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Abstract.  
Psychophysics refers to the branch of Experimental Psychology that deals with the study of Sensation and 
Perception. A consensus has grown up among experts in Psychophysics during the last hundred years that 
the human being's percepts are inferences that are based on a minimum, or simplicity principle, which is 
applied to the currently available sensory data. These educated guesses play the critical role in 
establishing veridical perceptual representations of the 3D environment, where by “veridical” we mean 
that the percept agrees with what is “out there.” These veridical representations cannot be achieved 
without making use of symmetries, much like those known in Physics, where they are essential for 
characterizing our physical world and deriving the conservation laws. But, unlike in Physics, the 
important role that symmetry plays in Psychophysics has only been demonstrated and explained within 
the last ten years. Symmetries represent regularities in our physical world. These symmetries also serve as 
the source of the redundancies that are inherent in 3D objects and that make vision possible. The main 
goal of this paper is to show that the similarity between the mathematical formalisms used in Physics and 
in Psychophysics is not coincidental, and that exploring this similarity can benefit the sciences called 
Perception and Cognition. This paper includes a brief tutorial about symmetry groups and their 
relationship to transformation groups as well as to their invariants. It was included to make this material 
available to readers who are not familiar with these topics.  
 
Keywords: Least-Action, Simplicity Principle, Conservation Laws, Veridicality, Inverse problems, 
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The issue of the relationship between Physics and other natural sciences is not raised very often 
simply because there is such a profound difference in the methods and results between the hard science of 
Physics and softer sciences such as Biology and Psychology. In the most recent history known to the 
author, this issue was raised by physicists who were probably emboldened by winning the Nobel Prize. 
Ernest Rutherford (1871-1937), for example, once said that “all science is either Physics or stamp 
collecting.” This rather pejorative view of every science other than Physics, was shared by his younger 
colleague, Richard Feynman (1918-1988), who in a 1974 commencement speech, claimed that 
“Psychology is a pseudoscience, in the sense that psychologists merely imitate the behavior of the 
scientists. They collect data, they present talks at conferences, put forth hypotheses, test them and publish 
papers, but they are not discovering any Laws of Nature and they do not understand the phenomena under 
study” (Pizlo et al., 2014, p.221).  

 
A less dismissive voice can be found in Feynman’s contemporary, Eugene Wigner (1902-1995), who 

said that:  
“As far as the physical sciences are concerned, the role of invariance principles does not seem to be 
near exhaustion. … Hence, invariance principles, giving a structure to the laws of nature, can be 
expected to act as guides also in the future and to help us to refine and unify our knowledge of the 
inanimate world. One is less inclined to optimism if one considers the question whether the physical 
sciences will remain separate and distinct from the biological sciences and, in particular, the sciences 
of the mind. There are many signs which portend that a more profound understanding of the 
phenomena of observation and cognition, together with an appreciation of the limits of our ability to 
understand, is a not too distant future step. At any rate, it should be the next decisive step toward a 
more integrated understanding of the world. … I confess that I have no conception what the structure 
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of this more integrated science may be and it would be surprising if it continued to contain a 
hierarchy similar to the one described before, in which invariance and symmetry principles have 
definite places. ... This state of affairs should be remedied by a closer integration of the now separate 
disciplines” (Wigner, 1967, pp. 36-37).  
 

The present paper discusses the concerns that Wigner raised half a century ago. Specifically, it explores 
how the fundamental relationship established in Physics by Noether (1918), among (i) symmetries, (ii) a 
least-action principle and (iii) the conservation laws can be used in Psychology to derive veridical 
perceptions by applying a minimum principle to symmetries present in the physical world.  

 
Classical and Modern Psychophysics 

Fechnerian Chain of Events 
Psychophysics was formally established as the study of Perception by Fechner in his seminal book, 
"Elements of Psychophysics", published more than 150 years ago (Fechner, 1860/1966). According to 
Fechner, a percept is the end-result of a causal chain of events that starts with (i) a physical object (called 
a distal stimulus), followed by (ii) a distribution of physical energy on the surface of the receptors (called 
a proximal stimulus) that is (iii) transduced, transforming the physical energy of the proximal stimulus 
into the bioelectrical energy used by the nervous system, which is (iv) processed by the brain to (v) 
produce a percept. Fechner recognized that the percept, as a mental event, is qualitatively different from 
the physical event that caused the percept, but he was unable to shed light on the relationship between the 
two, other than proposing the use of physical intervals to measure perceptual intervals. This suggestion 
was based on the assumption that the percept is a function, in the mathematical sense of this word, of the 
physical stimulus. This proposal allowed Fechner to measure absolute and difference thresholds. It also 
made it possible to speculate about methods that might be used to measure perceived magnitudes such as 
brightness, loudness or beauty.  
 

The Fechnerian paradigm has dominated the field of Perception for over a hundred years despite 
the fact that the Gestalt view of Perception, which became important near the beginning of the 20th C., did 
not fit into the Fechnerian formalism. For Fechner, Perception boiled down to feature detection. For the 
Gestalt Psychologists a percept was essentially an "educated guess" that was based on the incomplete 
sensory data available at the moment. We now know that the Gestalt Psychologists' approach to 
Perception was on the right track in no small measure because they realized that both physical and 
perceptual reality is three-dimensional (3D) despite the fact that the retinal image has only two-
dimensions (2D). It follows that the visual system must infer the missing depth information. This 
inference is done by combining a simplicity principle with the 2D retinal image. Without a simplicity 
principle, there will always be more than one possible perceptual interpretation, usually infinitely many 
interpretations.  

 
These considerations violate the Fechnerian claim that a percept is a function of the stimulus 

because a mathematical function cannot have more than one output for any given input. The Necker cube 
shown in Figure 1 is a well-known example of this fact. This line drawing of a wire cube leads to two 
different percepts. They correspond to the two different depth-orders of the vertices, edges and faces. So, 
in this stimulus, one input produces two different perceptual outputs. This is why we call such stimuli 
ambiguous, or bi-stable. One could try to defend the Fechnerian view by pointing out that you never see 
both of these cubes at the same time, but this defense is a distraction because it does not address the main 
weakness of the Fechnerian paradigm.  

 
Now, look at Figure 2a which is a circle. This looks like the top of an ordinary water or wine 

glass. The top of the glass is a perfect circle (or nearly so) because it is a continuous curve (note that we 
are ignoring the fact that the glass is composed of discrete atoms). When you look at a circle, you see a 
circle. There seems to be nothing surprising here, but is there? Figure 2b shows how the physical input to 
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the visual system is actually likely to look. It will look like a set of discrete samples produced by a 
continuous circle simply because of the discrete nature of the visual receptors (cones). Figure 2c shows a 
more realistic input to our visual system because the receptors in our eye are not arranged regularly on our 
retina. Once one realizes that a set of discrete points is the real input to one’s visual system, it is 
surprising that we perceive a continuous line, and the fact that we all perceive a perfect circle is even 
more surprising.  

 
It is obvious that the visual system interpolates across the spaces between the receptors, but there 

are many ways to do this interpolation. One could use a linear or a curvilinear interpolation. We all know 
from our introductory statistics class that there are always many different regression lines that can 
approximate a set of data points. The problem being discussed here is a version of a regression problem, 
slightly more advanced than the kind you studied in college. The regression problems we all solved in our 
stats classes called for fitting a low-degree polynomial function to the data points. Note that here, the 
visual system uses a closed curve that is a vector function. Furthermore, this curve does not need to have 
an analytical representation. It turns out that the visual system produces the simplest closed curve that can 
be used as an approximation of the discrete input to the visual system. If by simplest one means 
smoothest, the result in both Figures 2b and 2c, will be a circle.  

 

 
Figure 1. Necker cube that produces two percepts, corresponding to the two depth-orders. 
 

   
           (a)                (b)                (c) 
Figure 2. A circular distal stimulus (a) and its discrete versions (b) and (c) that resemble the input to a 
visual system sampling with discrete receptors (after Pizlo, 2008). Note that for illustrative purposes, the 
discrete samples (dots) in (b) and (c) were made very much sparser than the receptors at the center of the 
retina. This is the reason why (b) and (c) here look so different from (a). 
 
Perception Viewed as an Inverse Problem 
We have known for over 30 years that vision is an Inverse Problem (Poggio et al., 1985; Pizlo, 2001). The 
Inverse Problems paradigm requires breaking the chain of events proposed by Fechner into two parts. The 
first part is called the “forward problem”: it corresponds to forming a retinal (or camera) image of the 
physical stimulus. Let V be a 3D object represented by a 3xN matrix whose columns are Cartesian 
coordinates of N points of the object. Similarly, let v be a 2D camera image represented by a 2xN matrix 
whose columns are coordinates of points on the image. In the simplest case of an orthographic projection 
A we have: 
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 v = AV = �1 0 0
0 1 0� V        (1) 

 
In this projection, the x and y coordinates of V and v are identical, and the z coordinate of V is ignored. In 
a perspective projection, which represents the actual image formation in the eye or camera, the vectors V 
and v have dimensions 4xN and 3xN, respectively, and they contain homogeneous, rather than Cartesian 
coordinates. Matrix A, representing the camera geometry, has dimensions 3x4 (Pizlo, 2008). 
 

The word “problem” in the expression “forward problem” is not the best word to use because no 
problem actually needs to be solved here. We already know how the retinal image is formed, namely the 
light reflected from the object is brought into focus on the retina by the optical system of the eye (the 
cornea and the crystalline lens). A computer graphics person working on an animated movie would have 
to solve a problem in geometrical optics when he writes a computer program that computes synthetic 
images of objects and scenes, but in real life, this forward problem is “solved” by the natural laws of 
optics, specifically by the reflection and refraction of light.  

 
The second problem that comes up when Fechner's chain of events is broken into two parts is 

called an “inverse problem”. This problem boils down to inferring the geometrical and physical 
characteristics of a distal 3D stimulus from its proximal stimulus, its 2D retinal image. Inverse Problems 
in vision are ill-posed, which means that there are always infinitely many possible interpretations of the 
retinal image. This is obvious once one realizes that matrix A in equation (1) is rectangular. This implies 
that it does not have a unique inverse. Put simply, the depth information has been lost in the forward 
problem and it cannot be computed from the 2D image. 

 
The only known way to solve an Inverse Problem is to impose constraints on the family of 

possible interpretations. The visual system must know something a priori about what the observer is 
looking at within his visual field. This was formalized by Tikhonov in the early 1960s (Tikhonov & 
Arsenin, 1977) in his Regularization Theory. According to this theory, the unique, ideally-correct, 
interpretation V′ is produced by minimizing a cost function E, which consists of two terms: 

 
E(V′) = ||AV′-v|| + λ||S(V′)||       (2) 
 

In our example of 3D vision, the first term evaluates how different the retinal projection AV′ of the 
perceptual interpretation is from the retinal image v that was used to produce the percept. The second 
term evaluates how different the perceptual interpretation V′ is from the simplicity constraints that were 
imposed on the family of possible percepts. In the example shown in Figure 1, the 3D symmetry of the 
percept is the simplicity constraint and the function S(V′) evaluates the degree of asymmetry of V′. Note 
well that by maximizing the 3D symmetry leads to a unique interpretation, namely a cube, when the 2D 
image of a cube is used. The parameter λ in equation (2) represents the relative importance of the sensory 
data vs. the simplicity constraint. If the sensory data are very reliable, λ should be small. If the sensory 
data are not reliable (noisy), λ should be large. In the example shown in Figure 2, the smoothness of the 
perceived curve is the simplicity constraint. Smoothness can be defined in more than one way – in my 
example, it can be defined as a constant curvature. A circle is a curve with a constant curvature. It is also 
a maximally-symmetrical curve.  
 

Bayesian inference is a probabilistic version of the Regularization method: 
 
p(V′|v) = c⋅p(v|V′)⋅p(V′)       (3)  
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where c is a normalizing constant. The simplicity constraints become the Bayesian "prior" p(V′), and the 
data are incorporated in the "likelihood function" p(v|V′). The Bayesian "posterior" p(V′|v) is used to 
decide which is the best interpretation. Typically, the maximum of the posterior is used (MAP estimator), 
but other properties of the posterior probability distribution can be used, as well. Note that there is no 
parameter λ in the Bayesian formulation. This parameter has been incorporated in equation (3) as the ratio 
of the variances of the likelihood and the prior.  
 

The bottom line is that combining a priori constraints (aka priors) with data is the only known 
way of making inferences in Perception and Cognition. From here on, the expressions “solving an Inverse 
Problem” and “making inferences” will be treated as synonymous. All inferences are based on the 
available data (sensory or cognitive), but these inferences always go beyond the data. This is the essence 
of inferences. The person making inferences wants to know the true state of affairs “out there”, but he has 
to do this on the basis of incomplete data. Data, by their very nature, are always incomplete. This is as 
true about a 2D retinal image produced by a 3D object, as it is about the words and sentences that convey 
one person's thoughts to another. These are only two examples taken from the enormous range of 
cognitive inferences that can be dealt with once this approach is adopted. This range includes decision 
making, problem solving, motor control, concept formation and categorization, social cognition, as well 
as formulating scientific theories. A priori constraints, which represent a person’s knowledge of a 
particular domain, are essential for making correct (veridical) inferences. Many of us used to think that 
Perception and Cognition rely on the combination of available cues: the more cues, the better the 
inference. But we know better now. Now, we recognize that a priori constraints are at least as important 
as the data. Combining data with a priori constraints always takes the form of an optimization problem 
that uses a Regularization or Bayesian method. This means that constrained optimization, a very well 
developed family of methods in Applied Mathematics, is the formal tool best suited for making and 
explaining inferences. It is not coincidental that the least-action principle used in Physics is also a 
constrained optimization. This term simply describes how Nature works. In Physics (and Chemistry) the 
least-action principle produces new invariants, called "Conservations", from symmetries in the Natural 
Laws. In Cognition, minimizing a cost function produces new knowledge that is the result of an inference 
from the available data combined with the simplicity constraints that are inherent in the cognitive 
problem. 

 
To summarize this section, the New Psychophysics differs from the Fechnerian (conventional) 

Psychophysics by recognizing (i) that the inverse problem of perceptual interpretation is always ill-posed, 
and (ii) that combining the sensory data with a priori constraints is the only way to produce a unique, 
veridical percept. By “veridical” I mean that the percept agrees with what is “out there.” 

 
Veridical 3D Mental Representations 

It should be obvious that simplicity constraints will only work if the physical objects around us 
are as simple as our definition of simplicity, so the fact that we used 3D and 2D symmetry in the 
examples shown in Figures 1 and 2 was not coincidental. Symmetry is an effective a priori constraint in 
our natural world because most natural objects are symmetrical, or nearly so. The bodies of all animals 
are mirror-symmetrical because of the way the animals move. There are only a very few exceptions, such 
as the fiddler crab, whose body is only approximately symmetrical, but birds, mammals, fish, and insects 
are all mirror-symmetrical. A jellyfish is characterized by a rotational-symmetry, but note that its 
rotational-symmetry implies multiple mirror-symmetries. In a mirror-symmetrical object, the two halves 
are identical; one is a mirror-reflection of the other. Plants are symmetrical because of the way they grow. 
Petals of flowers form a rotational-symmetry, which means that one petal can be produced from another 
petal by rotating it around the center of the flower by 360˚/n, where n is the number of petals. One can 
also rotate the entire flower by 360˚/n instead of rotating an individual petal. This kind of rotation will 
produce the same flower. The symmetry of most flowers resembles the symmetry of the jellyfish: such 
flowers are also mirror-symmetrical. An example of a rotationally-symmetrical flower, which is not 
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mirror-symmetrical, is shown in Figure 3. Now consider that leaves of most trees are mirror-symmetrical 
and all leaves on a given tree are identical. This is another form of symmetry – any leaf can be produced 
by any other leaf simply by imposing a rigid motion in 3D space and size scaling. Finally, man-made 
objects are symmetrical because of the function they serve. A chair is usually mirror-symmetrical because 
of how we sit on it. Screwdrivers are rotationally-symmetrical because of the way we drive screws in or 
out. A car and an airplane are like animals. They are symmetrical because of the way they move. A 
completely asymmetrical object would be dysfunctional. If the application of a simplicity constraint to 
retinal images produces veridical percepts, as it always does with natural, symmetrical objects, the 
resulting percepts will be good models of our physical reality. Again, by veridical we simply mean that 
we see things the way they are “out there.” What are such visual models good for?  

 

 
Figure 3. This flower is rotationally-symmetrical, but it is not mirror-symmetrical. 

 
We have known at least since 1948 that the only reliable way to produce purposive (goal-

directed) behavior is to use models of the environment. This was the essential motivation of a new field 
linking engineering and biology called "Cybernetics" (Wiener, 1948; Ashby, 1956). Most of our actions 
are goal-directed in the sense that we choose actions now in order to achieve some future goal. I turn on 
my coffee-maker in order to drink coffee 5 minutes from now. On the surface, this might look like 
Aristotelian teleology, in which a future event (drinking coffee) can affect (control) a present event 
(turning on the coffee-maker), but the Laws of Physics tell us that the future cannot affect the present. So 
how can Cyberneticians pull this off? The answer is not complicated. In Cybernetics, it is the model 
(prediction) of the future, not the future, itself, that is used to control (select) the actions now. If this 
model is good, our current actions will make it likely that we will get to the desired goal. When the model 
is not as good, the future goal may not be achieved. There is nothing mysterious here. But without a good 
model (representation) of the environment, purposive behavior would be impossible.1 It follows that the 
importance and ubiquity of purposive behaviors provides a rational justification for accepting the claim 
that we humans, strive to form veridical representations of our environment, the environment that 
includes 3D objects, 3D scenes, as well as other humans and their purposive actions. But note that there is 
also growing empirical evidence demonstrating that our mental representations of objects, scenes, as well 
as of other humans, and their mental representations, are indeed veridical, or close to veridical (see Pizlo 
et al., 2014, for a review of experiments on veridicality in the perception of 3D shapes and 3D scenes). 
From here on, this paper will focus on explaining the kind of mathematical and computational formalisms 
needed to form veridical representations, without worrying about whether such representations actually 
exist. They must. 
                                                           
1 Ernest Nagel (1953) seemed to have missed this point completely when he was trying to figure out the nature of 
purposive actions. He was aware of Wiener’s (1948) Cybernetics, but he overlooked the critical importance of 
models and representations (Nagel, 1953, p. 198). Warren (1916) seemed to have been one of the first, if not the 
first, to explain the role of mental models in goal directed actions. Tolman’s (1932) work on mental maps and 
purposive behavior provided empirical evidence of how this works in rats. Finally, it was Conant & Ashby (1970) 
who emphasized and formalized the role of representations and goals in cybernetics. 
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The remainder of this paper builds on the new paradigm for Psychophysics that has been described so 

far. It explains in some detail, the nature of: (i) symmetries that are the primary source of the a priori 
constraints, (ii) the simplicity principle and (iii) visual representations. These three entities, which figure 
prominently in modern Psychophysics, will be compared to the three foundations of modern Physics, 
namely, symmetry, the least-action principle and the conservation laws. We will begin with a brief 
tutorial about symmetry because symmetry provides the essence for all this and we cannot discuss the 
new approach in any depth if we do not share some terminology and some concepts. 
 

Symmetry in Mathematics 
Symmetry is one of the most fundamental characteristics in both Physics and Mathematics. Feynman et 
al. (1963) credited Hermann Weyl for providing us with a good, intuitive definition of symmetry, namely 
“a thing is symmetrical if there is something we can do to it so that after we have done it, it looks the 
same as it did before.” A human face is mirror-symmetrical because the face in a mirror looks the same as 
the face in front of the mirror. This is, of course, only approximately true because no human face is 
perfectly symmetrical. Only, after we sculpted a perfectly-symmetrical face, would my example be 
accurate.   
 
Groups of Transformations and Symmetry Groups 

A symmetry group is defined by an equivalence class (invariance) of a transformation group 
(Rosen, 2008). So, what is a “transformation group?” A set of transformations is a group if: (i) the 
transformations are closed (a composition of two transformations from the set is in the set), (ii) the 
identity transformation, which does nothing, is in the set, (iii) for each transformation in the set its 
inverse, which undoes the transformation, is also in the set, and finally, (iv) the transformations are 
associative, which means that the result of a composition ABC of 3 transformations, A, B and C does not 
depend on whether we first compose A and B and the result is composed with C ((AB)C), vs. whether A 
is composed with a composition of B and C (A(BC)). If the order of transformations does not matter 
(AB=BA), the group is called commutative.  

 
Consider, as an example, a group of rigid motions. The meaning of the technical term “rigid 

motion” is the same as it is in colloquial English, namely, moving a chair around without breaking it or 
distorting is an example of what is meant by a rigid motion. For simplicity of presentation, 2D rigid 
motion will be discussed now. The group of 2D rigid motions consists of 2D translations and 2D rotations 
around the origin of the coordinate system. Let (x,y) be Cartesian coordinates of a point before rigid 
motion and (x1,y1) the coordinates after rigid motion: 

 
x1 =  x⋅cosα + y⋅sinα + tx 
y1 = -x⋅sinα + y⋅cosα + ty        (4) 
 

where α is the angle of rotation and tx, ty are translations along the x and y axis, respectively. 
It is easy to see that 2D rigid motions satisfy the group axioms. Note that this group is not commutative: 
translations do not commute with rotations. How do we define a symmetry group in the group of rigid 
motions? Note that rigid motions do not change Euclidean distances between pairs of points (Euclidean 
distance is the conventional distance defined as [(x2-x1)2+(y2-y1)2]1/2). This means that a Euclidean 
distance is an invariant of the rigid motion group. We can say that two figures (objects) are identical if all 
pairwise distances within one figure (object) are identical to the corresponding distances within the other 
figure (object). When this is the case, one figure (object) can be produced from the other by a rigid 
motion. So, identical figures (objects) constitute equivalence classes. It follows that rigid motions form a 
symmetry group with a Euclidean distance as an invariant. We call it a symmetry group because all 
objects that are identical can be transformed into one another by a rigid motion.  
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Figure 4. Wallpaper with translational symmetry. 
 

Some readers may be surprised by what was said in the previous section. They know why a 
human face or an animal body is considered symmetrical, but they do not think of a rigid motion as a 
form of symmetry. But it is. A simple, well known example, is wallpaper symmetry. If an arbitrary 2D 
figure or pattern is repeated with fixed intervals along both the x and y directions, and we assume that the 
wallpaper extends to infinity, translation of the wallpaper by any multiple of these intervals, produces the 
same wallpaper in the sense that if the translated wallpaper is superimposed on the wallpaper before the 
translation, these two patterns will coincide (see Figure 4). It is important to point out what makes a 
wallpaper an intuitively obvious example of a translational symmetry in the way that the rigid motion of 
an arbitrary object does not. The difference is caused by the redundancy contained within wallpaper. The 
very fact that a pattern is repeated along x and y dimensions makes the wallpaper redundant in the same 
way that a mirror-symmetrical object is redundant because the left and right halves of an object are 
identical. The definition of symmetry in mathematics does not require redundancy. It only requires that an 
equivalence relation is added to the concept of a group. Redundancy, however, becomes essential in 
perception. In fact, redundant patterns such as mirror-symmetrical animal bodies, rotationally-
symmetrical flowers and snowflakes, as well as translationally-symmetrical wallpapers, are standard 
examples of how symmetry is used in vision and art. One of the main contributions of this paper is the 
discovery that the redundancy aspect of symmetry is not only useful for defining visual symmetry, but that 
it also becomes a fundamental characteristic without which vision, as we know it, would be impossible. 

 
We will now return to discussing symmetry in mathematics, where redundancy is not an essential 

element. As explained above, the rigid motion of figures and objects is an example of a symmetry group 
that includes translations and rotations. Now, it is easy to see how we can form a more general symmetry 
group by defining symmetry as a transformation that leaves only some essential characteristics of an 
object intact (invariant), even if the object, itself, is changed. We can add a uniform size scaling to the 
group of rigid motions, resulting in what is called in geometry a “similarity” group:  

 
x1 =  s⋅(x⋅cosα + y⋅sinα + tx) 
y1 =  s⋅(-x⋅sinα + y⋅cosα + ty)        (5) 
 

where s is the scaling factor. 
 

In a similarity transformation, the object changes because its size and pairwise distances change. 
What remains invariant are the angles defined by triples of points. Figures and objects that have identical 
angles are said to have identical shapes, so shape is the invariant in a similarity group. For example, a 
small and a large square have the same shape: one square can be transformed into the other by a rigid 
motion and size scaling. Once an invariant is identified, this invariant becomes the essential characteristic 
that is used to establish the equivalence class and the unessential characteristics can be ignored. So, 
whenever there is a transformation group and its invariants are identified, we can talk about symmetry 
and we can make use of the rich formalism of symmetry groups. This is how Felix Klein understood and 
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classified geometries in his 1872 Erlanger Program (Klein, 1939). This is also how physicists understand 
the symmetries of the Natural Laws. This includes the Lorentz group used in Special Relativity, the Lie 
groups used in the Standard Model of particle physics, as well as all recent attempts to unify forces, such 
as the Grand Unified Theory and the Theory of Everything. Symmetry groups have played a central role 
in algebra, starting with the seminal work of Evariste Galois that was published posthumously in 1846. 
Some areas of chemistry are also built around symmetries of molecules and crystals.  

 
The symmetry group represented by the similarity equivalence relation, just introduced, can also 

be used to define the redundancy of objects. An ordinary tree is an example of redundancy generated by a 
similarity group in the same way that a wallpaper was an example of redundancy generated by a rigid 
motion group. Leaves on every tree have identical shapes, but some leaves are smaller and others are 
larger. We can transform one leaf into another by using a 3D rigid motion plus size scaling. This means 
that every tree is characterized by redundant information related to the similarity of its leaves. 
Generalized cones (GC), introduced by Binford (1971) and used by Biederman (1987), provide another 
example, in which a similarity group is used to describe the redundancy contained within an individual 
object. Look at Figure 5. This object was constructed by starting with a square at the bottom and then 
taking a copy of this square, translating it, rotating it a little in 3D, changing its size slightly and pasting 
the result. This was repeated 20 times in Figure 5 to produce this 3D generalized cone. This is an example 
of a 3D discrete similarity group because all 20 planar cross-sections of this object have identical shapes: 
they all are related to each other by a 3D similarity transformation: rigid motion plus size scaling. Real 
objects, like the limbs of animals, their torsos, as well as fruits and vegetables, are continuous rather than 
discrete. We can describe these objects by using a continuous similarity group in which the 3D rigid 
motions and size changes of cross-sections are infinitesimally small. The symmetry group that 
characterizes these objects leads to redundancy because all infinitely-many cross-sections have similar  
shapes. 
 

 
Figure 5. A generalized cone produced by applying a similarity transformation to one cross-section of the 
object (after Pizlo et al., 2014). 
 

There are even more general transformation groups in geometry, namely affine, projective and 
topology. These groups are more general than rigid motion or similarity and they are characterized by 
their invariants (see Pizlo, 2008, for a discussion of this). This means that they are also symmetry groups. 
Note, however, that we do not have many, if any, real-life examples in which these more general 
symmetry groups actually generate redundancies in objects.  

 
We will now return to the mirror-symmetry group in order to provide an even better explanation 

of the contrast between symmetry that generates redundancy and symmetry that does not. Note that the 
difference between these two aspects of symmetry has never been emphasized, perhaps even been 
completely ignored, in the past. The mirror-symmetry group is the simplest group because it contains a 
single transformation (other than identity), specifically, mirror-reflection, and this transformation is its 
own inverse. Any object, including asymmetrical objects, such as the chair in Figure 6a, can be mirror-
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reflected. The mirror-reflected object will be different from the original object in the sense that the former 
cannot be transformed by a rigid motion into the latter. In other words, the two versions of an 
asymmetrical object cannot occupy the same region in 3D space. With the chair shown in Figure 6a, the 
left part of the back is taller, when "left" is defined by your actually sitting on the chair. Mirror-reflection 
is a symmetry group regardless whether the objects are mirror-symmetrical or not mirror-symmetrical. 
The equivalence relation used in this case is equivalence under a reflection transformation, which means 
that an object and its reflection are in the same equivalence class. Put simply, this is how we group 
objects in the case of a mirror-symmetry group. 

 
But, now we take objects that are identical to their mirror-reflections, i.e., mirror-symmetrical 

objects, such as the chair in Figure 6b. Here, we can use the same mirror-symmetry group as described in 
the previous paragraph, but now our symmetry does generate redundancy in the objects, specifically, in 
any mirror-symmetrical object, its left half is identical to its right half.  

 
To summarize, we showed that the three elementary symmetry groups, viz., mirror-reflection, 

rigid motion and similarity, can be used in cases where redundancy is generated, as well as in cases where 
redundancy is not generated. The mathematics used in these two cases is identical, but it is the 
redundancy aspect of symmetry that will prove to be essential in the New Psychophysics. We will review 
how symmetry is used in Physics before we discuss how symmetry is used in Psychophysics. This is 
important because Physics can provide us with a complete formalism that goes beyond the concept of 
symmetry. 

 

  
a            b 
Figure 6. (a) an object that is not mirror-symmetrical; more precisely, not perfectly mirror-symmetrical. 
(b) a mirror-symmetrical object. 
 
 

Symmetry in Physics and its implications 
Symmetry in Nature as Regularity 

If a student of Physics performs an experiment in his own lab, perhaps testing Newton’s Second 
Law of Motion (F=ma), and subsequently repeats this experiment in somebody else’s lab (say one floor 
up in the same building), he expects to obtain the same result. This subsequent confirmation in a different 
location is called the symmetry of this law. Symmetry here means that this law is invariant under 
translation in space. This is completely analogous to object invariance (symmetry) in the presence of rigid 
motions in space: if we measure pairwise distances between points of a rigid object in our lab and 
measure the corresponding distances after the object has been moved one floor up in our building, the 
distances will match because they are invariant. We now know that the Laws of Physics are symmetrical 
under translation in space. The same is true with translation in time, and with rotation in space. These 
three symmetries are the simplest and the most often mentioned symmetries of the Natural Laws 
(Feynman et al., 1963). But, note that not all geometrical transformations lead to invariance in the Natural 
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Laws. The Laws of Physics are not symmetrical under uniform scaling of space. This fact was first 
established by Galileo in 1638. Any attempt to build a copy of a building, ship or airplane by increasing 
its size uniformly by a factor of 100, or even only 10, would not succeed because the larger replicas 
would probably collapse under their own weight (it has been suggested that Galileo was inspired to 
discuss size invariance by considering whether Dante’s inferno (hell) could be realized physically 
(Peterson, 2002)).  

 
The description of how symmetry is used in Physics, provided in the previous paragraph, shows 

that symmetries refer to regularities in nature. Each Natural Law applies to infinitely many events, as long 
as these events differ with respect to non-essential characteristics, such as their position in space or time. 
If every event in nature were governed by its own law, and if there were no relationships among the laws 
applying to different events, it would make very little sense to talk about Natural Laws at all. If this were 
the case, Natural Science would not exist (Wigner, 1964). It is precisely these regularities across space, 
time and scenarios that allow the scientist to make predictions, and, furthermore, to make them by using 
only a small number of rules. The observation that science without symmetry and regularity would not 
exist is as true in Physics as it is in all of the other Natural Sciences, including Biology and Psychology. 
Note, however, that until now these sciences have neither used the mathematical formalism of symmetry 
nor explored the formal implications of symmetry for the analysis of their phenomena. This is not to say 
that Psychologists were not aware of the concept of symmetry. They were, starting with Mach’s (1906) 
book. It is important to know this so a brief overview of how symmetry has been used by perceptionists 
will be provided later in this paper. The point being made here is that neither Psychologists nor Biologists 
treated symmetry as the foundational concept of their sciences, as Physicists have. Interestingly, 
Mathematical Psychology, a specialty within Cognitive Psychology, is a notable exception. When 
Mathematical Psychology was formed as a new specialty half a century ago, the primary motivation for 
doing this was to use symmetry in Cognitive Psychology as physicists used symmetry in Physics (see 
Narens, 2002, Chapter 1, for an excellent review of this endeavor). But, in keeping with the zeitgeist 
prevalent in the 1950s and 1960s, symmetry and invariance in Mathematical Psychology was applied 
primarily to psychological measurement. Note that this is the kind of measurement that Fechner had in 
mind when he worked on the perception of loudness and esthetical impressions. This kind of research was 
extended by S.S. Stevens in the middle of the last century and substantially elaborated by Luce, 
Falmagne, Krantz, Narens, Suppes and Tversky, since then. Perhaps it was this focus on measurement in 
the study of one-dimensional sensory stimuli that made it hard for symmetry to spread into the rest of 
Cognitive Psychology. Note that symmetry and invariance have continued to play an important role in 
Mathematical Psychology as evidenced by the work of Narens (2007) and Falmagne (Falmagne and & 
Doble, 2015) on meaningfulness of scientific laws, and more recently, by the work of Vigo (2015) on 
categorization. 

 
The role of symmetry in Physics has been growing throughout the last 100 years. It started with the 

breakthroughs represented by Einstein’s Special and General Relativity theories. Both can be attributed to 
treating the symmetry of nature as the most important principle. Since then, everything accomplished in 
Physics has revolved around symmetry, and the presence or the absence of symmetry has been used as a 
criterion for deciding whether a new theory is true even before any experimental data were collected 
(Rosen & Freundlich, 1978). 
 
Conservation Laws 

About the same time Einstein was formulating his General Relativity theory, Emmy Noether 
(1918) established a surprising link between the symmetries of Natural Laws and the Conservation Laws 
(Tavel, 1971). Conservation Laws, such as conservation of momentum, angular momentum and energy, 
had been known to physicists more or less explicitly at least since Galileo and Newton. But, before 
Noether, it was never entirely clear how they are related to other concepts in Physics. Before we proceed, 
it will be instructive to remind ourselves what those basic conservations are. Let’s start with the 
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conservation of momentum (specifically, linear momentum), which is the product of mass and velocity 
(remember, velocity is represented by its magnitude and direction). When two moving objects, say cars, 
collide, many characteristics of the two-car configuration change. Typically, the cars are wrecked as a 
result of the collision and they may come to full-stop or bounce-off each other. Despite the fact that many 
characteristics change, there is at least one that does not change, namely, the total momentum, which is 
the sum of the individual momentums. So, momentum is an invariant of the collision; it is conserved. 
When the collision is elastic, as in the case of billiard balls, the kinetic energy, in addition to momentum, 
is conserved, as well. Finally, when a particle undergoes circular motion, the particle’s angular 
momentum, which is the product of the particle’s mass, linear speed and radius of the circle, is conserved, 
too. So, when the radius decreases, its speed increases. We all are familiar with examples of the 
conservation of the angular momentum, such as a pirouette of an ice skater. Note that the case with an ice 
skater is more complex than with a particle because in the general case, the computation of the angular 
momentum uses the moment of inertia, rather than mass, but note that the general idea stays the same. All 
conservations in physics refer to characteristics that remain invariant, or conserved, during the physical 
event.  

 
Noether (1918) showed that for every symmetry in nature there is a corresponding conservation law. 

So, the conservation of momentum results from the symmetry of the laws of motion in the presence of 
translations in space (the position of the origin of the spatial coordinate system is irrelevant for the Laws 
of Motion), the conservation of angular momentum results from the symmetry (invariance) of the Laws of 
Motion to the choice of the orientation of the coordinate system, and the conservation of energy results 
from the symmetry of the Laws of Motion in the presence of translations in time. Specifically, Noether 
showed how the Conservation Laws can be derived by applying a least-action principle to symmetries in 
nature. It follows that the least-action principle, which has been known since the 17th century, establishes 
the relationship between symmetries and conservations. Noether proved her theorem using the framework 
of Classical Physics, but her results were quickly generalized to Quantum Physics. It is the nature of this 
least-action principle that will allow us to compare the Laws of Physics with the Laws of Psychophysics. 
A brief description of how this principle works in Physics will be provided next. 
 
Least-Action Principle 

The least-action principle received its first formal treatment in the 17th and 18th centuries; much 
earlier than the formal treatment of symmetry and the Conservation Laws in Physics. These did not 
receive a formal treatment until the end of the 19th and the beginning of the 20th century. So, historically, 
the least-action principle was studied in isolation, separate from the symmetry of natural phenomena, 
despite the fact that the least-action principle never operates in isolation, separate from the symmetries of 
natural phenomena because there are always symmetries “out there.” It is not a coincidence that the least-
action principle was also studied in isolation in the other natural sciences. This fact will become important 
when we make the transition from Physics to Psychophysics later in this paper.  

 
An intuition about the presence and nature of a least-action principle goes back to the ancient 

Greeks. Evidence of this can be found in Plato, Euclid, and Ptolemy’s discussion of the reflection and 
refraction of light. The same idea shows up a millennium later in Alhazen's treatise on vision (1083), but 
it did not take on an important role until the middle of the 17th century when Fermat gave us the first 
modern formulation of the refraction of light using the principle of least-time. Despite the fact that the law 
of refraction had been described by Snell in 1621 and independently by Descartes in 1637, Fermat took it 
on, because Snell’s and Descartes’s formulations applied only to the simplest possible scenario. Snell and 
Descartes had only related the angles of incidence and refraction, when the light passes through the 
boundary between two optical media, to the indices of refraction of these media. Fermat was not happy 
with this formulation because it did not specify the entire path that the light took in a more complicated 
environment.  
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Fermat was after a more general principle. He wanted to be able to predict the path the light takes 
when it goes through a complex optical medium where the index of refraction changes continuously. For 
example, the path the light takes coming from the sun at sunset, when the light goes through the 
atmosphere, which has a continuously changing density, thin at the top and dense at the bottom (Feynman 
et al., 1963, Chapter 26, Figure 26.7). Snell’s law was useless to Fermat because without differential 
calculus (which was not available to Fermat), it could not be applied to continuously changing density of 
the optical medium. Fermat accomplished his goal by conjecturing that the light chooses the path, from 
infinitely many paths, that minimizes the time of travel.  

 
A more general version of Fermat’s principle says that light chooses the path for which time is 

stationary, in which infinitesimally small variations of the path do not change the overall time. One needs 
to use the tools of calculus to estimate this path. Calculus was not available until the second half of the 
17th century, so, as already mentioned, Fermat did not have access to these tools. In fact, the least-action 
principle requires the calculus of variations not differential calculus. In differential calculus, one seeks the 
value of a variable number x for which a function y=f(x) is minimal or maximal. The necessary condition 
is that the first derivative dy/dx=0. But in a least-action principle, the argument of a function is a variable 
path or a trajectory, not a variable number. A path is a function itself, so variational calculus deals with 
functions whose arguments are variable functions, themselves. Such functions are called functionals. 
They take the form of integrals, so a least-action principle can be formulated by using integrals. The 
formal development of the calculus of variations did not start until the end of the 17th century, which 
meant that despite the fact that Fermat could formulate a least-action principle, he could not apply it to 
cases that were more complex than those Snell and Descartes had studied. Fermat’s intuition about the 
least-action principle, however, was right on the money, and it did not take long before others showed that 
the principle of least-time adequately describes the propagation of light. Furthermore, it was shown that a 
least-action principle generalizes to many other types of phenomena in Physics. 

 

 
Figure 7. Solid line represents the path of least-action (minimal time). This path satisfies Snell’s law of 
refraction. Dashed line is the shortest path. This path requires more time. 

 
It should be intuitively clear how Fermat’s least-action principle is able to account for Snell’s law 

of refraction. A straight-line path from the source of light located in the air will not minimize the amount 
of time it takes to reach the observer’s eye which is located in the water. Light will actually spend more 
time in the sparser medium and it will spend less time in the denser medium, resulting in the minimum 
total time (see Figure 7).  

 
Fermat’s principle was generalized to classical mechanics by Maupertuis and Euler in 1744, 

elaborated by Lagrange in 1788 and by Hamilton in 1834. When a least-action principle is applied to a 
moving object, it has been shown that the object will choose a path that minimizes action, where action is 
defined as an integral of a Lagrangian with respect to time, and where the Lagrangian is defined as the 
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difference between kinetic and potential energy. The least-action principle was subsequently generalized 
to all other branches of Physics, where minimizing action leads to general solutions and gives rise to 
better insights into the underlying phenomena. “Action” outside of mechanics is defined differently, 
depending on the phenomena under study. For example, in electrical circuits, the current distributes itself 
so that the total amount of heat generated in resistors is minimal, and in soap bubbles, it is the total 
surface tension that is being minimized. Similar formulations of the least-action principle characterize 
chemical reactions. 

 
The least-action principle in Physics was studied for its own sake until the beginning of the 20th 

century, when Noether established the relationship among the symmetries in nature, least-action and 
conservations. Before Noether’s paper, least-action was viewed merely as the most economical 
description of nature (Mach, 1893/1919, p. 490). Since Noether published her paper, least-action is no 
longer viewed merely as a convenient tool in formalizing the Laws of Physics. Instead, it is considered to 
be the essential property of nature, itself, in the same way that symmetry is the essential property of 
nature.  
 

Symmetry in Sensory Systems 
Here, we will try to integrate the information reviewed so far, and show how Physics can help 

establish the New Psychophysics on firm scientific ground. Note that we already know that veridical 
perceptions can be produced by solving an inverse problem, in which the symmetry of objects provides 
the key a priori constraint. In the second half of this paper, I will show that perceptual and cognitive 
inferences are not made by lucky coincidences that pop up in the results of a few experiments. Instead, I 
will show that perceptual and cognitive inferences proceed in the same way that the Natural Laws in 
Physics do, as explained by Noether (1918). This treatment also starts with symmetry, but here its dual 
nature is emphasized, namely, it contrasts symmetry that generates redundancy with symmetry that does 
not.  

 
An image formation, which is a perspective projection from the 3D space to the 2D retinal image, 

has a number of unpleasant properties. It is a many-to-one mapping (see equation 1), which eliminates a 
large number of mathematical tools that are typically used in the analysis of geometrical transformations 
and symmetries. There is no meaningful way to define a composition of two image formations simply 
because an image formation in natural vision is always a 3D to 2D transformation. After the first 3D to 
2D transformation is applied, the result is a 2D image, not a 3D space, so it is impossible to apply a 
second 3D to 2D transformation. Without a composition of transformations, there is no way to talk about 
the closure and associativity axioms of transformation groups. An identity transformation does not exist 
and an inverse transformation is not unique. Without any of the four axioms of a group, an image 
formation is not a part of any conventional geometry (Pizlo, 1994; Pizlo & Rosenfeld, 1992; Pizlo et al., 
1997a, b). Specifically, there are no general case invariants in a 2D image of a 3D space (Burns et al., 
1990). By “general case invariants” we mean invariants, such as distances or angles, that can be computed 
for any set of N points. This means that in the general case, symmetries characterizing natural events “out 
there” will be completely eliminated when a retinal image is formed. This fact imposes serious limitations 
on whether and how the Laws of Physics, the only real Laws in Science, can be generalized to the Laws 
of Perception. The hierarchy characterizing the science called Physics, described by Wigner (1967), 
which begins with the symmetries of the natural laws, goes through the least action principle, and 
culminates with the Conservation Laws, cannot be applied to the 3D to 2D projection.  

 
Consider a few examples. The speed of movement measured in the retinal image is affected by a 

translation in physical space, and objects that are farther away move with a lower speed when the speed is 
measured on the retina. So, movement on the retina is not invariant (symmetric) in the presence of 
translations in 3D space. As a result, the Law of Conservation of Momentum is also not satisfied in the 
retinal image. This can be seen clearly when the object is moving with a constant speed towards the 
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observer along a straight line. A constant speed means zero acceleration and zero force acting on the 
object. There is motion on the retina when the trajectory of the movement does not include the observer’s 
eye, but the retinal size of the object and its retinal image speed increase as the object gets closer to the 
observer. When speed increases, the momentum, increases as well, violating the law of conservation of 
momentum. Furthermore, despite the fact that no forces act on the object, the object accelerates in the 
retinal image, violating the law of conservation of energy. This is a complete mess from a physicist’s 
point of view. When the object is on a collision course with the observer, the center of mass of the object 
is now stationary in the retinal image. Its speed is zero, so the law of conservation of angular momentum 
will be violated because changing the orientation of the trajectory relative to the observer changes the 
object’s speed from positive to zero.  

 
So, no symmetry of Natural Laws and no Conservation Laws are available to operate on a 2D 

retinal image. The least-action principle fails to apply, as well. The 3D paths “out there” are projected to 
2D curves in the retinal image, so the shape of the 2D retinal path is almost always different from the 
shape of the 3D path. There are no invariants of this transformation. It follows that if a least-action 
principle corresponds to the 3D curve, it will not correspond to its 2D retinal image. Take the simplest 
example of Fermat’s principle when this principle is applied to the reflection of light, where the angle of 
reflection is equal to the angle of incidence. Angles are not invariant in a perspective projection, which 
means that Fermat’s principle fails in a retinal image.  

 
With all of these complications, it is rather surprising how much effort neuroscientists and 

machine learning communities have expended on trying to understand vision by limiting themselves to 
2D representations of 3D scenes, or even worse, to no representations, at all. Without restoring veridical 
(or nearly veridical) 3D representations of the 3D natural environment, it will be hard, if possible at all, 
to formulate the Laws of Vision, when by “laws” we mean what Physicists mean. Such laws cannot exist, 
period, unless one is able to bring in redundancies generated by symmetries in the 3D environment. 
Without 3D representations and without the underlying symmetries, vision science, both in psychology 
and in engineering, will always be a visual art, not a real science.  

 
 The only way for the sensory systems to get access to the invariants, called symmetries that 
operate in the natural environment is to restore the one-to-one mapping between the 3D world and our 2D 
retinal images. This can be accomplished by using the redundancies present in the symmetry of objects. 
So, the visual system uses the redundancy aspect of symmetry present in the 3D environment to get 
access to the invariance aspect of symmetry of this environment. Once the one-to-one mapping is 
restored, the visual system can apply a least-action principle (called by perceptionists a simplicity 
principle), and derive conservations. Biological systems equipped with sensors bring-in new least-actions 
and new conservations. The mathematical formalism, here, is essentially the same as the formalism used 
in Physics. However, these biological least-actions are new because they combine data with symmetries. 
When a least-action principle operates in Physics, it does not make use of any data. It is applied directly 
to symmetries of the Natural Laws. Data are used in Cognitive least-actions because these least-actions 
are cognitive inferences based on information. The concept of information exists in Physics where it is 
related to entropy, but least-actions in Physics do not make inferences. So, an inference is a new, 
Cognitive concept that does not exist in Physics. These new cognitive least-actions reside in the 
physiology and chemistry of the brain and the new conservations are the veridical mental representations 
of the outside world.  
 

Why do I draw an analogy between the Conservation Laws in Physics and veridical mental 
representations in Psychology? Here is why: when I draw a square on a piece of paper, and I ask you to 
look at it, you will tell me that you see a square. One may object to this, by pointing out that the fact that 
you used the word “square” to label your percept does not mean that your perceptual representation of a 
square is actually a square. But if you tell me that you saw a quadrilateral with 4 axes of mirror symmetry, 
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I know that you saw a square. The symmetry inherent in shapes is sufficient to compare the shapes of 
physical objects to the perceived shapes and verify that they are actually identical. So, as we all know, at 
least starting with Fechner (1860), mental events and physical events are qualitatively different, but when 
the objects undergo the transformation from the physical world to the mental world, the shapes of objects 
do not change. They are invariant. We perceive these shapes veridically. The suggestion that veridical 
shape perception corresponds to physical conservation is based on the mathematical formalism: both 
types of invariants are the result of applying a least-action principle to symmetries existing in the physical 
world. The rest of this section goes through details of restoring the one-to-one mapping between the 3D 
world and the 2D retinal image, and through a brief treatment of how the simplicity principle is used to 
establish veridical 3D shape perception. 
 
Restoring One-to-One Mapping 

I begin this section by reminding the reader about a broader context that becomes relevant at this 
point. Our natural environment and the objects within it are 3D, but our retinal image, which provides the 
input to the visual system, is 2D. The percept that results is 3D despite the fact that its visual input is 2D. 
A reader might note that this statement of the problem is not completely accurate because we always look 
at things with both eyes. So, the actual input to the visual system is a pair of 2D images, not a single 
image. Once there is a pair of images, the binocular system could use one of these 2D images along with 
binocular disparity to produce the needed 3D sensory data. This binocular case will be discussed again a 
little later, but at this point I will only remind the reader that binocular disparity is an unreliable source of 
visual information, and that it quickly becomes useless when the viewing distance is larger than a few 
meters. So, one should note that monocular 3D vision seems to be more important in natural viewing than 
binocular 3D vision. Furthermore, monocular 3D vision is important because it makes it clear why and 
how symmetry is used in vision.  

 
So, how is the one-to-one mapping actually restored in Perception? Consider a set of points in a 

3D space in a mirror-symmetrical configuration and a single 2D perspective image of these points. It 
turns out that the mapping between the 3D points in a mirror-symmetrical configuration and a single 2D 
image is one-to-one. This means that the group structure that permeates the physical universe, which 
seemed to have been destroyed by the infinite-to-one mapping when the 2D retinal image of a 3D scene is 
formed, can be restored when the observer looks at a mirror-symmetrical object.  

 
I will illustrate what is meant here by showing how a pair of 3D points, forming a mirror-

symmetrical configuration with respect to a symmetry plane π, can be computed from a 2D perspective 
image of these points. We begin with the concept of the vanishing point vp that is located in a 2D 
perspective image and that represents the 3D orientation of π. The 3D orientation of π is uniquely 
determined by the 3D direction of a line L normal to that plane (see Figure 8). Let us choose L in such a 
way that it contains the center C of a perspective projection of the camera. This line will be denoted as Lc. 
Now, the intersection of Lc with the image plane is the vanishing point vp representing the 3D orientation 
of the symmetry plane π. It follows that if we know vp, we also know the 3D orientation of π (this is true 
except for a degenerate case, where π contains C). If we have a set of pairs of 3D points symmetrical with 
respect to a common plane π, the 2D perspective images of lines connecting the individual pairs of 3D 
symmetrical points intersect at vp because all of the 3D lines are, by definition of mirror-symmetry, 
parallel to the normal L of π. Note that this property is the only invariant of a perspective projection of a 
mirror-symmetrical object. This invariant is not a general-case invariant because it cannot be applied to 
3D points that are not mirror-symmetrical. This invariant is generated by the redundancy aspect of 3D 
mirror-symmetry and it can be used to estimate vp (see Michaux et al., 2016).  
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Figure 8. The vanishing point vp, the center of perspective projection C, the 3D points P1 and P2, as well 
as their images p1 and p2, are all coplanar (they reside on the same plane marked in green). The blue 
parallelogram represents the image plane on which the vanishing point vp and the two image points p1 and 
p2 reside; these three points are collinear. The symmetry plane π, represented by an orange ellipse, bisects 
the line segment connecting the 3D points P1 and P2. The line LC connecting the center of perspective 
projection C and the vanishing point vp is orthogonal to the symmetry plane π. 
 

Once vp is known, we recover the 3D points as follows. Take one pair of 2D corresponding 
points, p1 and p2, at a time. These two points are images of points P1 and P2 that are mirror symmetrical 
with respect to π. Let the angle formed by points p1, C,  and vp be ψ, and the angle formed by  p2, C,  and 
vp be ϕ. Then, the distances ||P1|| of P1 from C and ||P2|| of P2 from C are computed according to the 
following equations (see Michaux et al., 2017 for details of the derivation): 

 
||P1|| = 2d⋅sin(ϕ)/sin(ϕ+ψ) 
||P2|| = 2d⋅sin(ψ)/sin(ϕ+ψ)        (6) 
 

where d is the distance of C from π. Note that the 3D coordinates of P1 and P2 can be computed from the 
distances ||P1|| and ||P2|| by using parametric equations of the projecting lines Cp1 and Cp2. The distance d 
in equations 6 is a free parameter representing an overall size scaling of the 3D recovered object. 
Specifically, if the plane of symmetry is farther from the camera, the recovered 3D object is 
proportionally larger. This means that equations (6) allow for a unique recovery of the 3D mirror-
symmetrical shape, but not of its size. It follows that the one-to-one mapping mentioned earlier is restored 
between the 3D mirror-symmetrical shape of an object and its 2D perspective image. The size of the 
object can be recovered by using other cues and priors, such as the horizontal ground on which objects 
usually reside (Pizlo et al., 2014). If one is interested in shape, but not size, d can be set to ½ simplifying 
equations (6). 
 

Redundancy is also present in other naturally-occurring symmetries. Consider generalized cones 
(GC) that can be described by applying a similarity group to the cross-sections of a GC. As long as the 
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cross-sections can be identified, GCs can be recovered uniquely, which means that this symmetry restores 
a one-to-one mapping between the 3D shape and its single 2D image (Pizlo et al., 2014). The same is true 
when a 3D shape is recovered from 3D motion (Wallach & O’Connell, 1953; Ullman, 1979; Hoffman & 
Bennett, 1986; Philip, 1996). When an observer views a rigid object undergoing 3D motion, its 3D shape 
can be recovered from 3 orthographic or 2 perspective 2D views. Again, the 3D recovery does not include 
the size of the object, which means that the 3D recovery is related to its shape: rigid motion of an object 
plus size scaling (i.e., a 3D similarity group). Note that what was often called a “rigidity constraint”, is 
equivalent to a symmetry group defined by the shape equivalence class. This means that the visual system 
is actually using the redundancy inherent in this group. Bringing in symmetry and substituting it for a 
rigidity constraint does not really change anything in the mathematics of the 3D recovery from motion, 
but it establishes a universal mechanism for veridical 3D vision by means of symmetry. Exactly the same 
symmetry group can be used when the observer views two or more identical objects in a 3D scene. 
Identical, or nearly identical, objects are encountered when we look at several people. The same is true 
when we look at a dinner table with several identical chairs, or a tree, whose leaves always have identical 
shapes. Symmetry can also be used to explain how a one-to-one mapping is restored in binocular vision. 
Binocular vision can be viewed as representing a symmetry group because the observer receives two 
views of the same object from a different viewing direction. So, once binocular correspondence is solved, 
the observer has redundant information about the object. Finally, objects characterized by rotational-
symmetry, such as flowers and cylinders of revolution, also provide redundancy and allow for a unique 
3D recovery. 

 
Several examples of symmetry in 3D vision were illustrated in the previous paragraph. In all of 

these cases, symmetry was the source of redundancy that is sufficient, mathematically, for a unique 
recovery of 3D shape. This means that in all of these cases, the one-to-one mapping between the 3D shape 
and the 2D retinal images could be restored. This is how our visual system gets access to the 3D space in 
which invariances reside and in which the Natural Laws of Physics operate. So, when the visual system 
begins by establishing a one-to-one mapping between the sensory data and the outside world, 
Psychophysics, which is the science of Perception, has a real chance of resembling Physics, until now 
considered to be the only real science. Establishing a one-to-one mapping between the 3D world and the 
available 2D sensory data is the first step of visual processing. The second step is applying a least-action, 
or simplicity principle, to solve the computationally ill-posed and ill-conditioned inverse problem of 
making a 3D inference. An inverse problem is said to be ill-conditioned if the solution is unstable in the 
presence of noise in the sensory data. Note that the visual system must select a cost function and an a 
priori constraint that guarantee not only uniqueness, but the stability of perceptual interpretation, as well. 
I will briefly review some of the prior results on perceptual symmetry before discussing how the 
perceptual least-actions and perceptual conservations are connected to symmetries.  
 
Symmetry in the Prior Psychological Research 

Attneave (1954) explored the use of Information Theory, redundancy and invariance in 
perception to define “simplicity” as it was conceived by the Gestalt Psychologists. Redundancy is related 
naturally to symmetry because symmetry refers to the self-similarity of an object or a pattern. The more 
self-similarity, the greater the redundancy. Attneave proposed “that a major function of the perceptual 
machinery is to strip away some of the redundancy of stimulation, to describe or encode incoming 
information in a form more economical than that in which it impinges on the receptors” (Attneave, 1954, 
p. 189). Note that this means that Attneave was well aware that a simplicity principle was operating in 
perception and that he also knew how to express it mathematically. What Attneave seems to have missed 
is the critical role that a priori constraints have in perception. This omission is evident because he 
emphasized economical “description” rather than economical “inference”. In the New Psychophysics 
advocated here, symmetry, acting as an a priori constraint, adds information to the incoming 2D retinal 
stimulus. This explains how the 3D percept is produced from a 2D image. So, in my view, when the 
image is formed on the retina, the visual system detects symmetries within it and uses them to produce a 
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veridical 3D percept. But, according to Attneave’s approach, symmetries (redundancies), once detected, 
are removed from the 2D retinal stimulus. Attneave, by missing the role of a priori constraints, had no 
way of recognizing that perception is based on an inference, or of formulating a theory of veridical 3D 
vision.  

 
Leeuwenberg and his associates (Leeuwenberg, 1971; Leeuwenberg and van der Helm, 2013) 

used Attneave’s approach, but they tried to substitute their Structural Information Theory for Shannon’s 
Information Theory (Shannon, 1948) that had been used by Attneave. In Structural Information Theory, a 
few basic symmetries, such as rotation and translation, are applied to elements of a figure or a pattern. 
Their elements were dots, line segments or corners. The replications of these elements captured the 
redundancies in the stimulus. Leeuwenberg et al., like Attneave, restricted themselves to economical 
descriptions, rather than inferences, and their stimuli rarely went beyond 2D toy examples and when they 
did use 3D objects, they never tried to recover them from 2D images. Put simply, their work suffered 
from the same shortcomings Attneave’s did.   

 
Garner (1970) went a bit further than Attneave. He, like Attneave, recognized the importance of 

invariants, which suggested to him that groups and transformations should also be used. Garner, unlike 
Attneave, came very close to recognizing that symmetry is the central concept in perception. Garner, 
unlike Leeuwenberg, considered the symmetries of the entire figure, rather than the symmetries of the 
individual elements composing the figure. In other words, Garner did not try to compress the figure. He 
tried, instead, to determine which figure had better Gestalt properties. Unfortunately, he, like all those 
before him, failed to bring in the concept of a priori constraints and did not study the recovery of 3D 
shapes from 2D images.  

 
Cassirer (1944), before anyone else, played an important role when he emphasized the role of 

groups and invariants in theories of Perception. It was his paper that attracted the attention of J.J. Gibson 
(1950), and subsequently of James Cutting (1986) to projective invariants as a possible explanation of 
shape constancy. Recall that shape constancy refers to the fact that the perceived shape is constant despite 
changes in the shape of the retinal image caused by changes in the 3D viewing direction. The main 
problem with Cassirer’s approach, as I explained in Pizlo (2008), is that Cassirer assumed that the 
invariants present in the retinal image were sufficient to do the job. Simply put, he underestimated the 
complexity of the problem. Shape constancy, a perceptual accomplishment closely related to shape 
veridicality, is an invariant that is derived from symmetries, in the same way that conservations in physics 
are derived from symmetries, so, shape constancy is the result of a perceptual inference. It is not the result 
of the detection or measurement of invariants actually in the retinal image, the kind of “direct perception” 
idea that dominated Gibson’s theories.  

 
Chater (1996) understood that perception is an inference and that it is the result obtained by 

solving an inverse problem by combining a priori constraints with sensory data. He did not go on to 
propose a new theory of perception, but he did provide powerful arguments for the claim that there are no 
fundamental differences between the deterministic simplicity principle represented by regularization cost 
functions and probabilistic inferences represented by the Bayesian formalism. So, despite the long-
standing controversy between simplicity and likelihood principles, it may be impossible to tell them apart 
on empirical grounds. Note that Chater managed to express with a formal argument what Mach (1906) 
suggested near the beginning of the 20th Century.  

 
 Next, there is a body of work by Michael Kubovy and his associates that revolved around groups, 
transformations and symmetries (Kubovy & Wagemans, 1995; Gepshtein & Kubovy, 2000; Strother & 
Kubovy, 2003). This work focused almost entirely on 2D perceptual organization, essentially providing 
an economical description of 2D patterns, rather than performing a veridical 3D inference.  
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 Finally, I will compare Roger Shepard’s approach to mine because, as pointed out by an 
anonymous reviewer, Shepard’s views are precursors of the views described in this paper. I will focus on 
Shepard’s (1994) paper as most relevant. Shepard did advocate using “universal regularities in the world,” 
“mathematical elegance and generality of theories of that world,” and the “principles that reflect quite 
abstract features of the world, based as much in geometry, probability, and group theory as in specific, 
physical facts about concrete, material objects.” (p. 26). But, despite the overall similarity in our 
philosophy, there are also very clear, as well as critical, differences that will be highlighted below. 
 
1. Shepard was apparently unaware of Noether’s (1918) seminal theorem that established the 

fundamental relationship between (i) symmetries, (ii) a least-action principle and (iii) conservations in 
Physics. This relationship is at the center of my approach. I derive perceptual veridicality, which is a 
cognitive conservation, by applying a least-action principle to symmetries in the physical world. 
Shepard does not do this. Shepard, like all Physicists in the 19th century, is aware of the 
symmetry/invariance, the least-action principle and the conservation laws. He knows that all three are 
important, but he does not know how they are related, or perhaps even does not know that all three 
are related to each other. 

2. My approach, which is rooted in Noether’s (1918) theorem, proposes a way to connect the mental 
world to the physical world. Shepard does not propose this. The operation of a least-action principle, 
which resides in the neural machinery of the brain, leads, in my approach, to the mental 
representation of our physical world. This kind of psycho-physical connection, namely, a connection 
between the mental and physical worlds, is entirely absent from Shepard’s framework. In his 
framework, a least-action principle is only responsible for deciding how one mental representation is 
related to another mental representation, be it in mental rotation, in color constancy or in his law of 
generalization. His theory does not explain the perceptual or cognitive recovery of objects or events 
“out there”, the recovery that is the main focus of my theory.  

3. The mapping between the physical world and the sensory data is many-to-one. This is clear in the 
case of visual perception, which deals with the projection from the 3D world to the 2D retina. This 
projection is not a group, so it leaves nothing invariant on the surface of receptors, unless the physical 
stimulus has redundancy. Redundancy is present in objects and events when the objects and events 
are characterized by symmetry, which is a self-similarity. Shepard does talk about the symmetry of 
objects and he also defines symmetry as self-similarity. But, note well that symmetry, as a form of 
redundancy, is not essential in his theory because he does not need to restore any one-to-one 
mapping. In my theory, symmetry as a form of redundancy, is absolutely essential for the human 
mind to perform a veridical recovery, that is, to produce veridical 3D percepts from 2D sensory data. 
This recovery is done by combining a priori constraints (aka priors) with the available sensory data. 
This can be modeled by Regularization Theory or by Bayesian Inference. This kind of recovery 
resembles the least-action principle used in Physics, but it is more sophisticated because this veridical 
recovery is a perceptual or cognitive inference that is based on sensory data, two concepts that do not 
exist in Physics. Shepard does use priors and Bayes to infer distances in perceptual space. This allows 
him to derive his exponential Law of Generalization, but note that his priors do not play a very 
important role in his derivation (see his p. 24). So, Shepard needs priors, but he hopes that they do not 
influence the result of his generalization. This is in stark contrast with my 3D recovery where 
symmetry and compactness priors are absolutely essential: Without priors, there is no 3D percept and 
there is no inference.  

 
Least-actions and Conservations in Perception 

The idea that visual perception operates in ways analogous to the way that a least-action principle 
operates in Physics originated with Mach (1906). Specifically, according to Mach, a least-action, or 
"economy principle", as he called it, surely operated in the human mind. Whether it actually operated in 
physical Nature, as most physicists of that time assumed, was less clear to him. Mach, being a positivist, 
allowed for the possibility that the least-action principle is the most economical way to describe physical 
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events, even if these events are governed by as yet unknown laws. Köhler (1920), one of the three 
founders of Gestalt Psychology, was convinced that the Laws of Physics, specifically, the tendency of 
physical systems to move towards the state of minimal energy, could correspond to, perhaps even account 
for, a perceptual tendency to move towards simple interpretations (Ellis, 1938, pp. 17-54). Köhler (1920) 
cited Mach’s (1893) book on mechanics, where the least-action principle is discussed and explained. It is 
not clear, however, whether Köhler was actually importing the least-action principle into perception 
because he never used, not even once, the term “Prinzip der kleinsten Wirkung” or “Prinzip der 
geringsten Wirkung”, in his 263 page book.2  

 
During the Cognitive Revolution, Hochberg & McAlister (1953) started to use the concept of a 

minimum or simplicity principle, but they did not link it to Physics. They used concepts taken from 
Shannon’s Information Theory to justify their simplicity principle. It seems likely that Foster (1975, 
1978) was the first to use a mathematical formalism of a least-action principle in Physics to explain 
inferences in visual perception. A decade after Foster’s papers were published, the computer vision 
community started using cost functions that recognize the relationship between Inverse Problems in 
Applied Mathematics and inference problems within visual perception (Poggio et al., 1985). Poggio et al. 
did see the connection to the least-action principle in Physics, and they postulated that the brain could 
actually implement this least-action principle in the form of neural circuits (Poggio & Koch, 1985). Not 
long after this development, the human vision community started using cost functions, as well (Knill & 
Richards, 1996; Pizlo, 2001). In all of these cases, the cost functions and least-actions were used in 
isolation, without any connection to symmetry or conservations (but see Weiss, 1997 and Huh & 
Sejnowski, 2016). These activities resemble how least-actions were used by physicists in 18th and 19th 
centuries.  

 
The first explicit claim about the fundamental relationship between symmetries and cost-

functions in solving Inverse Problems in vision was published by the present author and his associates 10 
years ago (Pizlo, Li and Steinman, 2006; Pizlo, 2008; Pizlo et al., 2014). Once we began to work within 
the framework provided by Inverse Problems Theory, we realized that symmetry is the perfect a priori 
constraint. It looked perfect because it was abstract, and it could be used with almost all natural objects, 
both familiar and unfamiliar. Actually, it can be applied to all objects once we exclude clouds in the sky, 
rocks in the mountains, and crumpled pieces of paper. Existing psychophysical results helped connect 
symmetry with the cost functions that can be used to solve the Inverse Problem of recovering a 3D shape 
from one of its 2D retinal images. A decade earlier, we had established that shape constancy is close to 
perfect with symmetrical objects and completely absent with completely asymmetrical objects (Pizlo & 
Stevenson, 1999; Chan et al., 2006). Others had already tried to use symmetry for the recovery of 3D 
shape. This started in 1981 with Kanade, but he, as well as others, who followed his lead, assumed that 
symmetry was only a useful “trick” that could be added to an already existing large bag of tricks 
employed in efforts to recover 3D shape. Our contribution was pointing out that symmetry, especially the 
redundancy aspect of it, should be counted among the first principles of vision (Li et al., 2013). The other 
two “first principles” described in this paper are “a least-action or simplicity principle,” and 
“conservation, or constancy/veridicality laws.”  

 
Connecting these two concepts, namely symmetry and cost functions, i.e., least-actions, within 

Psychophysics played the same role it had played when the symmetry and least-action had been 
connected a century earlier in Physics. The credibility of our approach, which was based on cost functions 
and the use of the Inverse Problems Theory in human vision, was greatly strengthened when we brought 
in the important role that symmetry played in the recovery of 3D shape. By 2006, the vision community 
was losing interest in cost functions and Inverse Problems, and was moving away from 3D shape 
                                                           
2 The author is grateful to Michal Bach, who undertook to examine Köhler’s (1920) book, and found that the 
substance of this book is represented well in Ellis’s (1938) 37-page summary. 
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perception, arguably, the most important aspect of vision. The concepts called perceptual constancy and 
veridicality were becoming dirty words in the vision research literature, even taboo for some vision 
people. A good example of the attitude of our community towards veridicality can be seen in 
commentaries to a target paper authored by Hoffman, Singh & Prakash (2015). All of those who 
commented on this target paper, except for the present author, were absolutely convinced that veridicality 
in vision is a concept that makes no sense, whatsoever, and that only very naïve philosophers who were 
completely detached from scientific reality, would be willing to say anything about veridicality out loud, 
not to mention saying anything favorable. To be fair, this kind of scientific despair had received 
overwhelming justification from a century of psychophysical experiments, in which unnatural stimuli 
with no trace of symmetry had been used in all of the research on shape. Once symmetry was allowed into 
the lab, veridicality had to tag along. Note that outside of the laboratory, where symmetrical objects are 
the rule with no exceptions, there are no problems with veridicality: When you look at a symmetrical 
object such as a bird or a box or a fox, you see them as symmetrical. If this is not veridicality, what is? 
Demonstrating that veridicality can be achieved by using symmetry as an a priori constraint in the 
Regularization Method, opened the door for exploring what else can be accomplished in Psychophysics 
by making use of the duo called symmetry and least-actions. 

 
Consider mirror-symmetrical shapes because this type of symmetry seems to be the most 

important for human beings. By using mirror-symmetry as an a priori constraint, the visual system 
recovers the 3D shapes of objects, where by shape we mean invariants of 3D rigid motion plus overall 
size scaling (Li, Pizlo & Steinman, 2009; Li et al., 2011; Sawada, 2010; Pizlo et al., 2014). So, starting 
with reflection as a symmetry group, the visual system arrives at a larger, similarity group. This fact 
conforms to what is known in Physics as the Curie or Symmetry Principle. It says that the symmetry 
group can never get smaller as events develop in time (Curie, 1894). This means that the symmetry group 
of the cause is a subgroup of the symmetry group of the effect. This is surely the case in the recovery of a 
3D shape. The recovery begins with the 3D mirror-symmetry group, which is the smallest symmetry 
group, and ends with the percept of a 3D shape, which is characterized by a 3D similarity group that 
includes mirror-reflection, rigid motion and size scaling. This observation serves to strengthen my 
argument about the fundamental similarity between the Laws of Physics and Laws of Psychophysics.  

 
The recovery of a 3D shape is done by applying four a priori constraints, namely, 3D mirror 

symmetry, 3D compactness, planarity of closed contours and minimum surface area (Li, Pizlo & 
Steinman, 2009; Li et al., 2011; Sawada, 2010). The symmetry constraint in our models was implemented 
by minimizing the sum of absolute differences between the corresponding angles. In a perfectly mirror-
symmetrical shape, this sum is zero. The compactness constraint was implemented by maximizing the 
ratio V2/S3, where V and S are volume and surface area of the 3D reconstructed object. The minimum 
surface area constraint was used to bias the maximal compactness constraint. Minimizing the surface area 
makes the object thinner, and less compact. We found that this kind of biased compactness provides the 
best fits in our psychophysical results. Finally, maximum planarity of closed contours constraint was 
implemented in our models by favoring 3D curves that are better approximated by planes. These four 
constraints were included in a cost function with weights that were estimated by fitting the model’s 
reconstructions to the reconstructions of human subjects. Our most recent models work with real camera 
images. They also explicitly measure the difference between the 2D image produced by the 3D recovered 
shape and the 2D image that was used to perform the recovery (Michaux et al., 2016, 2017).  

 
Minimizing a cost function is the conventional way of solving an Inverse Problem within the 

framework of Regularization Theory (Tikhonov & Arsenin, 1977). The cost function, which allows one to 
make a visual inference, plays the role of the least-action principle in Physics. Least-actions in Physics are 
always applied to the symmetries of Natural Laws. Without symmetries, which are regularities in Nature, 
least-actions in Physics would never produce anything meaningful. The importance of symmetry is even 
more pronounced in perceptual inferences, where solving an Inverse Problem amounts to the veridical 
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recovery of what is “out there” on the basis of incomplete data. Recall that without redundancies 
conveyed by symmetries, the sensory data available at the proximal stimulus do not have the one-to-one 
mapping with the objects (distal stimuli) “out there.” So, as I already pointed out earlier in this paper, 
symmetry plays a dual role in Perception, namely, symmetry serves as a regularity in the Laws of Nature, 
and symmetry serves as the source of redundancy in the sensory data. The first role is sufficient in 
Physics, but not in Cognitive Psychology.  

 
Interestingly and surprisingly, the concept of symmetry is actually not mentioned in 

Regularization theory or in Bayesian inference. Both methods for making inferences use a priori 
constraints (priors), but so far, no theory of how these constraints should be selected has been developed. 
To date, these constraints have always been selected in an ad hoc manner. Sometimes these constraints 
were formulated trivially as implicit regularities present in all previously seen examples. The only 
criterion used so far has been whether the constraints worked. A comparison of how these constraints are 
chosen for use in Inverse Problems in Applied Mathematics and for least-actions in Physics, suggests that 
the constraints used for solving Inverse Problems should always represent symmetries inherent in the 
problem being solved. It seems likely that all a priori constraints that were effective when used to solve 
Inverse Problems in the past did represent symmetries, but this possibility has never, to my knowledge, 
been discussed either within Regularization Theory or Bayesian Inference. This should be done because 
the explicit use of symmetry in Inverse Problem Theory is likely to bring this theory to a new level where 
it might help us to include it in a Unified Natural Science. 

 
 Once 3D shapes are recovered, they become new invariants in Psychophysics, invariants that 
represent perceptual conservations. These conservations are different from the conservations known in 
Physics. For example, recovered 3D shapes are scale invariant, so scale invariance operates in Perception 
but recall that it does not operate in Physics. In any case, perceptual representations of the outside world 
are conservations that are derived by applying perceptual least-actions that resemble least-actions in 
Physics. It turns out that Psychophysics is based on the same hierarchy that Wigner used to describe 
Physics, but Psychophysical least-actions are different from physical least-actions because the former 
combine symmetries with sensory data. There is no concept like sensory data in Physics. Once 
psychophysical least-actions are different, psychophysical conservations must be different, too. 
Specifically, Psychophysical conservations are veridical representations of the outside world. They are 
used to plan and execute purposive actions in the physical environment. 
 
 In this context, the empirical results obtained in the area of Cognitive Psychology called 
“intuitive Physics” are not surprising (Kellman & Spelke, 1983; Spelke, 1998). Once we realize that 
visual Perception, as well as other types of perception such as tactual and auditory percepts, are 
conservations derived from the symmetries of the Natural Laws, it is natural to expect that the perceptual 
systems have access to the symmetries and conservations that characterize Physics. We already know that 
"intuitive Physics” is not perfect in the sense that some Natural Laws are not intuitive, but a number of 
the Natural Laws described by Spelke, are intuitive. So, intuitive Physics may actually reside in the 
perceptual systems, rather than in higher levels of cognition. Similarly, now that we know that intuitive 
Physics is present quite early in the human's development, the widespread use of "thought experiments" in 
Physics appears to be quite natural, too. Shepard (2008) described several examples where physicists 
were able to derive the Laws of Physics without performing a single physical experiment. This was true 
with Archimedes’s Law of the Lever, Galileo’s Law of Falling Bodies, Newton’s Law of Action and 
Reaction, as well as Einstein’s Special and General Relativity Theory. In all of these cases, the 
assumption that Natural Laws obey symmetry was sufficient to derive each of these particular laws. 
Physical experiments were performed after the thought experiment was carried out, confirming what the 
thought experiments had already established. Again, the scientist’s intuition, which is based on symmetry, 
seems natural simply because our perceptual representations rely on symmetry, just as the Laws of 
Physics do. This explains, at least partially, “the unreasonable effectiveness of mathematics in the natural 
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sciences”, a fact that Wigner (1960) found intriguing. Symmetry is a mathematical concept, so once we 
realize, with Rosen (2008), that “symmetry rules” in Natural Science, the effectiveness of mathematics in 
natural sciences cannot be surprising, especially once we recognize that mathematics is a product of the 
human mind. These comments bring us to the point where an attempt will be made to generalize Wigner’s 
hierarchy from Psychophysics to the rest of Cognitive Psychology.  
 

Extending the Science of Perception to the Science of Cognition 
All Cognition is concerned with inferences. This includes linguistic communication, learning, decision 
making, problem solving, motor control, concept formation and categorization, social cognition, as well 
as formulating scientific theories. The Theory of Inverse Problems tells us that veridical (correct) 
inferences must combine data with a priori constraints. This takes the form of a cost function, whose 
minimum corresponds to the correct interpretation. This approach to Cognitive Psychology was adopted, 
among others, by Feldman (2000, 2016), Chater (1999) and Chater & Vitanyi (2003), but in their hands, 
the cost functions operated in isolation. This is the same shortcoming that characterized the early work of 
Physicists in the 18th and 19th centuries, as well as the early work of Psychophysicists in the second half of 
the 20th century. Recall that these researchers did see a need to use a least-action principle and cost 
functions early on, but they either did not see any reason to connect them to symmetries and 
conservations, or they were simply not aware of them when they did this work. Similarly, Cognitive 
Scientists, who started using cost functions to explain how the human mind finds the simplest, or the most 
likely, interpretations of the sensory data, did not explore the nature of the regularities and redundancies 
(symmetries) in the system that had generated the data. Their emphasis was placed on compressing the 
data, under an implicit assumption that the simplest (most compressed) interpretation will be the correct 
interpretation. Note that this kind of search over all possible interpretations is neither possible nor needed. 
Such a blind search may only work with very simple inferences. In all realistic cases, the inference 
process must begin with restoring the one-to-one mapping between the distal stimuli characterizing the 
cognitive problem at hand and the sensory data available. Restoring a one-to-one mapping must be based 
on the redundancies that are present in the distal stimuli and making use of these redundancies requires 
identifying the symmetry that is the source of the redundancy. If incorrect, or if no symmetry is assumed, 
a one-to-one mapping will not be restored and the inference will fail. The redundancies in the distal 
stimuli and the resulting invariants in the sensory data, as well as the nature of the cognitive task at hand, 
inform the observer about the relevant symmetries and these symmetries should drive the inferential 
process. Simply put, there is no reason to assume that a visual or cognitive system has a single cost 
function that is applied to all stimuli and all tasks. For example, when am I looking at a mirror-
symmetrical object, my visual system should use the redundancy inherent in the mirror-symmetry, rather 
than in the rotational symmetry, and the cost function should measure the departure from the former, not 
from the latter. This fact was pointed out and used by the present author in his early paper on inverse 
problems (e.g., see Pizlo, 2001; footnote 2, p. 3151). A similar approach seems to have been employed by 
Tenenbaum et al. (2006) in their hierarchical Bayesian models of cognitive inferences.   
 
 Tenenbaum et al. (2006) started their paper by saying that “traditional accounts of induction 
emphasize either the power of statistical learning, or the importance of strong constraints from structured 
domain knowledge” (p. 309). Tenenbaum et al. go on to state that both components are necessary, and 
that they should be combined by using the Bayesian formalism. Not surprisingly, in their approach, the 
sensory data are incorporated in the likelihood function, and the constraints, representing a priori domain 
knowledge, are Bayesian priors. The product is a posterior that is used for making optimal inferences. 
What is new in Tenenbaum et al.’s approach, when compared to prior approaches, is that they have a 
number of different principles that represent a collection of a priori constraints taken from structured 
domain knowledge. These principles include, but are not necessarily limited to: taxonomic trees, directed 
networks, linear orders, clusters, and causal laws. Each of these abstract a priori principles applies to a 
wide range of inferences, which represents what is called an "invariance" in Mathematics and Physics. By 
identifying these principles, Tenenbaum et al. effectively grouped cognitive inferences into subsets that 
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look like equivalence classes. If these subsets are actually equivalence classes, the individual principles 
can be viewed as defining symmetry groups. No one analyzed Tenenbaum et al.’s hierarchical Bayesian 
approach using the formalism of symmetry groups and the underlying invariants, but I am convinced that 
this is well worth doing. Note that using symmetries proved absolutely instrumental in explaining visual 
inferences, so the chances are that the same will be true with cognitive inferences. After all, we know that 
one can produce new and meaningful results, that is, veridical perceptions in Psychophysics, and 
conservations in Physics, only when cost functions and least-actions are applied to symmetries. But note 
that in order to apply the approach advocated here to cognitive inferences, it is essential not only to 
specify the equivalence classes implied by symmetries. It is also necessary to identify the redundancies 
that characterize the symmetries in the distal stimuli. Without redundancies, the inferences from the 
sensory data will be impossible simply because of the many-to-one mapping from the real state of affairs 
“out there” to the sensory data. These redundancies surely exist in the kinds of inferences that Tenenbaum 
et al. discussed in their paper. But note that these redundancies must also be made explicit in the 
computational models that are formulated to account for the inferences. If this is not done, one will be 
limited in cognitive experiments and theories to only the simplest cases that can be handled by a one-to-
one mapping from the distal to the proximal stimulus, the kind of mapping that limited psychophysicists 
in their perceptual experiments for more than a century. 
 
 To summarize, Cognitive Science, following in the footsteps of Psychophysics, can, and probably 
should use the same mathematical structure that Physics uses, namely, symmetry, least-actions and 
conservations and connect them in the same way. Specifically, we should treat cognitive inferences as 
conservation laws and derive them from symmetries characterizing the physical and social environment 
through the application of a minimum, or simplicity principle. Doing this would give us what I consider 
to be a minimal program. If this were adopted, Cognitive Scientists could benefit from the enormous set 
of mathematical tools that Physicists have been using for the last 100 years. Psychophysicists are already 
benefiting from doing this. But, if one chooses to be more ambitious, one can go much further by 
assuming that the neurobiological mechanisms, operating in the brain, actually implement the least-action 
principle that connects the mental representations with the outside world. The resulting theoretical 
structure could provide the often-sought approach to a Unified Natural Science. Will all aspects of this 
newly unified Cognitive Science and Neuroscience be a hard science based on symmetries, least-actions 
and conservations? Almost surely not, but whatever remains outside this scientific structure, probably 
runs the risk of being called “stamp collecting”, at least by Physicists. 
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