at high luminances
the reverse is true. When the number of stages of time
constant 7 is three and six, respectively, the factors 3.7
and 5.7 express the factors by which 7 must be multi-
plied to give critical duration 7*. Thus, the dark critical
duration of the model is approximately 3.7 7 (owing to
the three cascaded RC filters each with a time constant
of 77) and the critical duration at a very high luminance
approaches 5.7 7, (owing to the six stages of the LP
filter).

To estimiate parameters, we start with the ratio of
the subject’s critical duration in the dark to his critical
duration in extremely high luminances. The ratio of
these two critical durations estimates 5.7 7,/3-7rp. We
chose the ratio 7p/7r arbitrarily (a good starting value
is about }). These two parameters completely deter-
mine the shapes of the logS* vs /, logr* vs logl, and
logr* vs logS* curves predicted by the model.

The translations on a log-log graph which are re-
quired to bring the predicted curves into coincidence
with a subject’s performance determine the parameters
k, ¢ and the time-scale factor, Suppose [*.r is the
adaptation luminance at which the subject’s critical
duration- is exactly half of its value in the dark. Let
S*.¢ and 7% be his sensitivity and critical duration
at =l Identifying /.o with the input voltage required
by the model to halve its critical duration determines
k. The perturbation at the input to the model corre-
sponding to the subject’s impulse threshold §*-' at
1=1*.; determines e. The subject’s value of 7*. deter-
mines the time unit of the model. The parameters oh-
tained in this way are only approximate because the
trial value of 7p might not be accurate and also because
the critical durations in the dark and at very high
luminance depend somewhat on all of the time con-
stants. Therefore, the parameters are iteratively per-
turbed until a best fit to the data results. The parameter
values are shown in Table 1; the predictions of the data
generated by these parameters are shown in Fig. 4.
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In order to limit the number of estimated parameters,
several factors were assigned values a priori even though
their values normally would be estimated @ posteriors.
For example, the time constants of each of the stages
of the FB filter and also of the variable stage of the
FF filter were arbitrarily taken to be the same. The
inputs to the delay stage and to the through stage of
the FF filter were taken to be equal in magnitude.
The feedback signal in the FB filter was assumed to
act with zero delay, clearly an oversimplification. Al-
though these assumptions are not correct, the error—if
it is not too large—may be compensated by variations
of the values of the estimated parameters. For this
reason, the time constants in Table I should not be
taken too literally as estimates of underlying processes.

Goodness of Fit

Inspection of Fig. 4 shows the fit of theory to data
is quite good. For example, the model’s prediction of
logS*—! vs logl agrees with the observed data within
measurement error, including the asymptotic Weber
laws for high luminance (lines of slope=1), The good-
ness of predictions of 7* is more difficult to evaluate
because of the greater variability of the data (estimates
of 7* require measurement of thresholds with at least
two different conditions) and because of the small
range of variation of 7* (e.g., in Fig. 4 the scale for
7* is expanded by 3.5 over the scale for S*).

The Number of Stages with Variable 7

For a pure n-stage FB filter, 9 logS§*/d logr*=n. For
such a system, the logr* vs logS* curves at the bottom
of Fig. 4 would be straight lines of slope 1/#. Fuortes
and Hodgkin® used this property of FB filters to esti-
mate the number of variable stages in Limulus as 7 to
14, If a system is not pure FB, particularly if it contains
some fixed-7 stages (e.g., LP stages), then 9 logS*/
8 logr* may fail to estimate the number of variable-r
stages. For example, the slopes of the logr* vs logS*
functions in Fig. 4 vary from % to 1/50. In a pure FB
filter these slope values would indicate 2 to 50 variable-r
stages;in Fig. 4 they result from exactly three variable-r
stages (2-FB, 1-FF) in conjunction with an LP-filter
observed at different adapting luminances. Similarly,
Levinson’s* argument (from the slope of logr vs logl)
that there are 6 variable-r stages would be valid only
if the entire system were a pure FB filter, not otherwise.

III. FLICKER DETECTION
The Problem

The most general and best studied case of flicker

detection is the detection of a sinusoidal modulation
m superimposed on a steady luminance /.22® Sinusoidal-

21 7, Levinson, J. Opt. Soc. Am, 56, 1442A (1966).

2 H, E. Henkes and L. H. van der Tweel, Eds., Flicker (Dr.
W. Junk, Publishers, The Hague, 1964).

%], L. Brown, in G. H, Graham et al,, Vision and Visual
Percepiion (John Wiley & Sons, Inc., New York, 1965), p. 251.
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Fic. 5. Comparison of observed with predicted sinusoidal-
flicker thresholds. The theoretical DeLange characteristics are
redicted by model with parameters given in Table I. Data are
rom DeLange’s? observers L (left) and V (right). Luminance in
trolands is indicated by the plotted symbols: “1”"=1, “2” =10,
“3” =100, “4” =1000, “5" = 18 000 (observer V only). Some data
at intermediate luminance values have been omitted for clarity.
The lightly drawn theoretical curves indicate predictions for two
higher (one higher, observer V) and for two lower luminance
values than were studied. The curve for highest luminance is
virtually identical to the envelope of the series of curves.

flicker experiments seek to determine the threshold
amplitude of sinusoidal modulation as a function of fre-
quency (the function is called a DeLange character-
istic) at various levels of background luminance. From
the results with sine-wave modulation (DeLange char-
acteristics), it is possible to predict the results of all
other flicker experiments which use periodic stimuli
(e.g., square waves, impulses, etc.) at repetition rates
greater than about 5-10 Hz.>* DeLange characteristics
thus predict the bulk of the available flicker detection
data. Without loss of generality we therefore limit our
predictions of flicker to DeLange characteristics.

Data and Theory

Figure 5 illustrates data from DeLange’s" observers
L and V. The set of theoretical DeLange characteristics
illustrated for observer L were predicted by the model,
using the same time constants as for Herrick’s observer
JC. The predicted curves for observer V are based on
new estimated parameters (see Table I).

DeLange’s viewing conditions were similar to Her-
rick’s (2° circular field, foveal fixation) except that
DeLange surrounded his test field with a steady uni-
form background (60° diam, luminance !). In principle,
the model with the parameters estimated for Herrick’s
pulse-discrimination data could be applied directly to
DeLange’s flicker data, but two adjustments are neces-
sary. First, the vertical position of the set of theoretical
curves has been adjusted to give an approximate best
fit. This adjustment corresponds to diminishing ¢, the
detection threshold, by a factor of about ten.?® Second,

2 1. H. Kelly, Doc. Ophthalmol. 18, 17 (1964).

2 UnFublished data of J. Levinson in which flicker and pulse
thresholds are compared directly in the same observer under the
same conditions, indicate that the model’s e-discrepancy (be-
tween flicker and pulse thresholds) is a factor of 2. Much of the

discrepancy vanishes if predictions are made from peak-to-peak
instead of from average-to-peak (personal communication).
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modulation) as a function of Juminance. The data are from
DeLange™ and include intermediate values omitted from Fig. §.
The theoretical predictions are the same as in Fig. 5. The slope
of the approximately straight line segment of the curves is indi-
cated in Hz/logo/ (Ferry-Porter constant).

a slightly better fit (for observer L) was obtained after
dividing the luminances stated by Herrick by 1.8
(i.e., changing %) instead of using them directly. The
discrepancy between an artificial-pupil system (Herrick)
and a maxwellian-view system (DeLange) might well
be as large as 2, and we preferred this adjustment to
changing the time constants of the model.

The theoretical predictions fit the experimental data
well for frequencies above about 8 to 10 Hz. The
critical flicker frequency CFF (obtained at 1009,
sinusoidal modulation) is illustrated in Fig. 6. The
prediction of CFF is within measurement error.

Although the function relating CFF to log Hz is S
shaped, it may have a nearly linear middle portion
(Ferry-Porter law) which extends for several log units
of luminance.”® The model predicts Ferry-Porter laws
with slopes of about 14.6 and 11.7 Hz/logyl, for
observers L and V, which are good fits in this instance.

The good fit of the model—with time constants
estimated for observer JC—to observer L is fortuitous.
A fit to DeLange’s observer V requires slightly different
parameters than those estimated for the three ob-
servers whose Juminance discrimination we have been
able to study.

At frequencies below 10 Hz, the model increasingly
overestimates an observer’s ability to detect flicker.
This overestimation is inherent in the model for all
reasonable values of the parameters and is considered
in Sec. V,

IV. SOME RELATIONS OF THE MECHANISM OF
THE MODEL TO THE MECHANISMS
OF VISION

Neural Identification of the Model’'s Components
RC Stage

In comparing components of the model with neural
structures, the critical analogy is between an RC stage
and those portions of a neuron which are concerned
with synaptic transmission, That the resistance and
capacitance of a neuron—in conjunction with its
geometry—can be related directly to the R and C of
an equivalent RC stage is now abundantly docu-
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mented.!.%14.15.26.27 Signals réceived by a neuron through
excitatory synapses.produce a neural voltage which is
represented as a voltage input to the equivalent RC
stage; signals received by a neuron through inhibitory
synapses produce a resistance change in the neural
membrane which is equivalent to a resistance change
in the equivalent RC stage.

In addition to their main effect, excitatory neural
signals produce a secondary resistance change (which
becomes significant for large signals) and inhibitory
signals usually produce a secondary effect equivalent
to a voltage input. These secondary effects have been
neglected in our simplified RC analogy, which also
implicitly assumes that synapses are positioned on the
neuron soma. Synapses on dendrites produce compar-
able neural signals except that the path from the den-
drite to soma must be considered'®; it may be approxi-
mately represented by one or more LP stages.

Little systematic information about retinal synaptic
connectivity was available at the time the model was
formulated, so it was based on functional considera-
tions. But, except for the detector, the functional
model is composed of RC components, each of which
has a neural analogy. Insofar as we accept the RC
stage—neuron analogy, a functional model implies a
neural model and vice versa. We now compare, compo-
nent by component, the model implied by our func-
tional analysis with retinal models implied by micro-
anatomical and physiological research.

The macrostructure of the retina is quite clear:
cones and rods (the receptors) connect via various
kinds of bipolar cells to ganglion cells whose axons
form the optic nerve. Various kinds of horizontal cells
lie near the receptor-bipolar interface while various
kinds of amacrine cells lie near the bipolar-ganglion
interface !

FB Filter

The function of the FB filter is to compress the
dynamic range of luminance inputs. In the eye, physio-
logical evidence places the compression of dynamic
range at and near the receptor level.?s

The synaptic connections at the receptor level still
are not well known. However, it has been shown that
cones have a double synapse (o horizontal cells and to
midget bipolars, a single synapse to flat bipolars, and
that a single horizontal cell connects to numerous
cones.®* From these anatomical observations, Dowling
and Boycott® infer that horizontal cells carry a feed-
back signal to the cones. The microanatomy suggests

#J. C. Eccles, The Physiology of Synupses (Springer-Verlag,
Berlin, Géttingen, Heidelberg, 1964).

¥ For a review see B. Katz, Nerve, M uscle, and Svnapse
(McGraw-Hill Book Co., New York, 1966).

2 K. T. Brown and K. Watanabe, Scicnce 148, 1113 (1965).

® J. E, Dowling, Science 147, 57 (1965).
193"5[)4. Missoten, The Ultrastructure of the Relina (Arscia, Brussels,

65).

# J. E, Dowling and B. B. Boycott, Proc. Royal Soc. (London)
166B, 80 (1966/67).
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a modified 1-stage FB' filter, in which the RC stage
(cone synapse onto bipolar) is controlled by delayed
feedback (through the horizontal cell). Our functional
FB filter consists of two stages with no delay of feed-
back. -However, the simplifying assumptions of our
RC analogy are most vulnerable at the receptor level
(because of the high levels of input), and the synaptic
connectivity still is uncertain (for example, there are
numerous other possible paths for inhibition®:82-%) gso
it is premature to press the comparison further.

FF Filter

. We propose the FF filter as the mechanism by which
the ganglion cell’s receptive field is organized, with
the controlled signal originating from the center of the
receptive field and the controlling signal from the
surround. In this theory, the FF filter is a representa-
tion of the neural interactions occurring at the level
of the bipolar-ganglion cell interface. The delayed
controlling signal passes through the amacrine cells.
The large spatial extent of these cells corresponds to
the surround area of the receptive field.

Bipolars transmit to ganglion cells through a double
synapse, the second half of which transmits to amacrine
cells.’® The amacrine then retransmits to the bipolar
via a simple synapse in the immediate neighborhood,
thereby providing a local inhibitory path (bipolar~
amacrine-bipolar) which is feedback (the amacrine
receives the bipolar’s output signal and feeds it back

to the bipolar). As a bipolar axon meanders through
~the inner plexiform layer, it makes numerous such
connections.® Such a series of recurrent loops (bipolar-
amacrine~bipolar) forms a complex attenuating channel
whose analysis is beyond the scope of this article.3”

Signals from the center of the ganglion cell’s recep-
tive field travel via the bipolar attenuating channel and
connect only onto the ganglion cell’s dendrites (except
in the case of rod bipolars which make some additional
connections to the soma of diffuse ganglion cells).®!
Signals from the surround portion of the ganglion cell’s
receptive field travel via amacrine cells and generally
connect to both dendrites and soma of ganglion cells.
The separation between the two avenues of input to the
ganglion cell serves to increase the effectiveness of the
surround’s control over the center.®® Because ganglion

2 M. Kidd, J. Anat. (London) 96, 179 (1962).

3 W, K. Stell, Anat. Record 153, 389 (1965).

4 ], E. Dowling, J. E. Brown, and Diane Major, Science 153,
1639 (1966).

3 A, I. Cohen, J. Anat. (London) 99, 595 (1965).

3 J. E. Dowling and B. B. Boycott, Cold Spring Harbor Symp.
Quant. Biol, 30, 393 (1966).

% If the internal resistance of the bipolar axon is small, then
the sequence of recurrent loops it generates as it connects to
various ganglion-cell dendrites can be represented by a single
1-stage FB filter., The anatomy then provides two successive
1-stage I'B filters, each with delayed feedback, a system which is
similar to the 2-stage FB filter of the model. o

3 For a similar separation of the loci of excitation and of
inhibition in a peripheral visual neuron, see R. L. Purple and
I'. A. Dodge, Cold Spring Harbor Symp. Quant. Biol. 30, 529
(1966).
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cells themselves do not transmit back to the retina,
they provide no feedback paths. Therefore, in ganglion
receptive fields, control of the center by the surround
must be feedforward.

LP Filter

For a small dynamic range of inputs, a variable-time-
constant RC stage can be approximated by a fixed-
time-constant LP stage. The two FB stages and the
FF filter greatly reduce the dynamic range of input
signals; the model is applied mainly to predicting barely
detectable signal modulations; therefore, we approxi-
mate the contribution to detection of subsequent neural
interactions by LP stages.

The six (or more) LP stages limit the high-frequency
response. Their average time constant of approximately-
5 msec is typical for excitatory post-synaptic potentials
in fast neurons.® However, the number of LP stages
and the time constant of each is not critical for the
model—only the over-all time constant is critical,

Although the LP stages of the model were lumped
together for convenience, it probably would have been
more accurate to place some LP stages between (and
within) the FB and FF filters. LP stages represent the
low-pass filtering which occurs when signals travel long
dendritic paths'® and such paths occur in the neurons
which the FB and FF filters are presumed to represent.
The remaining LP stages of the model represent
synapses beyond the retina. These LP stages cause
appreciable differences of attenuation only at high
input frequencies (=3 dB per octave above 30 Hz for
each LP #tage of r,=35 msec). For visual inputs that
flicker at high frequencies, the ERG*® and some centrally
recorded evoked responses* to flicker are much greater
than would be expected from psychophysical CFF
data. The model predicts that this would occur when-
ever some synapses (LP stages) still remain 1o he
traversed between the site of recording and the site of
detection,

Impulse Response and Analogy to Spatial Vision

Figure 7 illustrates the impulse response of the model,
just prior to the detector. The input consists of a small
impulse Al-§(f) superimposed on a steady background
of luminance /. Outputs are illustrated for ten values
of /, each background differing from the previous one
by 10X. The range is from infinitesimal / (the first
three impulse-response curves superimpose exactly) to
an intense / (correspondingly roughly to 0.7X10¢ 1d).
The response curves have been normalized so their
maxima equal 1. The shape parameters are thosc
illustrated for Herrick’s observer JC; other sets of

(139’513). R. Curtis and J. C. Eccles, J. Physiol. (London) 145, 529
9).

“ L. H. van der Tweel, Doc. Ophthalmol. 18, 287 (1964).

‘' A. S. Schwartz and D. B. Lindsley, Bol, Inst, Estud. Med.
Biol. (Mex) 22, 249 (1964).
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parameters from Table I produce highly similar families
of curves,

Stmilarity between Temporal and Spatial
Receptive Fields

Physiologists call an inverse relation between an
input and an output (neuron-spike frequency) inhibi-
tion. A direct relation is called excitation. These terms
~ also apply to phases of a response. The impulse re-

sponse curves of Fig. 7 illustrate nicely the change
from pure excitation at low luminances to excitation
plus inhibition at moderate and high luminances. The
first indication of inhibition—a significant undershoot
in the impulse response curve—occurs with background
luminances greater than about 10? td. At adapting
luminances of about 10* td and greater, the negative
portion of the impulse response balances the positive
portion almost exactly so that the integral over the
whole impulse response is virtually zero; thus, net
inhibition equals net excitation.

Let impulses be superimposed on- a series of back-
grounds of diminishing luminance. The change of the
impulse response with this controlled dark adaptation
is from excitation plus inhibition at high background
levels to excitation only for backgrounds below 10? td.
If the model were stimulated only at a single instant
(impulse input);, and the response recorded only at a
single instant, then by varying the time of stimulation,
an excitatory region (of times) and an inhibitory
region (of times) would be observed; i.e., the impulse
response could be laboriously reconstructed. The tem-
poral inhibitory period would be observed to- be spread

out relative to the excitatory period, and it would be -

observed to disappear with dark adaptation (Fig. 7).
The properties of the temporal receptive field (of
the model) are close analogs of the properties of spatial
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receptive fields observed in retinas® and deduced from
psychophysical experiments.®* Insofar as there is a
single mechanism for the organization of the receptive
field, parallelism between temporal and spatial phe-
nomena is inevitable, Barlow ef al.,2 attributed the
changes of spatial mode of response to ‘“change of
organization in the receptive fields of the cat’s retina,”
(with the implication of a change of connectivity). In
the model, these properties result from -a single kind
of connectivity which causes vastly different responses
to the same input signal depending on whether it is
superimposed on high or on low levels of background
illumination. '

V. DISCUSSION

Errors of Prediction

As a point of reference, consider the model with its
detection parameter e chosen appropriately for flicker
detection at frequencies above 10 Hz. Then it predicts
single-pulse thresholds and low-frequency sine:wave
modulation thresholds which are lower than those
actually observed. The flicker experiments' used aback-
ground field equal in luminance to the test, and-the
pulse-detection experiments!®!® did not. This difference
of viewing conditions produces systematic threshold
shifts and therefore leads to prediction errors by the
model because the model does not deal explicitly with
spatial parameters.? Below; we consider three: other
factors which lead to prediction errors. :

Sampling Effects

Due to quantum fluctuations of the stimulus*4-and
to internal noise in the visual system,® the actual
input to the detector will fluctuate around the: pre-
dicted mean value. The same physical stimulus pre-
sentation may thus exceed threshold on some trials
and fail to exceed threshold on other seemingly identical
trials, This trial-to-trial variability is well known and
an elaborate technology ‘has been developed to deal
with it.#% In a pulse-detection experiment, such. as
Herrick’s,' trials are well separated. On each trial, the
pulse is either present or absent. The observer is
constrained: to set his criterion (the value of ¢ in.the
model) at a sufficiently large value so that on-trials
when no signal is presented, he gives an acceptably
low level of false positive detections (e.g., <0.05). The
stimulus threshold is defined as the value of Al-T

2 H, B. Barlow, R. Fitzhugh, and S. W. Kuffler, J. Physiol
(London) 137, 327 (1957).
( gSR. Ratoosh and C. H. Graham, J. Exptl. Psychol. 42, 367
1951).

#W. M. Kincaid, H. R, Blackwell, and A, B. Kristofferson,
J. Opt. Soc. Am, 50, 143 (1960). ’

4.G, Westheimer, J. Physiol. (London) 190, 139 (1967).

4 A, Rose, J. Opt. Soc. Am. 38, 196 (1948).

47 H. DeVries, Physica 10, 553 (1943).

4 H, B, Barlow, ]. Physiol. (L.ondon) 136, 469 (1957).

® H, R. Blackwell, J. Opt. Soc. Am. 53, 129 (1963).

®J A, Swets, Signal Detection and Recognition by Human
Observers (J. Wiley & Sons, Inc., New York, 1964).
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which is detected on 0.5 of the trials on which it is
presented.
We consider now a flicker experiment in which brief

pulses are presented at a rate of 10/sec. If the observer

maintained his pulse criterion in the flicker experiment,
it would imply that 509, of the pulses (i.e., about §
pulses/sec) exceeded the detection criterion. In the
usual flicker experiment, the observation period. is
several seconds, often tens of seconds. Under such
conditions, a criterion which required 0.5 of the pulses
to exceed threshold is excessively stringent. Good dis-
crimination between flickering and steady luminances
theoretically is possible even if only 5%, or 109, of the
pulses (i.e., one pulse every few seconds) exceeds
threshold. Lacking quantitative data about the ampli-
tude and the frequency spectrum of noise fluctuations
of the input to the detector, we cannot predict the
criterion factor relating flicker thresholds to pulse
thresholds.®! An order-of-magnitude calculation of the
effect of a criterion difference between the flicker and
single-pulse thresholds suggests that it may account for
a factor of about three between flicker and single-pulse
predictions,

Perfect Memory in the Detector

Another factor which is particularly important in
the low-frequency predictions of the model is the as-
sumption that the detector’s memory of its input is
. perfect, so that whenever a perturbation by as much
as e occurs, it is detected. Absolute memory for lumi-
nance is remarkably poor,’? even though much lumi-
nance information demonstrably is available at the
time -of stimulation.® The incorporation of a limited
memory capacity in the detector would improve the
prediction of low-frequency sine-wave modulation
thresholds. The unique difficulties of predicting low-
frequency modulation thresholds also have been recog-
nized by other theorists®; most of these difficulties
seem to be attributable to the great role of nonretinal
factors in determining these thresholds.

Contrast Detection (Simultaneous
Luminance Discrimination)

Let an increment of luminance A/ be added to only
a portion of a uniform field of luminance /. An observer
may be able to detect Al by spatial comparison of /
with /<4-Al even when he has failed to detect the tem-

® For various different assumptions that have been made
about noise distribution to enable theoretical estimates of the
effects of visual noise on flicker thresholds see R. C. Jones,
Washington Acad. Sci. 47, 100 (1957); L. H. van der Tweel, Ann.
N. Y. Acad. Sci. 89, 829 (1961); and D. H. Kelly, J. Opt. Soc.
Am, 51, 747 (1961).

5 G, H. Mowbray and J. W. Gebhard, in W. H. Sinaiko, Ed.,

Selected Papers on Human Faclors in the Desiin and Use of Control -
tl

Swvstems (Dover Publications, Inc., New York, 1961).

8T, N. Cornsweet and H. M. Pinsker, J. Physiol. (London)
176, 294 (1965).

o See, for example, J. Levinson and L. D. Harmon, Kybernetik
1, 107 (1961).

poral change. The use of spatial information to detect.
Al is called contrast detection. Contrast detection
appears to involve a slightly different mechanism than
temporal luminance discrimination (successive lumi-
nance discrimination), and the present model applies
only to experiments in which contrast detection is
excluded.

In DeLange’s flicker experiments,”® a background
field was available for contrast detection. By providing
an external reference, the background functions in much
the same way as would improved memory for luminance.
The presence of a background tends to reduce the pre-
diction error at low frequencies of flicker, so that the
model’s true prediction error is greater than that
illustrated in Fig. 5.

In Graham and Kemp’s experiment,'” an adjacent
comparison field, which did not receive the increment
of luminance, was available for potential use in con-
trast detection. Because of a separation between the
incremented and the unincremented areas, the presence
of the comparison field seems not to have influenced
the data. This illustrates that available contrast in-
formation need not necessarily be utilized.

In an experiment intended to elaborate Graham and
Kemp’s findings, Biersdorf’ superimposed an increment
on a larger field. He also instructed his subjects to re-
port not when they merely discriminated the presence
of the increment, but only when they saw it as a disk.
Biersdorf’s procedure probably involves contrast de-
tection, particularly at high background illumination,
and invalidates comparison with the studies considered
here. It also may account for Biersdorf’s quite different
results. Other well known studies that appear to be
relevant to the present model but must be excluded
because they involve contrast detection are those of
Kahneman.56.5

VI. SUMMARY AND CONCLUSIONS

The model proposed here consists of three types of
filters in cascade, plus a detector. The universal element
in all filters is an RC stage whose time constant 7 is a
variable, signal-controlled parameter. The variable-r
RC stage is a good approximation to a neural excitatory
process controlled by synaptic inhibition.

The first filter (parametric feedback filter FB) con-
sists of two RC stages in cascade. Its input is a retinal
illumination which varies as a function of time; its
outpul controls the time constants of both its RC
stages (parametric feedback control). The FB filter
represents retinal interactions at the receptor-bipolar
level, with the controlling signal passing through the
horizontal cells.

The second component is a parametric feedforward

% W, R. Biersdorf, J. Opt. Soc. Am. 45, 920 (1955).
( 48 [; Kahneman and J. Norman, J. Exptl. Psychol. 68, 215
1964).

57 D, Kahneman, J. Exptl. Psychol. 71, 543 (1966).
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filter FF. It consists of an RC stage whose time con-
stant is controlled indirectly by its input signal (para-
metric feedforward control). The controlling signal

itself passes through an RC stage (delay stage) before.

affecting the time constant, The FF filter represents
retinal interactions at the bipolar—ganglion cell level,
with the controlling signal passing through the amacrine
cells,

The third component consists of six (or more) RC

stages in series, each with the same, fixed, time con-
stant, These represent dendritic delays within the
retina and synapses beyond the retina.
- Finally, the detector detects a signal whenever its
input (the output of the sixth RC stage) varies from a
steady level by more than ==e. The detector is non-
retinal and tentatively of minimum complexity.

The équations generated by the model were solved
and applied to predicting the results of luminance dis-
crimination experiments, (i.e., an observer detects a
luminance increment or decrement which is of variable
duration and superimposed on a background of variable
luminance). By estimating two time constants (and
three scale factors) for each subject, very good fits to
individual data were obtained, including estimates of
the dark- and the light-adapted critical duration, the
dark-adpated sénsitivity, and the constant of the
asymptotic light-adapted Weber law.

In sinusoidal-flicker experiments, a subject detects
the flicker of a sinusoidally modulated light as a func-
. tion of the modulation depth, the modulation frequency,
and the luminance of the light being modulated. The
model, with the same time constants as were estimated
for luminance-discrimination experiments, gave good
predictions of flicker thresholds for frequencies above
10 Hz, including accurate predictions of the Ferry-
Porter law relating CFF (for 1009, modulation) to
luminance.

Errors of the prediction of low- frequency flicker
thresholds and a decrease of the detection criterion
from pulse-detection to' flicker-detection predictions
were attributed to the following factors: differences of
psychophysical procedure, the implicit assumption of
perfect memory for the detector, and the neglect (in
the model) of internal and external sources of noise,

It is concluded that the model of visual interactions,
which is consistent with available physiological and
anatomical data, can predict the results of luminance
discrimination and of flicker detection experiments
with considerable detail, accuracy, and economy.

APPENDIX
This appendix outlines the methods used for solving
the sets of Egs. (2) and (3). We use the notation
D=d/dn.
In the Egs. (2) the substitution

F(N)= exp(f E1'+vn<x'>3dw) (A1)

SPERLING AND M. M.

SONDHI Vol. §8
is equivalent to the substitution
DF(\)=F(\)[14+v.(2)] (A2)
and gives
DF(N)v;(N]=F N (A)  j=1,--n.  (A3)

From Eqgs. (A3), by substituting the j-th equation in
the (j+41)-th with j going from 1 to n—1, we get

D [F (N (\)]=FM\)vo(M). (A4)
Hence, from Eq. (A2)
D HE(A)—=DF(A\)—vo(A\)F(A\)=0. (A3)

Thus the set of first-order nonlinear Egs. (2) is trans-
formed to a single linear Eq. (A5) of order -1 in the
variable F. The solution of Eq. (AS) gives the complete.
solution of the set (2). For given F()\), v,()) is obtained
from Eq. (A2) and, if desired, v;(\) -« 9,~1(A) from the
Egs. (A3). Note also that the solution of Eq. (AS3)
readily provides the solution for the case when an
(n+1)-th simple, nondelaved feedforward stage is
cascaded. This is because the equation for such a stage
is

D[F()‘)'L'WHO‘)]:F(A)t’u()‘) (AO)
or, from Eq. (A2),
”n+1(>\)
1 '
= E(A)—F(AN) 1N —F(0)v,41(0) |. (A7
F—m{/ [DF V)= F)JN = F@seia® |, A7)
& Step and Pulse Inputs

For arbitrary v(\) we do not have a method for
the exact solution of Eq. (AS5). However, for no(\)
consisting of combinations of step functions and im-
pulses the exact solution can be obtained. We will
illustrate this by one example,

Consider an input vo(\) =A% (\)+B3(A— o) appllcd
to the system which isinitially quiescent [v¢(\)=0, < 0],
The input is a step change in illumination at A=0 on
which is superimposed a flash at A=Xo. Then Eq. (A5)
becomes

(D™H1—D»— A)F(\) =0, A< Xo
=BF(\)5(A—No), A=Xo.  (A8)

The solution of Eq. (A8) may be obtained by standard
methods, using the fact that at A=0, F(A) and all its
derivatives are equal to 1. The solution of Eq. (A8) is

F(\)= Z": a; exp(sd), Ao
)
n B =
= Z a; exp(s,)\)-i-——(z a; exp(s.-)\o))
il) A =0

X3 ai(si—1) explsiA—=A)], A2 (AY)
=0
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Here s; are the roots of

SrH_§r—4 =0, (A10)
and

ai=s;/[(n+1)si=n]. (A1)

Using Eq. (A2), we see that the solution for v,(A) is
expressed as a ratio of the sums of exponentials and
damped sine and cosine terms.

The method outlined above is adequate, with ap-
propriate minor modifications, for other combinations
of pulses and steps and for different initial conditions
(e.g., the system could be adapted to a steady input
other than zero). The solution of the characteristic
Eq. (A10) is cumbersome for n>2. However a variety
of efficient subroutines for solution of polynomial equa-
tions by computers are available.

Sinusoidal Inputs
We consider the solution of Eq. (AS) when
vo(A\) =4 (14m coswh). (A12)

A perturbation solution is obtained by the following
method.
We consider the equation

exp(soh)
0

{D"‘“— D-"-—-A[l-l-ma coswx] ] F(\)=0. A‘

. (A13)
-We will show that the solution of Eq. (A13) is such
that F(\) — ao exp(so\) in the steady state, provided
the output modulation is small, thus giving a solution
for an input of the form of Eq. (A12).
Equation (A13) may be solved by Laplace trans-
formation to give
F(\)=a, exp(so\) {1+ Am cos(wr—P)
X[Rt+A42—24R cos¢ ]},
where aq is defined by Eq. (A11) and

R= (s¢+u?)"[ (s0—1)2+w?]
¢=n tan(w/s0)+tan"Lw/ (s0—1)]
&= tan[ (R sing)/ (R cosp—A4)].

(A15)

1145

Let .
3= Awm[ R+ A2—2AR cosp .
Then ,
F(N) = ao exp(s\)[1+ (8/w) cos(wh—@)], A—e0.
Hence
0 sin(wA—®)

va(N) = (50— 1)—1+(6/w) cos(wh—®)

(A16)

If now (§/w)<<1, the output modulation is small and
U, (\) = 59— 1—8 sin (w\—®),
with v(\) given by Eq. (A12).

Feedforward Filter

The equations governing this stage are Egs. (3a) and
(3b). The steady-state solution is

v’ (%0 ) =vo(0)
v1()=vo/[1+v0(0)].
To find the output when the input is ve()48f(N),

where g is a small positive number, we may use standard
perturbation technique. Thus, we let

n(\)=v1(®)+Bg(N\)+- - (A17)

3’ (\)=1v0o()+BE(N+ - -. (A18)

Equations (A17) and (A18) when substituted into
Egs. (3) give, to first order in 8,

Dg(N+[14vo(=)Jg(\) = f(A) —n()k(N)  (A19)

(ro/Tr)DE(N)+RE(N) = f(N), (A20)

which are linear equations. Equation (A20) represents

a linear RC integrator (time constant rp/rr) whose

input is f(A\) and whose output is k(\). The solution

for #(\) may be substituted in Eq. (A19). The right

side of Eq. (A19) is then known and represents

the input to another RC integrator {time constant
1/[14v0( )]} whose output is g(\).



